xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision 93df8a1e)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/fs.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/elfcore.h>
19 #include <linux/smp.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/mc146818rtc.h>
28 #include <linux/module.h>
29 #include <linux/kallsyms.h>
30 #include <linux/ptrace.h>
31 #include <linux/personality.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/ftrace.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/kdebug.h>
38 
39 #include <asm/pgtable.h>
40 #include <asm/ldt.h>
41 #include <asm/processor.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/desc.h>
44 #ifdef CONFIG_MATH_EMULATION
45 #include <asm/math_emu.h>
46 #endif
47 
48 #include <linux/err.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/cpu.h>
52 #include <asm/idle.h>
53 #include <asm/syscalls.h>
54 #include <asm/debugreg.h>
55 #include <asm/switch_to.h>
56 
57 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
58 asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread");
59 
60 /*
61  * Return saved PC of a blocked thread.
62  */
63 unsigned long thread_saved_pc(struct task_struct *tsk)
64 {
65 	return ((unsigned long *)tsk->thread.sp)[3];
66 }
67 
68 void __show_regs(struct pt_regs *regs, int all)
69 {
70 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
71 	unsigned long d0, d1, d2, d3, d6, d7;
72 	unsigned long sp;
73 	unsigned short ss, gs;
74 
75 	if (user_mode(regs)) {
76 		sp = regs->sp;
77 		ss = regs->ss & 0xffff;
78 		gs = get_user_gs(regs);
79 	} else {
80 		sp = kernel_stack_pointer(regs);
81 		savesegment(ss, ss);
82 		savesegment(gs, gs);
83 	}
84 
85 	printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
86 			(u16)regs->cs, regs->ip, regs->flags,
87 			smp_processor_id());
88 	print_symbol("EIP is at %s\n", regs->ip);
89 
90 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
91 		regs->ax, regs->bx, regs->cx, regs->dx);
92 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
93 		regs->si, regs->di, regs->bp, sp);
94 	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
95 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
96 
97 	if (!all)
98 		return;
99 
100 	cr0 = read_cr0();
101 	cr2 = read_cr2();
102 	cr3 = read_cr3();
103 	cr4 = __read_cr4_safe();
104 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
105 			cr0, cr2, cr3, cr4);
106 
107 	get_debugreg(d0, 0);
108 	get_debugreg(d1, 1);
109 	get_debugreg(d2, 2);
110 	get_debugreg(d3, 3);
111 	get_debugreg(d6, 6);
112 	get_debugreg(d7, 7);
113 
114 	/* Only print out debug registers if they are in their non-default state. */
115 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
116 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
117 		return;
118 
119 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
120 			d0, d1, d2, d3);
121 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
122 			d6, d7);
123 }
124 
125 void release_thread(struct task_struct *dead_task)
126 {
127 	BUG_ON(dead_task->mm);
128 	release_vm86_irqs(dead_task);
129 }
130 
131 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
132 	unsigned long arg, struct task_struct *p, unsigned long tls)
133 {
134 	struct pt_regs *childregs = task_pt_regs(p);
135 	struct task_struct *tsk;
136 	int err;
137 
138 	p->thread.sp = (unsigned long) childregs;
139 	p->thread.sp0 = (unsigned long) (childregs+1);
140 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
141 
142 	if (unlikely(p->flags & PF_KTHREAD)) {
143 		/* kernel thread */
144 		memset(childregs, 0, sizeof(struct pt_regs));
145 		p->thread.ip = (unsigned long) ret_from_kernel_thread;
146 		task_user_gs(p) = __KERNEL_STACK_CANARY;
147 		childregs->ds = __USER_DS;
148 		childregs->es = __USER_DS;
149 		childregs->fs = __KERNEL_PERCPU;
150 		childregs->bx = sp;	/* function */
151 		childregs->bp = arg;
152 		childregs->orig_ax = -1;
153 		childregs->cs = __KERNEL_CS | get_kernel_rpl();
154 		childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
155 		p->thread.io_bitmap_ptr = NULL;
156 		return 0;
157 	}
158 	*childregs = *current_pt_regs();
159 	childregs->ax = 0;
160 	if (sp)
161 		childregs->sp = sp;
162 
163 	p->thread.ip = (unsigned long) ret_from_fork;
164 	task_user_gs(p) = get_user_gs(current_pt_regs());
165 
166 	p->thread.io_bitmap_ptr = NULL;
167 	tsk = current;
168 	err = -ENOMEM;
169 
170 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
171 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
172 						IO_BITMAP_BYTES, GFP_KERNEL);
173 		if (!p->thread.io_bitmap_ptr) {
174 			p->thread.io_bitmap_max = 0;
175 			return -ENOMEM;
176 		}
177 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
178 	}
179 
180 	err = 0;
181 
182 	/*
183 	 * Set a new TLS for the child thread?
184 	 */
185 	if (clone_flags & CLONE_SETTLS)
186 		err = do_set_thread_area(p, -1,
187 			(struct user_desc __user *)tls, 0);
188 
189 	if (err && p->thread.io_bitmap_ptr) {
190 		kfree(p->thread.io_bitmap_ptr);
191 		p->thread.io_bitmap_max = 0;
192 	}
193 	return err;
194 }
195 
196 void
197 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
198 {
199 	set_user_gs(regs, 0);
200 	regs->fs		= 0;
201 	regs->ds		= __USER_DS;
202 	regs->es		= __USER_DS;
203 	regs->ss		= __USER_DS;
204 	regs->cs		= __USER_CS;
205 	regs->ip		= new_ip;
206 	regs->sp		= new_sp;
207 	regs->flags		= X86_EFLAGS_IF;
208 	force_iret();
209 }
210 EXPORT_SYMBOL_GPL(start_thread);
211 
212 
213 /*
214  *	switch_to(x,y) should switch tasks from x to y.
