xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision 545e4006)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52 
53 #include <linux/err.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58 
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60 
61 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
62 EXPORT_PER_CPU_SYMBOL(current_task);
63 
64 DEFINE_PER_CPU(int, cpu_number);
65 EXPORT_PER_CPU_SYMBOL(cpu_number);
66 
67 /*
68  * Return saved PC of a blocked thread.
69  */
70 unsigned long thread_saved_pc(struct task_struct *tsk)
71 {
72 	return ((unsigned long *)tsk->thread.sp)[3];
73 }
74 
75 #ifdef CONFIG_HOTPLUG_CPU
76 #include <asm/nmi.h>
77 
78 static void cpu_exit_clear(void)
79 {
80 	int cpu = raw_smp_processor_id();
81 
82 	idle_task_exit();
83 
84 	cpu_uninit();
85 	irq_ctx_exit(cpu);
86 
87 	cpu_clear(cpu, cpu_callout_map);
88 	cpu_clear(cpu, cpu_callin_map);
89 
90 	numa_remove_cpu(cpu);
91 }
92 
93 /* We don't actually take CPU down, just spin without interrupts. */
94 static inline void play_dead(void)
95 {
96 	/* This must be done before dead CPU ack */
97 	cpu_exit_clear();
98 	wbinvd();
99 	mb();
100 	/* Ack it */
101 	__get_cpu_var(cpu_state) = CPU_DEAD;
102 
103 	/*
104 	 * With physical CPU hotplug, we should halt the cpu
105 	 */
106 	local_irq_disable();
107 	while (1)
108 		halt();
109 }
110 #else
111 static inline void play_dead(void)
112 {
113 	BUG();
114 }
115 #endif /* CONFIG_HOTPLUG_CPU */
116 
117 /*
118  * The idle thread. There's no useful work to be
119  * done, so just try to conserve power and have a
120  * low exit latency (ie sit in a loop waiting for
121  * somebody to say that they'd like to reschedule)
122  */
123 void cpu_idle(void)
124 {
125 	int cpu = smp_processor_id();
126 
127 	current_thread_info()->status |= TS_POLLING;
128 
129 	/* endless idle loop with no priority at all */
130 	while (1) {
131 		tick_nohz_stop_sched_tick(1);
132 		while (!need_resched()) {
133 
134 			check_pgt_cache();
135 			rmb();
136 
137 			if (rcu_pending(cpu))
138 				rcu_check_callbacks(cpu, 0);
139 
140 			if (cpu_is_offline(cpu))
141 				play_dead();
142 
143 			local_irq_disable();
144 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
145 			/* Don't trace irqs off for idle */
146 			stop_critical_timings();
147 			pm_idle();
148 			start_critical_timings();
149 		}
150 		tick_nohz_restart_sched_tick();
151 		preempt_enable_no_resched();
152 		schedule();
153 		preempt_disable();
154 	}
155 }
156 
157 void __show_registers(struct pt_regs *regs, int all)
158 {
159 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
160 	unsigned long d0, d1, d2, d3, d6, d7;
161 	unsigned long sp;
162 	unsigned short ss, gs;
163 
164 	if (user_mode_vm(regs)) {
165 		sp = regs->sp;
166 		ss = regs->ss & 0xffff;
167 		savesegment(gs, gs);
168 	} else {
169 		sp = (unsigned long) (&regs->sp);
170 		savesegment(ss, ss);
171 		savesegment(gs, gs);
172 	}
173 
174 	printk("\n");
175 	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
176 			task_pid_nr(current), current->comm,
177 			print_tainted(), init_utsname()->release,
178 			(int)strcspn(init_utsname()->version, " "),
179 			init_utsname()->version);
180 
181 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
182 			(u16)regs->cs, regs->ip, regs->flags,
183 			smp_processor_id());
184 	print_symbol("EIP is at %s\n", regs->ip);
185 
186 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
187 		regs->ax, regs->bx, regs->cx, regs->dx);
188 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
189 		regs->si, regs->di, regs->bp, sp);
190 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
191 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
192 
193 	if (!all)
194 		return;
195 
196 	cr0 = read_cr0();
197 	cr2 = read_cr2();
198 	cr3 = read_cr3();
199 	cr4 = read_cr4_safe();
200 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
201 			cr0, cr2, cr3, cr4);
202 
203 	get_debugreg(d0, 0);
204 	get_debugreg(d1, 1);
205 	get_debugreg(d2, 2);
206 	get_debugreg(d3, 3);
207 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
208 			d0, d1, d2, d3);
209 
210 	get_debugreg(d6, 6);
211 	get_debugreg(d7, 7);
212 	printk("DR6: %08lx DR7: %08lx\n",
213 			d6, d7);
214 }
215 
216 void show_regs(struct pt_regs *regs)
217 {
218 	__show_registers(regs, 1);
219 	show_trace(NULL, regs, &regs->sp, regs->bp);
220 }
221 
222 /*
223  * This gets run with %bx containing the
224  * function to call, and %dx containing
225  * the "args".
