xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision d8bcaabe)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/reboot.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/percpu.h>
35 #include <linux/prctl.h>
36 #include <linux/ftrace.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/kdebug.h>
40 #include <linux/syscalls.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/ldt.h>
44 #include <asm/processor.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/desc.h>
47 #ifdef CONFIG_MATH_EMULATION
48 #include <asm/math_emu.h>
49 #endif
50 
51 #include <linux/err.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/cpu.h>
55 #include <asm/syscalls.h>
56 #include <asm/debugreg.h>
57 #include <asm/switch_to.h>
58 #include <asm/vm86.h>
59 #include <asm/intel_rdt_sched.h>
60 #include <asm/proto.h>
61 
62 void __show_regs(struct pt_regs *regs, int all)
63 {
64 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
65 	unsigned long d0, d1, d2, d3, d6, d7;
66 	unsigned long sp;
67 	unsigned short ss, gs;
68 
69 	if (user_mode(regs)) {
70 		sp = regs->sp;
71 		ss = regs->ss;
72 		gs = get_user_gs(regs);
73 	} else {
74 		sp = kernel_stack_pointer(regs);
75 		savesegment(ss, ss);
76 		savesegment(gs, gs);
77 	}
78 
79 	printk(KERN_DEFAULT "EIP: %pS\n", (void *)regs->ip);
80 	printk(KERN_DEFAULT "EFLAGS: %08lx CPU: %d\n", regs->flags,
81 		raw_smp_processor_id());
82 
83 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
84 		regs->ax, regs->bx, regs->cx, regs->dx);
85 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
86 		regs->si, regs->di, regs->bp, sp);
87 	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
88 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
89 
90 	if (!all)
91 		return;
92 
93 	cr0 = read_cr0();
94 	cr2 = read_cr2();
95 	cr3 = __read_cr3();
96 	cr4 = __read_cr4();
97 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
98 			cr0, cr2, cr3, cr4);
99 
100 	get_debugreg(d0, 0);
101 	get_debugreg(d1, 1);
102 	get_debugreg(d2, 2);
103 	get_debugreg(d3, 3);
104 	get_debugreg(d6, 6);
105 	get_debugreg(d7, 7);
106 
107 	/* Only print out debug registers if they are in their non-default state. */
108 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
109 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
110 		return;
111 
112 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
113 			d0, d1, d2, d3);
114 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
115 			d6, d7);
116 }
117 
118 void release_thread(struct task_struct *dead_task)
119 {
120 	BUG_ON(dead_task->mm);
121 	release_vm86_irqs(dead_task);
122 }
123 
124 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
125 	unsigned long arg, struct task_struct *p, unsigned long tls)
126 {
127 	struct pt_regs *childregs = task_pt_regs(p);
128 	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
129 	struct inactive_task_frame *frame = &fork_frame->frame;
130 	struct task_struct *tsk;
131 	int err;
132 
133 	frame->bp = 0;
134 	frame->ret_addr = (unsigned long) ret_from_fork;
135 	p->thread.sp = (unsigned long) fork_frame;
136 	p->thread.sp0 = (unsigned long) (childregs+1);
137 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
138 
139 	if (unlikely(p->flags & PF_KTHREAD)) {
140 		/* kernel thread */
141 		memset(childregs, 0, sizeof(struct pt_regs));
142 		frame->bx = sp;		/* function */
143 		frame->di = arg;
144 		p->thread.io_bitmap_ptr = NULL;
145 		return 0;
146 	}
147 	frame->bx = 0;
148 	*childregs = *current_pt_regs();
149 	childregs->ax = 0;
150 	if (sp)
151 		childregs->sp = sp;
152 
153 	task_user_gs(p) = get_user_gs(current_pt_regs());
154 
155 	p->thread.io_bitmap_ptr = NULL;
156 	tsk = current;
157 	err = -ENOMEM;
158 
159 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
160 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
161 						IO_BITMAP_BYTES, GFP_KERNEL);
162 		if (!p->thread.io_bitmap_ptr) {
163 			p->thread.io_bitmap_max = 0;
164 			return -ENOMEM;
165 		}
166 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
167 	}
168 
169 	err = 0;
170 
171 	/*
172 	 * Set a new TLS for the child thread?
