xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision 82003e04)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/fs.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/elfcore.h>
19 #include <linux/smp.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/mc146818rtc.h>
28 #include <linux/export.h>
29 #include <linux/kallsyms.h>
30 #include <linux/ptrace.h>
31 #include <linux/personality.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/ftrace.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/kdebug.h>
38 
39 #include <asm/pgtable.h>
40 #include <asm/ldt.h>
41 #include <asm/processor.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/desc.h>
44 #ifdef CONFIG_MATH_EMULATION
45 #include <asm/math_emu.h>
46 #endif
47 
48 #include <linux/err.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/cpu.h>
52 #include <asm/idle.h>
53 #include <asm/syscalls.h>
54 #include <asm/debugreg.h>
55 #include <asm/switch_to.h>
56 #include <asm/vm86.h>
57 
58 void __show_regs(struct pt_regs *regs, int all)
59 {
60 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
61 	unsigned long d0, d1, d2, d3, d6, d7;
62 	unsigned long sp;
63 	unsigned short ss, gs;
64 
65 	if (user_mode(regs)) {
66 		sp = regs->sp;
67 		ss = regs->ss & 0xffff;
68 		gs = get_user_gs(regs);
69 	} else {
70 		sp = kernel_stack_pointer(regs);
71 		savesegment(ss, ss);
72 		savesegment(gs, gs);
73 	}
74 
75 	printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
76 			(u16)regs->cs, regs->ip, regs->flags,
77 			smp_processor_id());
78 	print_symbol("EIP is at %s\n", regs->ip);
79 
80 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
81 		regs->ax, regs->bx, regs->cx, regs->dx);
82 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
83 		regs->si, regs->di, regs->bp, sp);
84 	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
85 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
86 
87 	if (!all)
88 		return;
89 
90 	cr0 = read_cr0();
91 	cr2 = read_cr2();
92 	cr3 = read_cr3();
93 	cr4 = __read_cr4();
94 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
95 			cr0, cr2, cr3, cr4);
96 
97 	get_debugreg(d0, 0);
98 	get_debugreg(d1, 1);
99 	get_debugreg(d2, 2);
100 	get_debugreg(d3, 3);
101 	get_debugreg(d6, 6);
102 	get_debugreg(d7, 7);
103 
104 	/* Only print out debug registers if they are in their non-default state. */
105 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
106 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
107 		return;
108 
109 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
110 			d0, d1, d2, d3);
111 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
112 			d6, d7);
113 }
114 
115 void release_thread(struct task_struct *dead_task)
116 {
117 	BUG_ON(dead_task->mm);
118 	release_vm86_irqs(dead_task);
119 }
120 
121 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
122 	unsigned long arg, struct task_struct *p, unsigned long tls)
123 {
124 	struct pt_regs *childregs = task_pt_regs(p);
125 	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
126 	struct inactive_task_frame *frame = &fork_frame->frame;
127 	struct task_struct *tsk;
128 	int err;
129 
130 	frame->bp = 0;
131 	frame->ret_addr = (unsigned long) ret_from_fork;
132 	p->thread.sp = (unsigned long) fork_frame;
133 	p->thread.sp0 = (unsigned long) (childregs+1);
134 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
135 
136 	if (unlikely(p->flags & PF_KTHREAD)) {
137 		/* kernel thread */
138 		memset(childregs, 0, sizeof(struct pt_regs));
139 		frame->bx = sp;		/* function */
140 		frame->di = arg;
141 		p->thread.io_bitmap_ptr = NULL;
142 		return 0;
143 	}
144 	frame->bx = 0;
145 	*childregs = *current_pt_regs();
146 	childregs->ax = 0;
147 	if (sp)
148 		childregs->sp = sp;
149 
150 	task_user_gs(p) = get_user_gs(current_pt_regs());
151 
152 	p->thread.io_bitmap_ptr = NULL;
153 	tsk = current;
154 	err = -ENOMEM;
155 
156 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
157 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
158 						IO_BITMAP_BYTES, GFP_KERNEL);
159 		if (!p->thread.io_bitmap_ptr) {
160 			p->thread.io_bitmap_max = 0;
161 			return -ENOMEM;
162 		}
163 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
164 	}
165 
166 	err = 0;
167 
168 	/*
169 	 * Set a new TLS for the child thread?
