1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/cpu.h> 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/elfcore.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/user.h> 26 #include <linux/interrupt.h> 27 #include <linux/utsname.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/init.h> 31 #include <linux/mc146818rtc.h> 32 #include <linux/module.h> 33 #include <linux/kallsyms.h> 34 #include <linux/ptrace.h> 35 #include <linux/random.h> 36 #include <linux/personality.h> 37 #include <linux/tick.h> 38 #include <linux/percpu.h> 39 #include <linux/prctl.h> 40 41 #include <asm/uaccess.h> 42 #include <asm/pgtable.h> 43 #include <asm/system.h> 44 #include <asm/io.h> 45 #include <asm/ldt.h> 46 #include <asm/processor.h> 47 #include <asm/i387.h> 48 #include <asm/desc.h> 49 #ifdef CONFIG_MATH_EMULATION 50 #include <asm/math_emu.h> 51 #endif 52 53 #include <linux/err.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/cpu.h> 57 #include <asm/kdebug.h> 58 59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 60 61 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 62 EXPORT_PER_CPU_SYMBOL(current_task); 63 64 DEFINE_PER_CPU(int, cpu_number); 65 EXPORT_PER_CPU_SYMBOL(cpu_number); 66 67 /* 68 * Return saved PC of a blocked thread. 69 */ 70 unsigned long thread_saved_pc(struct task_struct *tsk) 71 { 72 return ((unsigned long *)tsk->thread.sp)[3]; 73 } 74 75 #ifdef CONFIG_HOTPLUG_CPU 76 #include <asm/nmi.h> 77 78 static void cpu_exit_clear(void) 79 { 80 int cpu = raw_smp_processor_id(); 81 82 idle_task_exit(); 83 84 cpu_uninit(); 85 irq_ctx_exit(cpu); 86 87 cpu_clear(cpu, cpu_callout_map); 88 cpu_clear(cpu, cpu_callin_map); 89 90 numa_remove_cpu(cpu); 91 } 92 93 /* We don't actually take CPU down, just spin without interrupts. */ 94 static inline void play_dead(void) 95 { 96 /* This must be done before dead CPU ack */ 97 cpu_exit_clear(); 98 wbinvd(); 99 mb(); 100 /* Ack it */ 101 __get_cpu_var(cpu_state) = CPU_DEAD; 102 103 /* 104 * With physical CPU hotplug, we should halt the cpu 105 */ 106 local_irq_disable(); 107 while (1) 108 halt(); 109 } 110 #else 111 static inline void play_dead(void) 112 { 113 BUG(); 114 } 115 #endif /* CONFIG_HOTPLUG_CPU */ 116 117 /* 118 * The idle thread. There's no useful work to be 119 * done, so just try to conserve power and have a 120 * low exit latency (ie sit in a loop waiting for 121 * somebody to say that they'd like to reschedule) 122 */ 123 void cpu_idle(void) 124 { 125 int cpu = smp_processor_id(); 126 127 current_thread_info()->status |= TS_POLLING; 128 129 /* endless idle loop with no priority at all */ 130 while (1) { 131 tick_nohz_stop_sched_tick(1); 132 while (!need_resched()) { 133 134 check_pgt_cache(); 135 rmb(); 136 137 if (rcu_pending(cpu)) 138 rcu_check_callbacks(cpu, 0); 139 140 if (cpu_is_offline(cpu)) 141 play_dead(); 142 143 local_irq_disable(); 144 __get_cpu_var(irq_stat).idle_timestamp = jiffies; 145 /* Don't trace irqs off for idle */ 146 stop_critical_timings(); 147 pm_idle(); 148 start_critical_timings(); 149 } 150 tick_nohz_restart_sched_tick(); 151 preempt_enable_no_resched(); 152 schedule(); 153 preempt_disable(); 154 } 155 } 156 157 void __show_registers(struct pt_regs *regs, int all) 158 { 159 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; 160 unsigned long d0, d1, d2, d3, d6, d7; 161 unsigned long sp; 162 unsigned short ss, gs; 163 164 if (user_mode_vm(regs)) { 165 sp = regs->sp; 166 ss = regs->ss & 0xffff; 167 savesegment(gs, gs); 168 } else { 169 sp = (unsigned long) (®s->sp); 170 savesegment(ss, ss); 171 savesegment(gs, gs); 172 } 173 174 printk("\n"); 175 printk("Pid: %d, comm: %s %s (%s %.