xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision 643d1f7f)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/a.out.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #include <asm/vm86.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53 
54 #include <linux/err.h>
55 
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 #include <asm/kdebug.h>
59 
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61 
62 static int hlt_counter;
63 
64 unsigned long boot_option_idle_override = 0;
65 EXPORT_SYMBOL(boot_option_idle_override);
66 
67 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
68 EXPORT_PER_CPU_SYMBOL(current_task);
69 
70 DEFINE_PER_CPU(int, cpu_number);
71 EXPORT_PER_CPU_SYMBOL(cpu_number);
72 
73 /*
74  * Return saved PC of a blocked thread.
75  */
76 unsigned long thread_saved_pc(struct task_struct *tsk)
77 {
78 	return ((unsigned long *)tsk->thread.sp)[3];
79 }
80 
81 /*
82  * Powermanagement idle function, if any..
83  */
84 void (*pm_idle)(void);
85 EXPORT_SYMBOL(pm_idle);
86 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
87 
88 void disable_hlt(void)
89 {
90 	hlt_counter++;
91 }
92 
93 EXPORT_SYMBOL(disable_hlt);
94 
95 void enable_hlt(void)
96 {
97 	hlt_counter--;
98 }
99 
100 EXPORT_SYMBOL(enable_hlt);
101 
102 /*
103  * We use this if we don't have any better
104  * idle routine..
105  */
106 void default_idle(void)
107 {
108 	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
109 		current_thread_info()->status &= ~TS_POLLING;
110 		/*
111 		 * TS_POLLING-cleared state must be visible before we
112 		 * test NEED_RESCHED:
113 		 */
114 		smp_mb();
115 
116 		local_irq_disable();
117 		if (!need_resched()) {
118 			ktime_t t0, t1;
119 			u64 t0n, t1n;
120 
121 			t0 = ktime_get();
122 			t0n = ktime_to_ns(t0);
123 			safe_halt();	/* enables interrupts racelessly */
124 			local_irq_disable();
125 			t1 = ktime_get();
126 			t1n = ktime_to_ns(t1);
127 			sched_clock_idle_wakeup_event(t1n - t0n);
128 		}
129 		local_irq_enable();
130 		current_thread_info()->status |= TS_POLLING;
131 	} else {
132 		/* loop is done by the caller */
133 		cpu_relax();
134 	}
135 }
136 #ifdef CONFIG_APM_MODULE
137 EXPORT_SYMBOL(default_idle);
138 #endif
139 
140 /*
141  * On SMP it's slightly faster (but much more power-consuming!)
142  * to poll the ->work.need_resched flag instead of waiting for the
143  * cross-CPU IPI to arrive. Use this option with caution.
144  */
145 static void poll_idle(void)
146 {
147 	cpu_relax();
148 }
149 
150 #ifdef CONFIG_HOTPLUG_CPU
151 #include <asm/nmi.h>
152 /* We don't actually take CPU down, just spin without interrupts. */
153 static inline void play_dead(void)
154 {
155 	/* This must be done before dead CPU ack */
156 	cpu_exit_clear();
157 	wbinvd();
158 	mb();
159 	/* Ack it */
160 	__get_cpu_var(cpu_state) = CPU_DEAD;
161 
162 	/*
163 	 * With physical CPU hotplug, we should halt the cpu
164 	 */
165 	local_irq_disable();
166 	while (1)
167 		halt();
168 }
169 #else
170 static inline void play_dead(void)
171 {
172 	BUG();
173 }
174 #endif /* CONFIG_HOTPLUG_CPU */
175 
176 /*
177  * The idle thread. There's no useful work to be
178  * done, so just try to conserve power and have a
179  * low exit latency (ie sit in a loop waiting for
180  * somebody to say that they'd like to reschedule)
181  */
182 void cpu_idle(void)
183 {
184 	int cpu = smp_processor_id();
185 
186 	current_thread_info()->status |= TS_POLLING;
187 
188 	/* endless idle loop with no priority at all */
189 	while (1) {
190 		tick_nohz_stop_sched_tick();
191 		while (!need_resched()) {
192 			void (*idle)(void);
193 
194 			if (__get_cpu_var(cpu_idle_state))
195 				__get_cpu_var(cpu_idle_state) = 0;
196 
197 			check_pgt_cache();
198 			rmb();
199 			idle = pm_idle;
200 
201 			if (rcu_pending(cpu))
202 				rcu_check_callbacks(cpu, 0);
203 
204 			if (!idle)