226  */
227 extern void kernel_thread_helper(void);
228 
229 /*
230  * Create a kernel thread
231  */
232 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
233 {
234 	struct pt_regs regs;
235 
236 	memset(&regs, 0, sizeof(regs));
237 
238 	regs.bx = (unsigned long) fn;
239 	regs.dx = (unsigned long) arg;
240 
241 	regs.ds = __USER_DS;
242 	regs.es = __USER_DS;
243 	regs.fs = __KERNEL_PERCPU;
244 	regs.orig_ax = -1;
245 	regs.ip = (unsigned long) kernel_thread_helper;
246 	regs.cs = __KERNEL_CS | get_kernel_rpl();
247 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
248 
249 	/* Ok, create the new process.. */
250 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
251 }
252 EXPORT_SYMBOL(kernel_thread);
253 
254 /*
255  * Free current thread data structures etc..
256  */
257 void exit_thread(void)
258 {
259 	/* The process may have allocated an io port bitmap... nuke it. */
260 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
261 		struct task_struct *tsk = current;
262 		struct thread_struct *t = &tsk->thread;
263 		int cpu = get_cpu();
264 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
265 
266 		kfree(t->io_bitmap_ptr);
267 		t->io_bitmap_ptr = NULL;
268 		clear_thread_flag(TIF_IO_BITMAP);
269 		/*
270 		 * Careful, clear this in the TSS too:
271 		 */
272 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
273 		t->io_bitmap_max = 0;
274 		tss->io_bitmap_owner = NULL;
275 		tss->io_bitmap_max = 0;
276 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
277 		put_cpu();
278 	}
279 }
280 
281 void flush_thread(void)
282 {
283 	struct task_struct *tsk = current;
284 
285 	tsk->thread.debugreg0 = 0;
286 	tsk->thread.debugreg1 = 0;
287 	tsk->thread.debugreg2 = 0;
288 	tsk->thread.debugreg3 = 0;
289 	tsk->thread.debugreg6 = 0;
290 	tsk->thread.debugreg7 = 0;
291 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
292 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
293 	/*
294 	 * Forget coprocessor state..
295 	 */
296 	tsk->fpu_counter = 0;
297 	clear_fpu(tsk);
298 	clear_used_math();
299 }
300 
301 void release_thread(struct task_struct *dead_task)
302 {
303 	BUG_ON(dead_task->mm);
304 	release_vm86_irqs(dead_task);
305 }
306 
307 /*
308  * This gets called before we allocate a new thread and copy
309  * the current task into it.
310  */
311 void prepare_to_copy(struct task_struct *tsk)
312 {
313 	unlazy_fpu(tsk);
314 }
315 
316 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
317 	unsigned long unused,
318 	struct task_struct * p, struct pt_regs * regs)
319 {
320 	struct pt_regs * childregs;
321 	struct task_struct *tsk;
322 	int err;
323 
324 	childregs = task_pt_regs(p);
325 	*childregs = *regs;
326 	childregs->ax = 0;
327 	childregs->sp = sp;
328 
329 	p->thread.sp = (unsigned long) childregs;
330 	p->thread.sp0 = (unsigned long) (childregs+1);
331 
332 	p->thread.ip = (unsigned long) ret_from_fork;
333 
334 	savesegment(gs, p->thread.gs);
335 
336 	tsk = current;
337 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
338 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
339 						IO_BITMAP_BYTES, GFP_KERNEL);
340 		if (!p->thread.io_bitmap_ptr) {
341 			p->thread.io_bitmap_max = 0;
342 			return -ENOMEM;
343 		}
344 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
345 	}
346 
347 	err = 0;
348 
349 	/*
350 	 * Set a new TLS for the child thread?
