xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision a5c43003)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/stackprotector.h>
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/elfcore.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/user.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/module.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/tick.h>
35 #include <linux/percpu.h>
36 #include <linux/prctl.h>
37 #include <linux/ftrace.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/kdebug.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/ldt.h>
45 #include <asm/processor.h>
46 #include <asm/i387.h>
47 #include <asm/desc.h>
48 #ifdef CONFIG_MATH_EMULATION
49 #include <asm/math_emu.h>
50 #endif
51 
52 #include <linux/err.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/cpu.h>
56 #include <asm/idle.h>
57 #include <asm/syscalls.h>
58 #include <asm/debugreg.h>
59 
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61 
62 /*
63  * Return saved PC of a blocked thread.
64  */
65 unsigned long thread_saved_pc(struct task_struct *tsk)
66 {
67 	return ((unsigned long *)tsk->thread.sp)[3];
68 }
69 
70 #ifndef CONFIG_SMP
71 static inline void play_dead(void)
72 {
73 	BUG();
74 }
75 #endif
76 
77 /*
78  * The idle thread. There's no useful work to be
79  * done, so just try to conserve power and have a
80  * low exit latency (ie sit in a loop waiting for
81  * somebody to say that they'd like to reschedule)
82  */
83 void cpu_idle(void)
84 {
85 	int cpu = smp_processor_id();
86 
87 	/*
88 	 * If we're the non-boot CPU, nothing set the stack canary up
89 	 * for us.  CPU0 already has it initialized but no harm in
90 	 * doing it again.  This is a good place for updating it, as
91 	 * we wont ever return from this function (so the invalid
92 	 * canaries already on the stack wont ever trigger).
93 	 */
94 	boot_init_stack_canary();
95 
96 	current_thread_info()->status |= TS_POLLING;
97 
98 	/* endless idle loop with no priority at all */
99 	while (1) {
100 		tick_nohz_stop_sched_tick(1);
101 		while (!need_resched()) {
102 
103 			check_pgt_cache();
104 			rmb();
105 
106 			if (cpu_is_offline(cpu))
107 				play_dead();
108 
109 			local_irq_disable();
110 			/* Don't trace irqs off for idle */
111 			stop_critical_timings();
112 			pm_idle();
113 			start_critical_timings();
114 		}
115 		tick_nohz_restart_sched_tick();
116 		preempt_enable_no_resched();
117 		schedule();
118 		preempt_disable();
119 	}
120 }
121 
122 void __show_regs(struct pt_regs *regs, int all)
123 {
124 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
125 	unsigned long d0, d1, d2, d3, d6, d7;
126 	unsigned long sp;
127 	unsigned short ss, gs;
128 
129 	if (user_mode_vm(regs)) {
130 		sp = regs->sp;
131 		ss = regs->ss & 0xffff;
132 		gs = get_user_gs(regs);
133 	} else {
134 		sp = kernel_stack_pointer(regs);
135 		savesegment(ss, ss);
136 		savesegment(gs, gs);
137 	}
138 
139 	show_regs_common();
140 
141 	printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
142 			(u16)regs->cs, regs->ip, regs->flags,
143 			smp_processor_id());
144 	print_symbol("EIP is at %s\n", regs->ip);
145 
146 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
147 		regs->ax, regs->bx, regs->cx, regs->dx);
148 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
149 		regs->si, regs->di, regs->bp, sp);
150 	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
151 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
152 
153 	if (!all)
154 		return;
155 
156 	cr0 = read_cr0();
157 	cr2 = read_cr2();
158 	cr3 = read_cr3();
159 	cr4 = read_cr4_safe();
160 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
161 			cr0, cr2, cr3, cr4);
162 
163 	get_debugreg(d0, 0);
164 	get_debugreg(d1, 1);
165 	get_debugreg(d2, 2);
166 	get_debugreg(d3, 3);
167 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
168 			d0, d1, d2, d3);
169 
170 	get_debugreg(d6, 6);
171 	get_debugreg(d7, 7);
172 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
173 			d6, d7);
174 }
175 
176 void release_thread(struct task_struct *dead_task)
177 {
178 	BUG_ON(dead_task->mm);
179 	release_vm86_irqs(dead_task);
180 }
181 
182 /*
183  * This gets called before we allocate a new thread and copy
184  * the current task into it.
