1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/cpu.h> 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/elfcore.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/user.h> 26 #include <linux/interrupt.h> 27 #include <linux/utsname.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/init.h> 31 #include <linux/mc146818rtc.h> 32 #include <linux/module.h> 33 #include <linux/kallsyms.h> 34 #include <linux/ptrace.h> 35 #include <linux/random.h> 36 #include <linux/personality.h> 37 #include <linux/tick.h> 38 #include <linux/percpu.h> 39 #include <linux/prctl.h> 40 #include <linux/dmi.h> 41 42 #include <asm/uaccess.h> 43 #include <asm/pgtable.h> 44 #include <asm/system.h> 45 #include <asm/io.h> 46 #include <asm/ldt.h> 47 #include <asm/processor.h> 48 #include <asm/i387.h> 49 #include <asm/desc.h> 50 #ifdef CONFIG_MATH_EMULATION 51 #include <asm/math_emu.h> 52 #endif 53 54 #include <linux/err.h> 55 56 #include <asm/tlbflush.h> 57 #include <asm/cpu.h> 58 #include <asm/kdebug.h> 59 #include <asm/idle.h> 60 #include <asm/syscalls.h> 61 #include <asm/smp.h> 62 63 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 64 65 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 66 EXPORT_PER_CPU_SYMBOL(current_task); 67 68 DEFINE_PER_CPU(int, cpu_number); 69 EXPORT_PER_CPU_SYMBOL(cpu_number); 70 71 /* 72 * Return saved PC of a blocked thread. 73 */ 74 unsigned long thread_saved_pc(struct task_struct *tsk) 75 { 76 return ((unsigned long *)tsk->thread.sp)[3]; 77 } 78 79 #ifdef CONFIG_HOTPLUG_CPU 80 #include <asm/nmi.h> 81 82 static void cpu_exit_clear(void) 83 { 84 int cpu = raw_smp_processor_id(); 85 86 idle_task_exit(); 87 88 cpu_uninit(); 89 irq_ctx_exit(cpu); 90 91 cpu_clear(cpu, cpu_callout_map); 92 cpu_clear(cpu, cpu_callin_map); 93 94 numa_remove_cpu(cpu); 95 c1e_remove_cpu(cpu); 96 } 97 98 /* We don't actually take CPU down, just spin without interrupts. */ 99 static inline void play_dead(void) 100 { 101 /* This must be done before dead CPU ack */ 102 cpu_exit_clear(); 103 mb(); 104 /* Ack it */ 105 __get_cpu_var(cpu_state) = CPU_DEAD; 106 107 /* 108 * With physical CPU hotplug, we should halt the cpu 109 */ 110 local_irq_disable(); 111 /* mask all interrupts, flush any and all caches, and halt */ 112 wbinvd_halt(); 113 } 114 #else 115 static inline void play_dead(void) 116 { 117 BUG(); 118 } 119 #endif /* CONFIG_HOTPLUG_CPU */ 120 121 /* 122 * The idle thread. There's no useful work to be 123 * done, so just try to conserve power and have a 124 * low exit latency (ie sit in a loop waiting for 125 * somebody to say that they'd like to reschedule) 126 */ 127 void cpu_idle(void) 128 { 129 int cpu = smp_processor_id(); 130 131 current_thread_info()->status |= TS_POLLING; 132 133 /* endless idle loop with no priority at all */ 134 while (1) { 135 tick_nohz_stop_sched_tick(1); 136 while (!need_resched()) { 137 138 check_pgt_cache(); 139 rmb(); 140 141 if (rcu_pending(cpu)) 142 rcu_check_callbacks(cpu, 0); 143 144 if (cpu_is_offline(cpu)) 145 play_dead(); 146 147 local_irq_disable(); 148 __get_cpu_var(irq_stat).idle_timestamp = jiffies; 149 /* Don't trace irqs off for idle */ 150 stop_critical_timings(); 151 pm_idle(); 152 start_critical_timings(); 153 } 154 tick_nohz_restart_sched_tick(); 155 preempt_enable_no_resched(); 156 schedule(); 157 preempt_disable(); 158 } 159 } 160 161 void __show_registers(struct pt_regs *regs, int all) 162 { 163 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; 164 unsigned long d0, d1, d2, d3, d6, d7; 165 unsigned long sp; 166 unsigned short