215  *
216  * We fsave/fwait so that an exception goes off at the right time
217  * (as a call from the fsave or fwait in effect) rather than to
218  * the wrong process. Lazy FP saving no longer makes any sense
219  * with modern CPU's, and this simplifies a lot of things (SMP
220  * and UP become the same).
221  *
222  * NOTE! We used to use the x86 hardware context switching. The
223  * reason for not using it any more becomes apparent when you
224  * try to recover gracefully from saved state that is no longer
225  * valid (stale segment register values in particular). With the
226  * hardware task-switch, there is no way to fix up bad state in
227  * a reasonable manner.
228  *
229  * The fact that Intel documents the hardware task-switching to
230  * be slow is a fairly red herring - this code is not noticeably
231  * faster. However, there _is_ some room for improvement here,
232  * so the performance issues may eventually be a valid point.
233  * More important, however, is the fact that this allows us much
234  * more flexibility.
235  *
236  * The return value (in %ax) will be the "prev" task after
237  * the task-switch, and shows up in ret_from_fork in entry.S,
238  * for example.
239  */
240 __visible __notrace_funcgraph struct task_struct *
241 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
242 {
243 	struct thread_struct *prev = &prev_p->thread,
244 			     *next = &next_p->thread;
245 	struct fpu *prev_fpu = &prev->fpu;
246 	struct fpu *next_fpu = &next->fpu;
247 	int cpu = smp_processor_id();
248 	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
249 	fpu_switch_t fpu_switch;
250 
251 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
252 
253 	fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
254 
255 	/*
256 	 * Save away %gs. No need to save %fs, as it was saved on the
257 	 * stack on entry.  No need to save %es and %ds, as those are
258 	 * always kernel segments while inside the kernel.  Doing this
259 	 * before setting the new TLS descriptors avoids the situation
260 	 * where we temporarily have non-reloadable segments in %fs
261 	 * and %gs.  This could be an issue if the NMI handler ever
262 	 * used %fs or %gs (it does not today), or if the kernel is
263 	 * running inside of a hypervisor layer.
264 	 */
265 	lazy_save_gs(prev->gs);
266 
267 	/*
268 	 * Load the per-thread Thread-Local Storage descriptor.
269 	 */
270 	load_TLS(next, cpu);
271 
272 	/*
273 	 * Restore IOPL if needed.  In normal use, the flags restore
274 	 * in the switch assembly will handle this.  But if the kernel
275 	 * is running virtualized at a non-zero CPL, the popf will
276 	 * not restore flags, so it must be done in a separate step.
277 	 */
278 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
279 		set_iopl_mask(next->iopl);
280 
281 	/*
282 	 * If it were not for PREEMPT_ACTIVE we could guarantee that the
283 	 * preempt_count of all tasks was equal here and this would not be
284 	 * needed.
285 	 */
286 	task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
287 	this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);
288 
289 	/*
290 	 * Now maybe handle debug registers and/or IO bitmaps
291 	 */
292 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
293 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
294 		__switch_to_xtra(prev_p, next_p, tss);
295 
296 	/*
297 	 * Leave lazy mode, flushing any hypercalls made here.
298 	 * This must be done before restoring TLS segments so
299 	 * the GDT and LDT are properly updated, and must be
300 	 * done before fpu__restore(), so the TS bit is up
301 	 * to date.
302 	 */
303 	arch_end_context_switch(next_p);
304 
305 	/*
306 	 * Reload esp0 and cpu_current_top_of_stack.  This changes
307 	 * current_thread_info().
308 	 */
309 	load_sp0(tss, next);
310 	this_cpu_write(cpu_current_top_of_stack,
311 		       (unsigned long)task_stack_page(next_p) +
312 		       THREAD_SIZE);
313 
314 	/*
315 	 * Restore %gs if needed (which is common)
316 	 */
317 	if (prev->gs | next->gs)
318 		lazy_load_gs(next->gs);
319 
320 	switch_fpu_finish(next_fpu, fpu_switch);
321 
322 	this_cpu_write(current_task, next_p);
323 
324 	return prev_p;
325 }
326 
327 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
328 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
329 
330 unsigned long get_wchan(struct task_struct *p)
331 {
332 	unsigned long bp, sp, ip;
333 	unsigned long stack_page;
334 	int count = 0;
335 	if (!p || p == current || p->state == TASK_RUNNING)
336 		return 0;
337 	stack_page = (unsigned long)task_stack_page(p);
338 	sp = p->thread.sp;
339 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
340 		return 0;
341 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
342 	bp = *(unsigned long *) sp;
343 	do {
344 		if (bp < stack_page || bp > top_ebp+stack_page)
345 			return 0;
346 		ip = *(unsigned long *) (bp+4);
347 		if (!in_sched_functions(ip))
348 			return ip;
349 		bp = *(unsigned long *) bp;
350 	} while (count++ < 16);
351 	return 0;
352 }
353 
354