205 				idle = default_idle;
206 
207 			if (cpu_is_offline(cpu))
208 				play_dead();
209 
210 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
211 			idle();
212 		}
213 		tick_nohz_restart_sched_tick();
214 		preempt_enable_no_resched();
215 		schedule();
216 		preempt_disable();
217 	}
218 }
219 
220 static void do_nothing(void *unused)
221 {
222 }
223 
224 void cpu_idle_wait(void)
225 {
226 	unsigned int cpu, this_cpu = get_cpu();
227 	cpumask_t map, tmp = current->cpus_allowed;
228 
229 	set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
230 	put_cpu();
231 
232 	cpus_clear(map);
233 	for_each_online_cpu(cpu) {
234 		per_cpu(cpu_idle_state, cpu) = 1;
235 		cpu_set(cpu, map);
236 	}
237 
238 	__get_cpu_var(cpu_idle_state) = 0;
239 
240 	wmb();
241 	do {
242 		ssleep(1);
243 		for_each_online_cpu(cpu) {
244 			if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
245 				cpu_clear(cpu, map);
246 		}
247 		cpus_and(map, map, cpu_online_map);
248 		/*
249 		 * We waited 1 sec, if a CPU still did not call idle
250 		 * it may be because it is in idle and not waking up
251 		 * because it has nothing to do.
252 		 * Give all the remaining CPUS a kick.
253 		 */
254 		smp_call_function_mask(map, do_nothing, 0, 0);
255 	} while (!cpus_empty(map));
256 
257 	set_cpus_allowed(current, tmp);
258 }
259 EXPORT_SYMBOL_GPL(cpu_idle_wait);
260 
261 /*
262  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
263  * which can obviate IPI to trigger checking of need_resched.
264  * We execute MONITOR against need_resched and enter optimized wait state
265  * through MWAIT. Whenever someone changes need_resched, we would be woken
266  * up from MWAIT (without an IPI).
267  *
268  * New with Core Duo processors, MWAIT can take some hints based on CPU
269  * capability.
270  */
271 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
272 {
273 	if (!need_resched()) {
274 		__monitor((void *)&current_thread_info()->flags, 0, 0);
275 		smp_mb();
276 		if (!need_resched())
277 			__mwait(ax, cx);
278 	}
279 }
280 
281 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
282 static void mwait_idle(void)
283 {
284 	local_irq_enable();
285 	mwait_idle_with_hints(0, 0);
286 }
287 
288 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
289 {
290 	if (force_mwait)
291 		return 1;
292 	/* Any C1 states supported? */
293 	return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
294 }
295 
296 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
297 {
298 	static int selected;
299 
300 	if (selected)
301 		return;
302 #ifdef CONFIG_X86_SMP
303 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
304 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
305 			" performance may degrade.\n");
306 	}
307 #endif
308 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
309 		/*
310 		 * Skip, if setup has overridden idle.
311 		 * One CPU supports mwait => All CPUs supports mwait
312 		 */
313 		if (!pm_idle) {
314 			printk(KERN_INFO "using mwait in idle threads.\n");
315 			pm_idle = mwait_idle;
316 		}
317 	}
318 	selected = 1;
319 }
320 
321 static int __init idle_setup(char *str)
322 {
323 	if (!strcmp(str, "poll")) {
324 		printk("using polling idle threads.\n");
325 		pm_idle = poll_idle;
326 	} else if (!strcmp(str, "mwait"))
327 		force_mwait = 1;
328 	else
329 		return -1;
330 
331 	boot_option_idle_override = 1;
332 	return 0;
333 }
334 early_param("idle", idle_setup);
335 
336 void __show_registers(struct pt_regs *regs, int all)
337 {
338 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
339 	unsigned long d0, d1, d2, d3, d6, d7;
340 	unsigned long sp;
341 	unsigned short ss, gs;
342 
343 	if (user_mode_vm(regs)) {
344 		sp = regs->sp;
345 		ss = regs->ss & 0xffff;
346 		savesegment(gs, gs);
347 	} else {
348 		sp = (unsigned long) (&regs->sp);
349 		savesegment(ss, ss);
350 		savesegment(gs, gs);
351 	}