*s)\n", 176 task_pid_nr(current), current->comm, 177 print_tainted(), init_utsname()->release, 178 (int)strcspn(init_utsname()->version, " "), 179 init_utsname()->version); 180 181 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", 182 (u16)regs->cs, regs->ip, regs->flags, 183 smp_processor_id()); 184 print_symbol("EIP is at %s\n", regs->ip); 185 186 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", 187 regs->ax, regs->bx, regs->cx, regs->dx); 188 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", 189 regs->si, regs->di, regs->bp, sp); 190 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", 191 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); 192 193 if (!all) 194 return; 195 196 cr0 = read_cr0(); 197 cr2 = read_cr2(); 198 cr3 = read_cr3(); 199 cr4 = read_cr4_safe(); 200 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", 201 cr0, cr2, cr3, cr4); 202 203 get_debugreg(d0, 0); 204 get_debugreg(d1, 1); 205 get_debugreg(d2, 2); 206 get_debugreg(d3, 3); 207 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", 208 d0, d1, d2, d3); 209 210 get_debugreg(d6, 6); 211 get_debugreg(d7, 7); 212 printk("DR6: %08lx DR7: %08lx\n", 213 d6, d7); 214 } 215 216 void show_regs(struct pt_regs *regs) 217 { 218 __show_registers(regs, 1); 219 show_trace(NULL, regs, ®s->sp, regs->bp); 220 } 221 222 /* 223 * This gets run with %bx containing the 224 * function to call, and %dx containing 225 * the "args". 226 */ 227 extern void kernel_thread_helper(void); 228 229 /* 230 * Create a kernel thread 231 */ 232 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 233 { 234 struct pt_regs regs; 235 236 memset(®s, 0, sizeof(regs)); 237 238 regs.bx = (unsigned long) fn; 239 regs.dx = (unsigned long) arg; 240 241 regs.ds = __USER_DS; 242 regs.es = __USER_DS; 243 regs.fs = __KERNEL_PERCPU; 244 regs.orig_ax = -1; 245 regs.ip = (unsigned long) kernel_thread_helper; 246 regs.cs = __KERNEL_CS | get_kernel_rpl(); 247 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; 248 249 /* Ok, create the new process.. */ 250 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 251 } 252 EXPORT_SYMBOL(kernel_thread); 253 254 /* 255 * Free current thread data structures etc.. 256 */ 257 void exit_thread(void) 258 { 259 /* The process may have allocated an io port bitmap... nuke it. */ 260 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { 261 struct task_struct *tsk = current; 262 struct thread_struct *t = &tsk->thread; 263 int cpu = get_cpu(); 264 struct tss_struct *tss = &per_cpu(init_tss, cpu); 265 266 kfree(t->io_bitmap_ptr); 267 t->io_bitmap_ptr = NULL; 268 clear_thread_flag(TIF_IO_BITMAP); 269 /* 270 * Careful, clear this in the TSS too: 271 */ 272 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); 273 t->io_bitmap_max = 0; 274 tss->io_bitmap_owner = NULL; 275 tss->io_bitmap_max = 0; 276 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 277 put_cpu(); 278 } 279 } 280 281 void flush_thread(void) 282 { 283 struct task_struct *tsk = current; 284 285 tsk->thread.debugreg0 = 0; 286 tsk->thread.debugreg1 = 0; 287 tsk->thread.debugreg2 = 0; 288 tsk->thread.debugreg3 = 0; 289 tsk->thread.debugreg6 = 0; 290 tsk->thread.debugreg7 = 0; 291 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 292 clear_tsk_thread_flag(tsk, TIF_DEBUG); 293 /* 294 * Forget coprocessor state.. 295 */ 296 tsk->fpu_counter = 0; 297 clear_fpu(tsk); 298 clear_used_math(); 299 } 300 301 void release_thread(struct task_struct *dead_task) 302 { 303 BUG_ON(dead_task->mm); 304 release_vm86_irqs(dead_task); 305 } 306 307 /* 308 * This gets called before we allocate a new thread and copy 309 * the current task into it. 310 */ 311 void prepare_to_copy(struct task_struct *tsk) 312 { 313 unlazy_fpu(tsk); 314 } 315 316 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 317 unsigned long unused, 318 struct task_struct * p, struct pt_regs * regs) 319 { 320 struct pt_regs * childregs; 321 struct task_struct *tsk; 322 int err; 323 324 childregs = task_pt_regs(p); 325 *childregs = *regs; 326 childregs->ax = 0; 327 childregs->sp = sp; 328 329 p->thread.sp = (unsigned long) childregs; 330 p->thread.sp0 = (unsigned long) (childregs+1); 331 332 p->thread.ip = (unsigned long) ret_from_fork; 333 334 savesegment(gs, p->thread.gs); 335 336 tsk = current; 337 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { 338 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, 339 IO_BITMAP_BYTES, GFP_KERNEL); 340 if (!p->thread.io_bitmap_ptr) { 341 p->thread.io_bitmap_max = 0; 342 return -ENOMEM; 343 } 344 set_tsk_thread_flag(p, TIF_IO_BITMAP); 345 } 346 347 err = 0; 348 349 /* 350 * Set a new TLS for the child thread? 