185  */
186 void prepare_to_copy(struct task_struct *tsk)
187 {
188 	unlazy_fpu(tsk);
189 }
190 
191 int copy_thread(unsigned long clone_flags, unsigned long sp,
192 	unsigned long unused,
193 	struct task_struct *p, struct pt_regs *regs)
194 {
195 	struct pt_regs *childregs;
196 	struct task_struct *tsk;
197 	int err;
198 
199 	childregs = task_pt_regs(p);
200 	*childregs = *regs;
201 	childregs->ax = 0;
202 	childregs->sp = sp;
203 
204 	p->thread.sp = (unsigned long) childregs;
205 	p->thread.sp0 = (unsigned long) (childregs+1);
206 
207 	p->thread.ip = (unsigned long) ret_from_fork;
208 
209 	task_user_gs(p) = get_user_gs(regs);
210 
211 	p->thread.io_bitmap_ptr = NULL;
212 	tsk = current;
213 	err = -ENOMEM;
214 
215 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
216 
217 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
218 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
219 						IO_BITMAP_BYTES, GFP_KERNEL);
220 		if (!p->thread.io_bitmap_ptr) {
221 			p->thread.io_bitmap_max = 0;
222 			return -ENOMEM;
223 		}
224 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
225 	}
226 
227 	err = 0;
228 
229 	/*
230 	 * Set a new TLS for the child thread?
231 	 */
232 	if (clone_flags & CLONE_SETTLS)
233 		err = do_set_thread_area(p, -1,
234 			(struct user_desc __user *)childregs->si, 0);
235 
236 	if (err && p->thread.io_bitmap_ptr) {
237 		kfree(p->thread.io_bitmap_ptr);
238 		p->thread.io_bitmap_max = 0;
239 	}
240 	return err;
241 }
242 
243 void
244 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
245 {
246 	set_user_gs(regs, 0);
247 	regs->fs		= 0;
248 	set_fs(USER_DS);
249 	regs->ds		= __USER_DS;
250 	regs->es		= __USER_DS;
251 	regs->ss		= __USER_DS;
252 	regs->cs		= __USER_CS;
253 	regs->ip		= new_ip;
254 	regs->sp		= new_sp;
255 	/*
256 	 * Free the old FP and other extended state
257 	 */
258 	free_thread_xstate(current);
259 }
260 EXPORT_SYMBOL_GPL(start_thread);
261 
262 
263 /*
264  *	switch_to(x,yn) should switch tasks from x to y.
265  *
266  * We fsave/fwait so that an exception goes off at the right time
267  * (as a call from the fsave or fwait in effect) rather than to
268  * the wrong process. Lazy FP saving no longer makes any sense
269  * with modern CPU's, and this simplifies a lot of things (SMP
270  * and UP become the same).
271  *
272  * NOTE! We used to use the x86 hardware context switching. The
273  * reason for not using it any more becomes apparent when you
274  * try to recover gracefully from saved state that is no longer
275  * valid (stale segment register values in particular). With the
276  * hardware task-switch, there is no way to fix up bad state in
277  * a reasonable manner.
278  *
279  * The fact that Intel documents the hardware task-switching to
280  * be slow is a fairly red herring - this code is not noticeably
281  * faster. However, there _is_ some room for improvement here,
282  * so the performance issues may eventually be a valid point.
283  * More important, however, is the fact that this allows us much
284  * more flexibility.