352 
353 	printk("\n");
354 	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
355 			task_pid_nr(current), current->comm,
356 			print_tainted(), init_utsname()->release,
357 			(int)strcspn(init_utsname()->version, " "),
358 			init_utsname()->version);
359 
360 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
361 			0xffff & regs->cs, regs->ip, regs->flags,
362 			smp_processor_id());
363 	print_symbol("EIP is at %s\n", regs->ip);
364 
365 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
366 		regs->ax, regs->bx, regs->cx, regs->dx);
367 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
368 		regs->si, regs->di, regs->bp, sp);
369 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
370 	       regs->ds & 0xffff, regs->es & 0xffff,
371 	       regs->fs & 0xffff, gs, ss);
372 
373 	if (!all)
374 		return;
375 
376 	cr0 = read_cr0();
377 	cr2 = read_cr2();
378 	cr3 = read_cr3();
379 	cr4 = read_cr4_safe();
380 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
381 			cr0, cr2, cr3, cr4);
382 
383 	get_debugreg(d0, 0);
384 	get_debugreg(d1, 1);
385 	get_debugreg(d2, 2);
386 	get_debugreg(d3, 3);
387 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
388 			d0, d1, d2, d3);
389 
390 	get_debugreg(d6, 6);
391 	get_debugreg(d7, 7);
392 	printk("DR6: %08lx DR7: %08lx\n",
393 			d6, d7);
394 }
395 
396 void show_regs(struct pt_regs *regs)
397 {
398 	__show_registers(regs, 1);
399 	show_trace(NULL, regs, &regs->sp, regs->bp);
400 }
401 
402 /*
403  * This gets run with %bx containing the
404  * function to call, and %dx containing
405  * the "args".
406  */
407 extern void kernel_thread_helper(void);
408 
409 /*
410  * Create a kernel thread
411  */
412 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
413 {
414 	struct pt_regs regs;
415 
416 	memset(&regs, 0, sizeof(regs));
417 
418 	regs.bx = (unsigned long) fn;
419 	regs.dx = (unsigned long) arg;
420 
421 	regs.ds = __USER_DS;
422 	regs.es = __USER_DS;
423 	regs.fs = __KERNEL_PERCPU;
424 	regs.orig_ax = -1;
425 	regs.ip = (unsigned long) kernel_thread_helper;
426 	regs.cs = __KERNEL_CS | get_kernel_rpl();
427 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
428 
429 	/* Ok, create the new process.. */
430 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
431 }
432 EXPORT_SYMBOL(kernel_thread);
433 
434 /*
435  * Free current thread data structures etc..
436  */
437 void exit_thread(void)
438 {
439 	/* The process may have allocated an io port bitmap... nuke it. */
440 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
441 		struct task_struct *tsk = current;
442 		struct thread_struct *t = &tsk->thread;
443 		int cpu = get_cpu();
444 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
445 
446 		kfree(t->io_bitmap_ptr);
447 		t->io_bitmap_ptr = NULL;
448 		clear_thread_flag(TIF_IO_BITMAP);
449 		/*
450 		 * Careful, clear this in the TSS too:
451 		 */
452 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
453 		t->io_bitmap_max = 0;
454 		tss->io_bitmap_owner = NULL;
455 		tss->io_bitmap_max = 0;
456 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
457 		put_cpu();
458 	}
459 }
460 
461 void flush_thread(void)
462 {
463 	struct task_struct *tsk = current;
464 
465 	tsk->thread.debugreg0 = 0;
466 	tsk->thread.debugreg1 = 0;
467 	tsk->thread.debugreg2 = 0;
468 	tsk->thread.debugreg3 = 0;
469 	tsk->thread.debugreg6 = 0;
470 	tsk->thread.debugreg7 = 0;
471 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
472 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
473 	/*
474 	 * Forget coprocessor state..
475 	 */
476 	clear_fpu(tsk);
477 	clear_used_math();
478 }
479 
480 void release_thread(struct task_struct *dead_task)
481 {
482 	BUG_ON(dead_task->mm);
483 	release_vm86_irqs(dead_task);
484 }
485 
486 /*
487  * This gets called before we allocate a new thread and copy
488  * the current task into it.