ss, gs; 167 const char *board; 168 169 if (user_mode_vm(regs)) { 170 sp = regs->sp; 171 ss = regs->ss & 0xffff; 172 savesegment(gs, gs); 173 } else { 174 sp = (unsigned long) (®s->sp); 175 savesegment(ss, ss); 176 savesegment(gs, gs); 177 } 178 179 printk("\n"); 180 181 board = dmi_get_system_info(DMI_PRODUCT_NAME); 182 if (!board) 183 board = ""; 184 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n", 185 task_pid_nr(current), current->comm, 186 print_tainted(), init_utsname()->release, 187 (int)strcspn(init_utsname()->version, " "), 188 init_utsname()->version, board); 189 190 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", 191 (u16)regs->cs, regs->ip, regs->flags, 192 smp_processor_id()); 193 print_symbol("EIP is at %s\n", regs->ip); 194 195 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", 196 regs->ax, regs->bx, regs->cx, regs->dx); 197 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", 198 regs->si, regs->di, regs->bp, sp); 199 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", 200 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); 201 202 if (!all) 203 return; 204 205 cr0 = read_cr0(); 206 cr2 = read_cr2(); 207 cr3 = read_cr3(); 208 cr4 = read_cr4_safe(); 209 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", 210 cr0, cr2, cr3, cr4); 211 212 get_debugreg(d0, 0); 213 get_debugreg(d1, 1); 214 get_debugreg(d2, 2); 215 get_debugreg(d3, 3); 216 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", 217 d0, d1, d2, d3); 218 219 get_debugreg(d6, 6); 220 get_debugreg(d7, 7); 221 printk("DR6: %08lx DR7: %08lx\n", 222 d6, d7); 223 } 224 225 void show_regs(struct pt_regs *regs) 226 { 227 __show_registers(regs, 1); 228 show_trace(NULL, regs, ®s->sp, regs->bp); 229 } 230 231 /* 232 * This gets run with %bx containing the 233 * function to call, and %dx containing 234 * the "args". 235 */ 236 extern void kernel_thread_helper(void); 237 238 /* 239 * Create a kernel thread 240 */ 241 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 242 { 243 struct pt_regs regs; 244 245 memset(®s, 0, sizeof(regs)); 246 247 regs.bx = (unsigned long) fn; 248 regs.dx = (unsigned long) arg; 249 250 regs.ds = __USER_DS; 251 regs.es = __USER_DS; 252 regs.fs = __KERNEL_PERCPU; 253 regs.orig_ax = -1; 254 regs.ip = (unsigned long) kernel_thread_helper; 255 regs.cs = __KERNEL_CS | get_kernel_rpl(); 256 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; 257 258 /* Ok, create the new process.. */ 259 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 260 } 261 EXPORT_SYMBOL(kernel_thread); 262 263 /* 264 * Free current thread data structures etc.. 265 */ 266 void exit_thread(void) 267 { 268 /* The process may have allocated an io port bitmap... nuke it. */ 269 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { 270 struct task_struct *tsk = current; 271 struct thread_struct *t = &tsk->thread; 272 int cpu = get_cpu(); 273 struct tss_struct *tss = &per_cpu(init_tss, cpu); 274 275 kfree(t->io_bitmap_ptr); 276 t->io_bitmap_ptr = NULL; 277 clear_thread_flag(TIF_IO_BITMAP); 278 /* 279 * Careful, clear this in the TSS too: 280 */ 281 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); 282 t->io_bitmap_max = 0; 283 tss->io_bitmap_owner = NULL; 284 tss->io_bitmap_max = 0; 285 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 286 put_cpu(); 287 } 288 #ifdef CONFIG_X86_DS 289 /* Free any DS contexts that have not been properly released. */ 290 if (unlikely(current->thread.ds_ctx)) { 291 /* we clear debugctl to make sure DS is not used. */ 292 update_debugctlmsr(0); 293 ds_free(current->thread.ds_ctx); 294 } 295 #endif /* CONFIG_X86_DS */ 296 } 297 298 void flush_thread(void) 299 { 300 struct task_struct *tsk = current; 301 302 tsk->thread.debugreg0 = 0; 303 tsk->thread.debugreg1 = 0; 304 tsk->thread.debugreg2 = 0; 305 tsk->thread.debugreg3 = 0; 306 tsk->thread.debugreg6 = 0; 307 tsk->thread.debugreg7 = 0; 308 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 309 clear_tsk_thread_flag(tsk, TIF_DEBUG); 310 /* 311 * Forget coprocessor state.. 