285  *
286  * The return value (in %ax) will be the "prev" task after
287  * the task-switch, and shows up in ret_from_fork in entry.S,
288  * for example.
289  */
290 __notrace_funcgraph struct task_struct *
291 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
292 {
293 	struct thread_struct *prev = &prev_p->thread,
294 				 *next = &next_p->thread;
295 	int cpu = smp_processor_id();
296 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
297 	bool preload_fpu;
298 
299 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
300 
301 	/*
302 	 * If the task has used fpu the last 5 timeslices, just do a full
303 	 * restore of the math state immediately to avoid the trap; the
304 	 * chances of needing FPU soon are obviously high now
305 	 */
306 	preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
307 
308 	__unlazy_fpu(prev_p);
309 
310 	/* we're going to use this soon, after a few expensive things */
311 	if (preload_fpu)
312 		prefetch(next->fpu.state);
313 
314 	/*
315 	 * Reload esp0.
316 	 */
317 	load_sp0(tss, next);
318 
319 	/*
320 	 * Save away %gs. No need to save %fs, as it was saved on the
321 	 * stack on entry.  No need to save %es and %ds, as those are
322 	 * always kernel segments while inside the kernel.  Doing this
323 	 * before setting the new TLS descriptors avoids the situation
324 	 * where we temporarily have non-reloadable segments in %fs
325 	 * and %gs.  This could be an issue if the NMI handler ever
326 	 * used %fs or %gs (it does not today), or if the kernel is
327 	 * running inside of a hypervisor layer.
328 	 */
329 	lazy_save_gs(prev->gs);
330 
331 	/*
332 	 * Load the per-thread Thread-Local Storage descriptor.
333 	 */
334 	load_TLS(next, cpu);
335 
336 	/*
337 	 * Restore IOPL if needed.  In normal use, the flags restore
338 	 * in the switch assembly will handle this.  But if the kernel
339 	 * is running virtualized at a non-zero CPL, the popf will
340 	 * not restore flags, so it must be done in a separate step.
341 	 */
342 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
343 		set_iopl_mask(next->iopl);
344 
345 	/*
346 	 * Now maybe handle debug registers and/or IO bitmaps
347 	 */
348 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
349 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
350 		__switch_to_xtra(prev_p, next_p, tss);
351 
352 	/* If we're going to preload the fpu context, make sure clts
353 	   is run while we're batching the cpu state updates. */
354 	if (preload_fpu)
355 		clts();
356 
357 	/*
358 	 * Leave lazy mode, flushing any hypercalls made here.
359 	 * This must be done before restoring TLS segments so
360 	 * the GDT and LDT are properly updated, and must be
361 	 * done before math_state_restore, so the TS bit is up
362 	 * to date.
363 	 */
364 	arch_end_context_switch(next_p);
365 
366 	if (preload_fpu)
367 		__math_state_restore();
368 
369 	/*
370 	 * Restore %gs if needed (which is common)
371 	 */
372 	if (prev->gs | next->gs)
373 		lazy_load_gs(next->gs);
374 
375 	percpu_write(current_task, next_p);
376 
377 	return prev_p;
378 }
379 
380 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
381 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
382 
383 unsigned long get_wchan(struct task_struct *p)
384 {
385 	unsigned long bp, sp, ip;
386 	unsigned long stack_page;
387 	int count = 0;
388 	if (!p || p == current || p->state == TASK_RUNNING)
389 		return 0;
390 	stack_page = (unsigned long)task_stack_page(p);
391 	sp = p->thread.sp;
392 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
393 		return 0;
394 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
395 	bp = *(unsigned long *) sp;
396 	do {
397 		if (bp < stack_page || bp > top_ebp+stack_page)
398 			return 0;
399 		ip = *(unsigned long *) (bp+4);
400 		if (!in_sched_functions(ip))
401 			return ip;
402 		bp = *(unsigned long *) bp;
403 	} while (count++ < 16);
404 	return 0;
405 }
406 
407