489  */
490 void prepare_to_copy(struct task_struct *tsk)
491 {
492 	unlazy_fpu(tsk);
493 }
494 
495 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
496 	unsigned long unused,
497 	struct task_struct * p, struct pt_regs * regs)
498 {
499 	struct pt_regs * childregs;
500 	struct task_struct *tsk;
501 	int err;
502 
503 	childregs = task_pt_regs(p);
504 	*childregs = *regs;
505 	childregs->ax = 0;
506 	childregs->sp = sp;
507 
508 	p->thread.sp = (unsigned long) childregs;
509 	p->thread.sp0 = (unsigned long) (childregs+1);
510 
511 	p->thread.ip = (unsigned long) ret_from_fork;
512 
513 	savesegment(gs, p->thread.gs);
514 
515 	tsk = current;
516 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
517 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
518 						IO_BITMAP_BYTES, GFP_KERNEL);
519 		if (!p->thread.io_bitmap_ptr) {
520 			p->thread.io_bitmap_max = 0;
521 			return -ENOMEM;
522 		}
523 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
524 	}
525 
526 	err = 0;
527 
528 	/*
529 	 * Set a new TLS for the child thread?
530 	 */
531 	if (clone_flags & CLONE_SETTLS)
532 		err = do_set_thread_area(p, -1,
533 			(struct user_desc __user *)childregs->si, 0);
534 
535 	if (err && p->thread.io_bitmap_ptr) {
536 		kfree(p->thread.io_bitmap_ptr);
537 		p->thread.io_bitmap_max = 0;
538 	}
539 	return err;
540 }
541 
542 /*
543  * fill in the user structure for a core dump..
544  */
545 void dump_thread(struct pt_regs * regs, struct user * dump)
546 {
547 	u16 gs;
548 
549 /* changed the size calculations - should hopefully work better. lbt */
550 	dump->magic = CMAGIC;
551 	dump->start_code = 0;
552 	dump->start_stack = regs->sp & ~(PAGE_SIZE - 1);
553 	dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
554 	dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
555 	dump->u_dsize -= dump->u_tsize;
556 	dump->u_ssize = 0;
557 	dump->u_debugreg[0] = current->thread.debugreg0;
558 	dump->u_debugreg[1] = current->thread.debugreg1;
559 	dump->u_debugreg[2] = current->thread.debugreg2;
560 	dump->u_debugreg[3] = current->thread.debugreg3;
561 	dump->u_debugreg[4] = 0;
562 	dump->u_debugreg[5] = 0;
563 	dump->u_debugreg[6] = current->thread.debugreg6;
564 	dump->u_debugreg[7] = current->thread.debugreg7;
565 
566 	if (dump->start_stack < TASK_SIZE)
567 		dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
568 
569 	dump->regs.bx = regs->bx;
570 	dump->regs.cx = regs->cx;
571 	dump->regs.dx = regs->dx;
572 	dump->regs.si = regs->si;
573 	dump->regs.di = regs->di;
574 	dump->regs.bp = regs->bp;
575 	dump->regs.ax = regs->ax;
576 	dump->regs.ds = (u16)regs->ds;
577 	dump->regs.es = (u16)regs->es;
578 	dump->regs.fs = (u16)regs->fs;
579 	savesegment(gs,gs);
580 	dump->regs.orig_ax = regs->orig_ax;
581 	dump->regs.ip = regs->ip;
582 	dump->regs.cs = (u16)regs->cs;
583 	dump->regs.flags = regs->flags;
584 	dump->regs.sp = regs->sp;
585 	dump->regs.ss = (u16)regs->ss;
586 
587 	dump->u_fpvalid = dump_fpu (regs, &dump->i387);
588 }
589 EXPORT_SYMBOL(dump_thread);
590 
591 #ifdef CONFIG_SECCOMP
592 static void hard_disable_TSC(void)
593 {
594 	write_cr4(read_cr4() | X86_CR4_TSD);
595 }
596 void disable_TSC(void)
597 {
598 	preempt_disable();
599 	if (!test_and_set_thread_flag(TIF_NOTSC))
600 		/*
601 		 * Must flip the CPU state synchronously with
602 		 * TIF_NOTSC in the current running context.