351 */ 352 if (clone_flags & CLONE_SETTLS) 353 err = do_set_thread_area(p, -1, 354 (struct user_desc __user *)childregs->si, 0); 355 356 if (err && p->thread.io_bitmap_ptr) { 357 kfree(p->thread.io_bitmap_ptr); 358 p->thread.io_bitmap_max = 0; 359 } 360 return err; 361 } 362 363 void 364 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 365 { 366 __asm__("movl %0, %%gs" :: "r"(0)); 367 regs->fs = 0; 368 set_fs(USER_DS); 369 regs->ds = __USER_DS; 370 regs->es = __USER_DS; 371 regs->ss = __USER_DS; 372 regs->cs = __USER_CS; 373 regs->ip = new_ip; 374 regs->sp = new_sp; 375 /* 376 * Free the old FP and other extended state 377 */ 378 free_thread_xstate(current); 379 } 380 EXPORT_SYMBOL_GPL(start_thread); 381 382 static void hard_disable_TSC(void) 383 { 384 write_cr4(read_cr4() | X86_CR4_TSD); 385 } 386 387 void disable_TSC(void) 388 { 389 preempt_disable(); 390 if (!test_and_set_thread_flag(TIF_NOTSC)) 391 /* 392 * Must flip the CPU state synchronously with 393 * TIF_NOTSC in the current running context. 394 */ 395 hard_disable_TSC(); 396 preempt_enable(); 397 } 398 399 static void hard_enable_TSC(void) 400 { 401 write_cr4(read_cr4() & ~X86_CR4_TSD); 402 } 403 404 static void enable_TSC(void) 405 { 406 preempt_disable(); 407 if (test_and_clear_thread_flag(TIF_NOTSC)) 408 /* 409 * Must flip the CPU state synchronously with 410 * TIF_NOTSC in the current running context. 411 */ 412 hard_enable_TSC(); 413 preempt_enable(); 414 } 415 416 int get_tsc_mode(unsigned long adr) 417 { 418 unsigned int val; 419 420 if (test_thread_flag(TIF_NOTSC)) 421 val = PR_TSC_SIGSEGV; 422 else 423 val = PR_TSC_ENABLE; 424 425 return put_user(val, (unsigned int __user *)adr); 426 } 427 428 int set_tsc_mode(unsigned int val) 429 { 430 if (val == PR_TSC_SIGSEGV) 431 disable_TSC(); 432 else if (val == PR_TSC_ENABLE) 433 enable_TSC(); 434 else 435 return -EINVAL; 436 437 return 0; 438 } 439 440 static noinline void 441 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 442 struct tss_struct *tss) 443 { 444 struct thread_struct *prev, *next; 445 unsigned long debugctl; 446 447 prev = &prev_p->thread; 448 next = &next_p->thread; 449 450 debugctl = prev->debugctlmsr; 451 if (next->ds_area_msr != prev->ds_area_msr) { 452 /* we clear debugctl to make sure DS 453 * is not in use when we change it */ 454 debugctl = 0; 455 update_debugctlmsr(0); 456 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0); 457 } 458 459 if (next->debugctlmsr != debugctl) 460 update_debugctlmsr(next->debugctlmsr); 461 462 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 463 set_debugreg(next->debugreg0, 0); 464 set_debugreg(next->debugreg1, 1); 465 set_debugreg(next->debugreg2, 2); 466 set_debugreg(next->debugreg3, 3); 467 /* no 4 and 5 */ 468 set_debugreg(next->debugreg6, 6); 469 set_debugreg(next->debugreg7, 7); 470 } 471 472 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 473 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 474 /* prev and next are different */ 475 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 476 hard_disable_TSC(); 477 else 478 hard_enable_TSC(); 479 } 480 481 #ifdef X86_BTS 482 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS)) 483 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS); 484 485 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS)) 486 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES); 487 #endif 488 489 490 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 