170 	 */
171 	if (clone_flags & CLONE_SETTLS)
172 		err = do_set_thread_area(p, -1,
173 			(struct user_desc __user *)tls, 0);
174 
175 	if (err && p->thread.io_bitmap_ptr) {
176 		kfree(p->thread.io_bitmap_ptr);
177 		p->thread.io_bitmap_max = 0;
178 	}
179 	return err;
180 }
181 
182 void
183 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
184 {
185 	set_user_gs(regs, 0);
186 	regs->fs		= 0;
187 	regs->ds		= __USER_DS;
188 	regs->es		= __USER_DS;
189 	regs->ss		= __USER_DS;
190 	regs->cs		= __USER_CS;
191 	regs->ip		= new_ip;
192 	regs->sp		= new_sp;
193 	regs->flags		= X86_EFLAGS_IF;
194 	force_iret();
195 }
196 EXPORT_SYMBOL_GPL(start_thread);
197 
198 
199 /*
200  *	switch_to(x,y) should switch tasks from x to y.
201  *
202  * We fsave/fwait so that an exception goes off at the right time
203  * (as a call from the fsave or fwait in effect) rather than to
204  * the wrong process. Lazy FP saving no longer makes any sense
205  * with modern CPU's, and this simplifies a lot of things (SMP
206  * and UP become the same).
207  *
208  * NOTE! We used to use the x86 hardware context switching. The
209  * reason for not using it any more becomes apparent when you
210  * try to recover gracefully from saved state that is no longer
211  * valid (stale segment register values in particular). With the
212  * hardware task-switch, there is no way to fix up bad state in
213  * a reasonable manner.
214  *
215  * The fact that Intel documents the hardware task-switching to
216  * be slow is a fairly red herring - this code is not noticeably
217  * faster. However, there _is_ some room for improvement here,
218  * so the performance issues may eventually be a valid point.
219  * More important, however, is the fact that this allows us much
220  * more flexibility.
221  *
222  * The return value (in %ax) will be the "prev" task after
223  * the task-switch, and shows up in ret_from_fork in entry.S,
224  * for example.
225  */
226 __visible __notrace_funcgraph struct task_struct *
227 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
228 {
229 	struct thread_struct *prev = &prev_p->thread,
230 			     *next = &next_p->thread;
231 	struct fpu *prev_fpu = &prev->fpu;
232 	struct fpu *next_fpu = &next->fpu;
233 	int cpu = smp_processor_id();
234 	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
235 	fpu_switch_t fpu_switch;
236 
237 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
238 
239 	fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
240 
241 	/*
242 	 * Save away %gs. No need to save %fs, as it was saved on the
243 	 * stack on entry.  No need to save %es and %ds, as those are
244 	 * always kernel segments while inside the kernel.  Doing this
245 	 * before setting the new TLS descriptors avoids the situation
246 	 * where we temporarily have non-reloadable segments in %fs
247 	 * and %gs.  This could be an issue if the NMI handler ever
248 	 * used %fs or %gs (it does not today), or if the kernel is
249 	 * running inside of a hypervisor layer.
250 	 */
251 	lazy_save_gs(prev->gs);
252 
253 	/*
254 	 * Load the per-thread Thread-Local Storage descriptor.
255 	 */
256 	load_TLS(next, cpu);
257 
258 	/*
259 	 * Restore IOPL if needed.  In normal use, the flags restore
260 	 * in the switch assembly will handle this.  But if the kernel
261 	 * is running virtualized at a non-zero CPL, the popf will
262 	 * not restore flags, so it must be done in a separate step.
263 	 */
264 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
265 		set_iopl_mask(next->iopl);
266 
267 	/*
268 	 * Now maybe handle debug registers and/or IO bitmaps
269 	 */
270 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
271 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
272 		__switch_to_xtra(prev_p, next_p, tss);
273 
274 	/*
275 	 * Leave lazy mode, flushing any hypercalls made here.
276 	 * This must be done before restoring TLS segments so
277 	 * the GDT and LDT are properly updated, and must be
278 	 * done before fpu__restore(), so the TS bit is up
279 	 * to date.
280 	 */
281 	arch_end_context_switch(next_p);
282 
283 	/*
284 	 * Reload esp0 and cpu_current_top_of_stack.  This changes
285 	 * current_thread_info().
286 	 */
287 	load_sp0(tss, next);
288 	this_cpu_write(cpu_current_top_of_stack,
289 		       (unsigned long)task_stack_page(next_p) +
290 		       THREAD_SIZE);
291 
292 	/*
293 	 * Restore %gs if needed (which is common)
294 	 */
295 	if (prev->gs | next->gs)
296 		lazy_load_gs(next->gs);
297 
298 	switch_fpu_finish(next_fpu, fpu_switch);
299 
300 	this_cpu_write(current_task, next_p);
301 
302 	return prev_p;
303 }
304