603 		 */
604 		hard_disable_TSC();
605 	preempt_enable();
606 }
607 static void hard_enable_TSC(void)
608 {
609 	write_cr4(read_cr4() & ~X86_CR4_TSD);
610 }
611 #endif /* CONFIG_SECCOMP */
612 
613 static noinline void
614 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
615 		 struct tss_struct *tss)
616 {
617 	struct thread_struct *prev, *next;
618 	unsigned long debugctl;
619 
620 	prev = &prev_p->thread;
621 	next = &next_p->thread;
622 
623 	debugctl = prev->debugctlmsr;
624 	if (next->ds_area_msr != prev->ds_area_msr) {
625 		/* we clear debugctl to make sure DS
626 		 * is not in use when we change it */
627 		debugctl = 0;
628 		wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
629 		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
630 	}
631 
632 	if (next->debugctlmsr != debugctl)
633 		wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
634 
635 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
636 		set_debugreg(next->debugreg0, 0);
637 		set_debugreg(next->debugreg1, 1);
638 		set_debugreg(next->debugreg2, 2);
639 		set_debugreg(next->debugreg3, 3);
640 		/* no 4 and 5 */
641 		set_debugreg(next->debugreg6, 6);
642 		set_debugreg(next->debugreg7, 7);
643 	}
644 
645 #ifdef CONFIG_SECCOMP
646 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
647 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
648 		/* prev and next are different */
649 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
650 			hard_disable_TSC();
651 		else
652 			hard_enable_TSC();
653 	}
654 #endif
655 
656 	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
657 		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
658 
659 	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
660 		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
661 
662 
663 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
664 		/*
665 		 * Disable the bitmap via an invalid offset. We still cache
666 		 * the previous bitmap owner and the IO bitmap contents:
667 		 */
668 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
669 		return;
670 	}
671 
672 	if (likely(next == tss->io_bitmap_owner)) {
673 		/*
674 		 * Previous owner of the bitmap (hence the bitmap content)
675 		 * matches the next task, we dont have to do anything but
676 		 * to set a valid offset in the TSS:
677 		 */
678 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
679 		return;
680 	}
681 	/*
682 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
683 	 * and we let the task to get a GPF in case an I/O instruction
684 	 * is performed.  The handler of the GPF will verify that the
685 	 * faulting task has a valid I/O bitmap and, it true, does the
686 	 * real copy and restart the instruction.  This will save us
687 	 * redundant copies when the currently switched task does not
688 	 * perform any I/O during its timeslice.
689 	 */
690 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
691 }
692 
693 /*
694  *	switch_to(x,yn) should switch tasks from x to y.
695  *
696  * We fsave/fwait so that an exception goes off at the right time
697  * (as a call from the fsave or fwait in effect) rather than to
698  * the wrong process. Lazy FP saving no longer makes any sense
699  * with modern CPU's, and this simplifies a lot of things (SMP
700  * and UP become the same).
701  *
702  * NOTE! We used to use the x86 hardware context switching. The
703  * reason for not using it any more becomes apparent when you
704  * try to recover gracefully from saved state that is no longer
705  * valid (stale segment register values in particular). With the
706  * hardware task-switch, there is no way to fix up bad state in
707  * a reasonable manner.
708  *
709  * The fact that Intel documents the hardware task-switching to
710  * be slow is a fairly red herring - this code is not noticeably
711  * faster. However, there _is_ some room for improvement here,
712  * so the performance issues may eventually be a valid point.
713  * More important, however, is the fact that this allows us much
714  * more flexibility.
715  *
716  * The return value (in %ax) will be the "prev" task after
717  * the task-switch, and shows up in ret_from_fork in entry.S,
718  * for example.
719  */
720 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
721 {
722 	struct thread_struct *prev = &prev_p->thread,
723 				 *next = &next_p->thread;
724 	int cpu = smp_processor_id();
725 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
726 
727 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
728 
729 	__unlazy_fpu(prev_p);
730 
731 
732 	/* we're going to use this soon, after a few expensive things */
733 	if (next_p->fpu_counter > 5)
734 		prefetch(&next->i387.fxsave);
735 
736 	/*
737 	 * Reload esp0.
738 	 */
739 	load_sp0(tss, next);
740 
741 	/*
742 	 * Save away %gs. No need to save %fs, as it was saved on the
743 	 * stack on entry.  No need to save %es and %ds, as those are
744 	 * always kernel segments while inside the kernel.  Doing this
745 	 * before setting the new TLS descriptors avoids the situation
746 	 * where we temporarily have non-reloadable segments in %fs
747 	 * and %gs.  This could be an issue if the NMI handler ever
748 	 * used %fs or %gs (it does not today), or if the kernel is
749 	 * running inside of a hypervisor layer.
750 	 */
751 	savesegment(gs, prev->gs);
752 
753 	/*
754 	 * Load the per-thread Thread-Local Storage descriptor.