491 /* 492 * Disable the bitmap via an invalid offset. We still cache 493 * the previous bitmap owner and the IO bitmap contents: 494 */ 495 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 496 return; 497 } 498 499 if (likely(next == tss->io_bitmap_owner)) { 500 /* 501 * Previous owner of the bitmap (hence the bitmap content) 502 * matches the next task, we dont have to do anything but 503 * to set a valid offset in the TSS: 504 */ 505 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 506 return; 507 } 508 /* 509 * Lazy TSS's I/O bitmap copy. We set an invalid offset here 510 * and we let the task to get a GPF in case an I/O instruction 511 * is performed. The handler of the GPF will verify that the 512 * faulting task has a valid I/O bitmap and, it true, does the 513 * real copy and restart the instruction. This will save us 514 * redundant copies when the currently switched task does not 515 * perform any I/O during its timeslice. 516 */ 517 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; 518 } 519 520 /* 521 * switch_to(x,yn) should switch tasks from x to y. 522 * 523 * We fsave/fwait so that an exception goes off at the right time 524 * (as a call from the fsave or fwait in effect) rather than to 525 * the wrong process. Lazy FP saving no longer makes any sense 526 * with modern CPU's, and this simplifies a lot of things (SMP 527 * and UP become the same). 528 * 529 * NOTE! We used to use the x86 hardware context switching. The 530 * reason for not using it any more becomes apparent when you 531 * try to recover gracefully from saved state that is no longer 532 * valid (stale segment register values in particular). With the 533 * hardware task-switch, there is no way to fix up bad state in 534 * a reasonable manner. 535 * 536 * The fact that Intel documents the hardware task-switching to 537 * be slow is a fairly red herring - this code is not noticeably 538 * faster. However, there _is_ some room for improvement here, 539 * so the performance issues may eventually be a valid point. 540 * More important, however, is the fact that this allows us much 541 * more flexibility. 542 * 543 * The return value (in %ax) will be the "prev" task after 544 * the task-switch, and shows up in ret_from_fork in entry.S, 545 * for example. 546 */ 547 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 548 { 549 struct thread_struct *prev = &prev_p->thread, 550 *next = &next_p->thread; 551 int cpu = smp_processor_id(); 552 struct tss_struct *tss = &per_cpu(init_tss, cpu); 553 554 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ 555 556 __unlazy_fpu(prev_p); 557 558 559 /* we're going to use this soon, after a few expensive things */ 560 if (next_p->fpu_counter > 5) 561 prefetch(next->xstate); 562 563 /* 564 * Reload esp0. 565 */ 566 load_sp0(tss, next); 567 568 /* 569 * Save away %gs. No need to save %fs, as it was saved on the 570 * stack on entry. No need to save %es and %ds, as those are 571 * always kernel segments while inside the kernel. Doing this 572 * before setting the new TLS descriptors avoids the situation 573 * where we temporarily have non-reloadable segments in %fs 574 * and %gs. This could be an issue if the NMI handler ever 575 * used %fs or %gs (it does not today), or if the kernel is 576 * running inside of a hypervisor layer. 577 */ 578 savesegment(gs, prev->gs); 579 580 /* 581 * Load the per-thread Thread-Local Storage descriptor. 