173 	 */
174 	if (clone_flags & CLONE_SETTLS)
175 		err = do_set_thread_area(p, -1,
176 			(struct user_desc __user *)tls, 0);
177 
178 	if (err && p->thread.io_bitmap_ptr) {
179 		kfree(p->thread.io_bitmap_ptr);
180 		p->thread.io_bitmap_max = 0;
181 	}
182 	return err;
183 }
184 
185 void
186 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
187 {
188 	set_user_gs(regs, 0);
189 	regs->fs		= 0;
190 	regs->ds		= __USER_DS;
191 	regs->es		= __USER_DS;
192 	regs->ss		= __USER_DS;
193 	regs->cs		= __USER_CS;
194 	regs->ip		= new_ip;
195 	regs->sp		= new_sp;
196 	regs->flags		= X86_EFLAGS_IF;
197 	force_iret();
198 }
199 EXPORT_SYMBOL_GPL(start_thread);
200 
201 
202 /*
203  *	switch_to(x,y) should switch tasks from x to y.
204  *
205  * We fsave/fwait so that an exception goes off at the right time
206  * (as a call from the fsave or fwait in effect) rather than to
207  * the wrong process. Lazy FP saving no longer makes any sense
208  * with modern CPU's, and this simplifies a lot of things (SMP
209  * and UP become the same).
210  *
211  * NOTE! We used to use the x86 hardware context switching. The
212  * reason for not using it any more becomes apparent when you
213  * try to recover gracefully from saved state that is no longer
214  * valid (stale segment register values in particular). With the
215  * hardware task-switch, there is no way to fix up bad state in
216  * a reasonable manner.
217  *
218  * The fact that Intel documents the hardware task-switching to
219  * be slow is a fairly red herring - this code is not noticeably
220  * faster. However, there _is_ some room for improvement here,
221  * so the performance issues may eventually be a valid point.
222  * More important, however, is the fact that this allows us much
223  * more flexibility.
224  *
225  * The return value (in %ax) will be the "prev" task after
226  * the task-switch, and shows up in ret_from_fork in entry.S,
227  * for example.
228  */
229 __visible __notrace_funcgraph struct task_struct *
230 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
231 {
232 	struct thread_struct *prev = &prev_p->thread,
233 			     *next = &next_p->thread;
234 	struct fpu *prev_fpu = &prev->fpu;
235 	struct fpu *next_fpu = &next->fpu;
236 	int cpu = smp_processor_id();
237 	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
238 
239 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
240 
241 	switch_fpu_prepare(prev_fpu, cpu);
242 
243 	/*
244 	 * Save away %gs. No need to save %fs, as it was saved on the
245 	 * stack on entry.  No need to save %es and %ds, as those are
246 	 * always kernel segments while inside the kernel.  Doing this
247 	 * before setting the new TLS descriptors avoids the situation
248 	 * where we temporarily have non-reloadable segments in %fs
249 	 * and %gs.  This could be an issue if the NMI handler ever
250 	 * used %fs or %gs (it does not today), or if the kernel is
251 	 * running inside of a hypervisor layer.
252 	 */
253 	lazy_save_gs(prev->gs);
254 
255 	/*
256 	 * Load the per-thread Thread-Local Storage descriptor.
257 	 */
258 	load_TLS(next, cpu);
259 
260 	/*
261 	 * Restore IOPL if needed.  In normal use, the flags restore
262 	 * in the switch assembly will handle this.  But if the kernel
263 	 * is running virtualized at a non-zero CPL, the popf will
264 	 * not restore flags, so it must be done in a separate step.
265 	 */
266 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
267 		set_iopl_mask(next->iopl);
268 
269 	/*
270 	 * Now maybe handle debug registers and/or IO bitmaps
271 	 */
272 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
273 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
274 		__switch_to_xtra(prev_p, next_p, tss);
275 
276 	/*
277 	 * Leave lazy mode, flushing any hypercalls made here.
278 	 * This must be done before restoring TLS segments so
279 	 * the GDT and LDT are properly updated, and must be
280 	 * done before fpu__restore(), so the TS bit is up
281 	 * to date.
282 	 */
283 	arch_end_context_switch(next_p);
284 
285 	/*
286 	 * Reload esp0 and cpu_current_top_of_stack.  This changes
287 	 * current_thread_info().
288 	 */
289 	load_sp0(tss, next);
290 	this_cpu_write(cpu_current_top_of_stack,
291 		       (unsigned long)task_stack_page(next_p) +
292 		       THREAD_SIZE);
293 
294 	/*
295 	 * Restore %gs if needed (which is common)
296 	 */
297 	if (prev->gs | next->gs)
298 		lazy_load_gs(next->gs);
299 
300 	switch_fpu_finish(next_fpu, cpu);
301 
302 	this_cpu_write(current_task, next_p);
303 
304 	/* Load the Intel cache allocation PQR MSR. */
305 	intel_rdt_sched_in();
306 
307 	return prev_p;
308 }
309 
310 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
311 {
312 	return do_arch_prctl_common(current, option, arg2);
313 }
314