351 	 */
352 	if (clone_flags & CLONE_SETTLS)
353 		err = do_set_thread_area(p, -1,
354 			(struct user_desc __user *)childregs->si, 0);
355 
356 	if (err && p->thread.io_bitmap_ptr) {
357 		kfree(p->thread.io_bitmap_ptr);
358 		p->thread.io_bitmap_max = 0;
359 	}
360 	return err;
361 }
362 
363 void
364 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
365 {
366 	__asm__("movl %0, %%gs" :: "r"(0));
367 	regs->fs		= 0;
368 	set_fs(USER_DS);
369 	regs->ds		= __USER_DS;
370 	regs->es		= __USER_DS;
371 	regs->ss		= __USER_DS;
372 	regs->cs		= __USER_CS;
373 	regs->ip		= new_ip;
374 	regs->sp		= new_sp;
375 	/*
376 	 * Free the old FP and other extended state
377 	 */
378 	free_thread_xstate(current);
379 }
380 EXPORT_SYMBOL_GPL(start_thread);
381 
382 static void hard_disable_TSC(void)
383 {
384 	write_cr4(read_cr4() | X86_CR4_TSD);
385 }
386 
387 void disable_TSC(void)
388 {
389 	preempt_disable();
390 	if (!test_and_set_thread_flag(TIF_NOTSC))
391 		/*
392 		 * Must flip the CPU state synchronously with
393 		 * TIF_NOTSC in the current running context.
394 		 */
395 		hard_disable_TSC();
396 	preempt_enable();
397 }
398 
399 static void hard_enable_TSC(void)
400 {
401 	write_cr4(read_cr4() & ~X86_CR4_TSD);
402 }
403 
404 static void enable_TSC(void)
405 {
406 	preempt_disable();
407 	if (test_and_clear_thread_flag(TIF_NOTSC))
408 		/*
409 		 * Must flip the CPU state synchronously with
410 		 * TIF_NOTSC in the current running context.
411 		 */
412 		hard_enable_TSC();
413 	preempt_enable();
414 }
415 
416 int get_tsc_mode(unsigned long adr)
417 {
418 	unsigned int val;
419 
420 	if (test_thread_flag(TIF_NOTSC))
421 		val = PR_TSC_SIGSEGV;
422 	else
423 		val = PR_TSC_ENABLE;
424 
425 	return put_user(val, (unsigned int __user *)adr);
426 }
427 
428 int set_tsc_mode(unsigned int val)
429 {
430 	if (val == PR_TSC_SIGSEGV)
431 		disable_TSC();
432 	else if (val == PR_TSC_ENABLE)
433 		enable_TSC();
434 	else
435 		return -EINVAL;
436 
437 	return 0;
438 }
439 
440 static noinline void
441 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
442 		 struct tss_struct *tss)
443 {
444 	struct thread_struct *prev, *next;
445 	unsigned long debugctl;
446 
447 	prev = &prev_p->thread;
448 	next = &next_p->thread;
449 
450 	debugctl = prev->debugctlmsr;
451 	if (next->ds_area_msr != prev->ds_area_msr) {
452 		/* we clear debugctl to make sure DS
453 		 * is not in use when we change it */
454 		debugctl = 0;
455 		update_debugctlmsr(0);
456 		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
457 	}
458 
459 	if (next->debugctlmsr != debugctl)
460 		update_debugctlmsr(next->debugctlmsr);
461 
462 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
463 		set_debugreg(next->debugreg0, 0);
464 		set_debugreg(next->debugreg1, 1);
465 		set_debugreg(next->debugreg2, 2);
466 		set_debugreg(next->debugreg3, 3);
467 		/* no 4 and 5 */
468 		set_debugreg(next->debugreg6, 6);
469 		set_debugreg(next->debugreg7, 7);
470 	}
471 
472 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
473 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
474 		/* prev and next are different */
475 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
476 			hard_disable_TSC();
477 		else
478 			hard_enable_TSC();
479 	}
480 
481 #ifdef X86_BTS
482 	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
483 		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
484 
485 	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
486 		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
487 #endif
488 
489 
490 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
491 		/*
492 		 * Disable the bitmap via an invalid offset. We still cache
493 		 * the previous bitmap owner and the IO bitmap contents:
494 		 */
495 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
496 		return;
497 	}
498 
499 	if (likely(next == tss->io_bitmap_owner)) {
500 		/*
501 		 * Previous owner of the bitmap (hence the bitmap content)
502 		 * matches the next task, we dont have to do anything but
503 		 * to set a valid offset in the TSS:
504 		 */
505 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
506 		return;
507 	}
508 	/*
509 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
510 	 * and we let the task to get a GPF in case an I/O instruction
511 	 * is performed.  The handler of the GPF will verify that the
512 	 * faulting task has a valid I/O bitmap and, it true, does the
513 	 * real copy and restart the instruction.  This will save us
514 	 * redundant copies when the currently switched task does not
515 	 * perform any I/O during its timeslice.
516 	 */
517 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
518 }
519 
520 /*
521  *	switch_to(x,yn) should switch tasks from x to y.
522  *
523  * We fsave/fwait so that an exception goes off at the right time
524  * (as a call from the fsave or fwait in effect) rather than to
525  * the wrong process. Lazy FP saving no longer makes any sense
526  * with modern CPU's, and this simplifies a lot of things (SMP
527  * and UP become the same).
528  *
529  * NOTE! We used to use the x86 hardware context switching. The
530  * reason for not using it any more becomes apparent when you
531  * try to recover gracefully from saved state that is no longer
532  * valid (stale segment register values in particular). With the
533  * hardware task-switch, there is no way to fix up bad state in
534  * a reasonable manner.
535  *
536  * The fact that Intel documents the hardware task-switching to
537  * be slow is a fairly red herring - this code is not noticeably
538  * faster. However, there _is_ some room for improvement here,
539  * so the performance issues may eventually be a valid point.
540  * More important, however, is the fact that this allows us much
541  * more flexibility.
542  *
543  * The return value (in %ax) will be the "prev" task after
544  * the task-switch, and shows up in ret_from_fork in entry.S,
545  * for example.
546  */
547 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
548 {
549 	struct thread_struct *prev = &prev_p->thread,
550 				 *next = &next_p->thread;
551 	int cpu = smp_processor_id();
552 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
553 
554 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
555 
556 	__unlazy_fpu(prev_p);
557 
558 
559 	/* we're going to use this soon, after a few expensive things */
560 	if (next_p->fpu_counter > 5)
561 		prefetch(next->xstate);
562 
563 	/*
564 	 * Reload esp0.
565 	 */
566 	load_sp0(tss, next);
567 
568 	/*
569 	 * Save away %gs. No need to save %fs, as it was saved on the
570 	 * stack on entry.  No need to save %es and %ds, as those are
571 	 * always kernel segments while inside the kernel.  Doing this
572 	 * before setting the new TLS descriptors avoids the situation
573 	 * where we temporarily have non-reloadable segments in %fs
574 	 * and %gs.  This could be an issue if the NMI handler ever
575 	 * used %fs or %gs (it does not today), or if the kernel is
576 	 * running inside of a hypervisor layer.
577 	 */
578 	savesegment(gs, prev->gs);
579 
580 	/*
581 	 * Load the per-thread Thread-Local Storage descriptor.
582 	 */
583 	load_TLS(next, cpu);
584 
585 	/*
586 	 * Restore IOPL if needed.  In normal use, the flags restore
587 	 * in the switch assembly will handle this.  But if the kernel
588 	 * is running virtualized at a non-zero CPL, the popf will
589 	 * not restore flags, so it must be done in a separate step.