582 */ 583 load_TLS(next, cpu); 584 585 /* 586 * Restore IOPL if needed. In normal use, the flags restore 587 * in the switch assembly will handle this. But if the kernel 588 * is running virtualized at a non-zero CPL, the popf will 589 * not restore flags, so it must be done in a separate step. 590 */ 591 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) 592 set_iopl_mask(next->iopl); 593 594 /* 595 * Now maybe handle debug registers and/or IO bitmaps 596 */ 597 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || 598 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) 599 __switch_to_xtra(prev_p, next_p, tss); 600 601 /* 602 * Leave lazy mode, flushing any hypercalls made here. 603 * This must be done before restoring TLS segments so 604 * the GDT and LDT are properly updated, and must be 605 * done before math_state_restore, so the TS bit is up 606 * to date. 607 */ 608 arch_leave_lazy_cpu_mode(); 609 610 /* If the task has used fpu the last 5 timeslices, just do a full 611 * restore of the math state immediately to avoid the trap; the 612 * chances of needing FPU soon are obviously high now 613 * 614 * tsk_used_math() checks prevent calling math_state_restore(), 615 * which can sleep in the case of !tsk_used_math() 616 */ 617 if (tsk_used_math(next_p) && next_p->fpu_counter > 5) 618 math_state_restore(); 619 620 /* 621 * Restore %gs if needed (which is common) 622 */ 623 if (prev->gs | next->gs) 624 loadsegment(gs, next->gs); 625 626 x86_write_percpu(current_task, next_p); 627 628 return prev_p; 629 } 630 631 asmlinkage int sys_fork(struct pt_regs regs) 632 { 633 return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 634 } 635 636 asmlinkage int sys_clone(struct pt_regs regs) 637 { 638 unsigned long clone_flags; 639 unsigned long newsp; 640 int __user *parent_tidptr, *child_tidptr; 641 642 clone_flags = regs.bx; 643 newsp = regs.cx; 644 parent_tidptr = (int __user *)regs.dx; 645 child_tidptr = (int __user *)regs.di; 646 if (!newsp) 647 newsp = regs.sp; 648 return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); 649 } 650 651 /* 652 * This is trivial, and on the face of it looks like it 653 * could equally well be done in user mode. 654 * 655 * Not so, for quite unobvious reasons - register pressure. 656 * In user mode vfork() cannot have a stack frame, and if 657 * done by calling the "clone()" system call directly, you 658 * do not have enough call-clobbered registers to hold all 659 * the information you need. 660 */ 661 asmlinkage int sys_vfork(struct pt_regs regs) 662 { 663 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 664 } 665 666 /* 667 * sys_execve() executes a new program. 668 */ 669 asmlinkage int sys_execve(struct pt_regs regs) 670 { 671 int error; 672 char * filename; 673 674 filename = getname((char __user *) regs.bx); 675 error = PTR_ERR(filename); 676 if (IS_ERR(filename)) 677 goto out; 678 error = do_execve(filename, 679 (char __user * __user *) regs.cx, 680 (char __user * __user *) regs.dx, 681 ®s); 682 if (error == 0) { 683 /* Make sure we don't return using sysenter.. */ 684 set_thread_flag(TIF_IRET); 685 } 686 putname(filename); 687 out: 688 return error; 689 } 690 691 #define top_esp (THREAD_SIZE - sizeof(unsigned long)) 692 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) 693 694 unsigned long get_wchan(struct task_struct *p) 695 { 696 unsigned long bp, sp, ip; 697 unsigned long stack_page; 698 int count = 0; 699 if (!p || p == current || p->state == TASK_RUNNING) 700 return 0; 701 stack_page = (unsigned long)task_stack_page(p); 702 sp = p->thread.sp; 703 if (!stack_page || sp < stack_page || sp > top_esp+stack_page) 704 return 0; 705 /* include/asm-i386/system.h:switch_to() pushes bp last. */ 706 bp = *(unsigned long *) sp; 707 do { 708 if (bp < stack_page || bp > top_ebp+stack_page) 709 return 0; 710 ip = *(unsigned long *) (bp+4); 711 if (!in_sched_functions(ip)) 712 return ip; 713 bp = *(unsigned long *) bp; 714 } while (count++ < 16); 715 return 0; 716 } 717 718 unsigned long arch_align_stack(unsigned long sp) 719 { 720 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 721 sp -= get_random_int() % 8192; 722 return sp & ~0xf; 723 } 724 725 unsigned long arch_randomize_brk(struct mm_struct *mm) 726 { 727 unsigned long range_end = mm->brk + 0x02000000; 728 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 729 } 730