755 	 */
756 	load_TLS(next, cpu);
757 
758 	/*
759 	 * Restore IOPL if needed.  In normal use, the flags restore
760 	 * in the switch assembly will handle this.  But if the kernel
761 	 * is running virtualized at a non-zero CPL, the popf will
762 	 * not restore flags, so it must be done in a separate step.
763 	 */
764 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
765 		set_iopl_mask(next->iopl);
766 
767 	/*
768 	 * Now maybe handle debug registers and/or IO bitmaps
769 	 */
770 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
771 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
772 		__switch_to_xtra(prev_p, next_p, tss);
773 
774 	/*
775 	 * Leave lazy mode, flushing any hypercalls made here.
776 	 * This must be done before restoring TLS segments so
777 	 * the GDT and LDT are properly updated, and must be
778 	 * done before math_state_restore, so the TS bit is up
779 	 * to date.
780 	 */
781 	arch_leave_lazy_cpu_mode();
782 
783 	/* If the task has used fpu the last 5 timeslices, just do a full
784 	 * restore of the math state immediately to avoid the trap; the
785 	 * chances of needing FPU soon are obviously high now
786 	 */
787 	if (next_p->fpu_counter > 5)
788 		math_state_restore();
789 
790 	/*
791 	 * Restore %gs if needed (which is common)
792 	 */
793 	if (prev->gs | next->gs)
794 		loadsegment(gs, next->gs);
795 
796 	x86_write_percpu(current_task, next_p);
797 
798 	return prev_p;
799 }
800 
801 asmlinkage int sys_fork(struct pt_regs regs)
802 {
803 	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
804 }
805 
806 asmlinkage int sys_clone(struct pt_regs regs)
807 {
808 	unsigned long clone_flags;
809 	unsigned long newsp;
810 	int __user *parent_tidptr, *child_tidptr;
811 
812 	clone_flags = regs.bx;
813 	newsp = regs.cx;
814 	parent_tidptr = (int __user *)regs.dx;
815 	child_tidptr = (int __user *)regs.di;
816 	if (!newsp)
817 		newsp = regs.sp;
818 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
819 }
820 
821 /*
822  * This is trivial, and on the face of it looks like it
823  * could equally well be done in user mode.
824  *
825  * Not so, for quite unobvious reasons - register pressure.
826  * In user mode vfork() cannot have a stack frame, and if
827  * done by calling the "clone()" system call directly, you
828  * do not have enough call-clobbered registers to hold all
829  * the information you need.
830  */
831 asmlinkage int sys_vfork(struct pt_regs regs)
832 {
833 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
834 }
835 
836 /*
837  * sys_execve() executes a new program.
838  */
839 asmlinkage int sys_execve(struct pt_regs regs)
840 {
841 	int error;
842 	char * filename;
843 
844 	filename = getname((char __user *) regs.bx);
845 	error = PTR_ERR(filename);
846 	if (IS_ERR(filename))
847 		goto out;
848 	error = do_execve(filename,
849 			(char __user * __user *) regs.cx,
850 			(char __user * __user *) regs.dx,
851 			&regs);
852 	if (error == 0) {
853 		/* Make sure we don't return using sysenter.. */
854 		set_thread_flag(TIF_IRET);
855 	}
856 	putname(filename);
857 out:
858 	return error;
859 }
860 
861 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
862 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
863 
864 unsigned long get_wchan(struct task_struct *p)
865 {
866 	unsigned long bp, sp, ip;
867 	unsigned long stack_page;
868 	int count = 0;
869 	if (!p || p == current || p->state == TASK_RUNNING)
870 		return 0;
871 	stack_page = (unsigned long)task_stack_page(p);
872 	sp = p->thread.sp;
873 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
874 		return 0;
875 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
876 	bp = *(unsigned long *) sp;
877 	do {
878 		if (bp < stack_page || bp > top_ebp+stack_page)
879 			return 0;
880 		ip = *(unsigned long *) (bp+4);
881 		if (!in_sched_functions(ip))
882 			return ip;
883 		bp = *(unsigned long *) bp;
884 	} while (count++ < 16);
885 	return 0;
886 }
887 
888 unsigned long arch_align_stack(unsigned long sp)
889 {
890 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
891 		sp -= get_random_int() % 8192;
892 	return sp & ~0xf;
893 }
894 
895 unsigned long arch_randomize_brk(struct mm_struct *mm)
896 {
897 	unsigned long range_end = mm->brk + 0x02000000;
898 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
899 }
900