590 	 */
591 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
592 		set_iopl_mask(next->iopl);
593 
594 	/*
595 	 * Now maybe handle debug registers and/or IO bitmaps
596 	 */
597 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
598 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
599 		__switch_to_xtra(prev_p, next_p, tss);
600 
601 	/*
602 	 * Leave lazy mode, flushing any hypercalls made here.
603 	 * This must be done before restoring TLS segments so
604 	 * the GDT and LDT are properly updated, and must be
605 	 * done before math_state_restore, so the TS bit is up
606 	 * to date.
607 	 */
608 	arch_leave_lazy_cpu_mode();
609 
610 	/* If the task has used fpu the last 5 timeslices, just do a full
611 	 * restore of the math state immediately to avoid the trap; the
612 	 * chances of needing FPU soon are obviously high now
613 	 *
614 	 * tsk_used_math() checks prevent calling math_state_restore(),
615 	 * which can sleep in the case of !tsk_used_math()
616 	 */
617 	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
618 		math_state_restore();
619 
620 	/*
621 	 * Restore %gs if needed (which is common)
622 	 */
623 	if (prev->gs | next->gs)
624 		loadsegment(gs, next->gs);
625 
626 	x86_write_percpu(current_task, next_p);
627 
628 	return prev_p;
629 }
630 
631 asmlinkage int sys_fork(struct pt_regs regs)
632 {
633 	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
634 }
635 
636 asmlinkage int sys_clone(struct pt_regs regs)
637 {
638 	unsigned long clone_flags;
639 	unsigned long newsp;
640 	int __user *parent_tidptr, *child_tidptr;
641 
642 	clone_flags = regs.bx;
643 	newsp = regs.cx;
644 	parent_tidptr = (int __user *)regs.dx;
645 	child_tidptr = (int __user *)regs.di;
646 	if (!newsp)
647 		newsp = regs.sp;
648 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
649 }
650 
651 /*
652  * This is trivial, and on the face of it looks like it
653  * could equally well be done in user mode.
654  *
655  * Not so, for quite unobvious reasons - register pressure.
656  * In user mode vfork() cannot have a stack frame, and if
657  * done by calling the "clone()" system call directly, you
658  * do not have enough call-clobbered registers to hold all
659  * the information you need.
660  */
661 asmlinkage int sys_vfork(struct pt_regs regs)
662 {
663 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
664 }
665 
666 /*
667  * sys_execve() executes a new program.
668  */
669 asmlinkage int sys_execve(struct pt_regs regs)
670 {
671 	int error;
672 	char * filename;
673 
674 	filename = getname((char __user *) regs.bx);
675 	error = PTR_ERR(filename);
676 	if (IS_ERR(filename))
677 		goto out;
678 	error = do_execve(filename,
679 			(char __user * __user *) regs.cx,
680 			(char __user * __user *) regs.dx,
681 			&regs);
682 	if (error == 0) {
683 		/* Make sure we don't return using sysenter.. */
684 		set_thread_flag(TIF_IRET);
685 	}
686 	putname(filename);
687 out:
688 	return error;
689 }
690 
691 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
692 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
693 
694 unsigned long get_wchan(struct task_struct *p)
695 {
696 	unsigned long bp, sp, ip;
697 	unsigned long stack_page;
698 	int count = 0;
699 	if (!p || p == current || p->state == TASK_RUNNING)
700 		return 0;
701 	stack_page = (unsigned long)task_stack_page(p);
702 	sp = p->thread.sp;
703 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
704 		return 0;
705 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
706 	bp = *(unsigned long *) sp;
707 	do {
708 		if (bp < stack_page || bp > top_ebp+stack_page)
709 			return 0;
710 		ip = *(unsigned long *) (bp+4);
711 		if (!in_sched_functions(ip))
712 			return ip;
713 		bp = *(unsigned long *) bp;
714 	} while (count++ < 16);
715 	return 0;
716 }
717 
718 unsigned long arch_align_stack(unsigned long sp)
719 {
720 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
721 		sp -= get_random_int() % 8192;
722 	return sp & ~0xf;
723 }
724 
725 unsigned long arch_randomize_brk(struct mm_struct *mm)
726 {
727 	unsigned long range_end = mm->brk + 0x02000000;
728 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
729 }
730