312 */ 313 tsk->fpu_counter = 0; 314 clear_fpu(tsk); 315 clear_used_math(); 316 } 317 318 void release_thread(struct task_struct *dead_task) 319 { 320 BUG_ON(dead_task->mm); 321 release_vm86_irqs(dead_task); 322 } 323 324 /* 325 * This gets called before we allocate a new thread and copy 326 * the current task into it. 327 */ 328 void prepare_to_copy(struct task_struct *tsk) 329 { 330 unlazy_fpu(tsk); 331 } 332 333 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 334 unsigned long unused, 335 struct task_struct * p, struct pt_regs * regs) 336 { 337 struct pt_regs * childregs; 338 struct task_struct *tsk; 339 int err; 340 341 childregs = task_pt_regs(p); 342 *childregs = *regs; 343 childregs->ax = 0; 344 childregs->sp = sp; 345 346 p->thread.sp = (unsigned long) childregs; 347 p->thread.sp0 = (unsigned long) (childregs+1); 348 349 p->thread.ip = (unsigned long) ret_from_fork; 350 351 savesegment(gs, p->thread.gs); 352 353 tsk = current; 354 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { 355 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, 356 IO_BITMAP_BYTES, GFP_KERNEL); 357 if (!p->thread.io_bitmap_ptr) { 358 p->thread.io_bitmap_max = 0; 359 return -ENOMEM; 360 } 361 set_tsk_thread_flag(p, TIF_IO_BITMAP); 362 } 363 364 err = 0; 365 366 /* 367 * Set a new TLS for the child thread? 368 */ 369 if (clone_flags & CLONE_SETTLS) 370 err = do_set_thread_area(p, -1, 371 (struct user_desc __user *)childregs->si, 0); 372 373 if (err && p->thread.io_bitmap_ptr) { 374 kfree(p->thread.io_bitmap_ptr); 375 p->thread.io_bitmap_max = 0; 376 } 377 return err; 378 } 379 380 void 381 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 382 { 383 __asm__("movl %0, %%gs" :: "r"(0)); 384 regs->fs = 0; 385 set_fs(USER_DS); 386 regs->ds = __USER_DS; 387 regs->es = __USER_DS; 388 regs->ss = __USER_DS; 389 regs->cs = __USER_CS; 390 regs->ip = new_ip; 391 regs->sp = new_sp; 392 /* 393 * Free the old FP and other extended state 394 */ 395 free_thread_xstate(current); 396 } 397 EXPORT_SYMBOL_GPL(start_thread); 398 399 static void hard_disable_TSC(void) 400 { 401 write_cr4(read_cr4() | X86_CR4_TSD); 402 } 403 404 void disable_TSC(void) 405 { 406 preempt_disable(); 407 if (!test_and_set_thread_flag(TIF_NOTSC)) 408 /* 409 * Must flip the CPU state synchronously with 410 * TIF_NOTSC in the current running context. 411 */ 412 hard_disable_TSC(); 413 preempt_enable(); 414 } 415 416 static void hard_enable_TSC(void) 417 { 418 write_cr4(read_cr4() & ~X86_CR4_TSD); 419 } 420 421 static void enable_TSC(void) 422 { 423 preempt_disable(); 424 if (test_and_clear_thread_flag(TIF_NOTSC)) 425 /* 426 * Must flip the CPU state synchronously with 427 * TIF_NOTSC in the current running context. 428 */ 429 hard_enable_TSC(); 430 preempt_enable(); 431 } 432 433 int get_tsc_mode(unsigned long adr) 434 { 435 unsigned int val; 436 437 if (test_thread_flag(TIF_NOTSC)) 438 val = PR_TSC_SIGSEGV; 439 else 440 val = PR_TSC_ENABLE; 441 442 return put_user(val, (unsigned int __user *)adr); 443 } 444 445 int set_tsc_mode(unsigned int val) 446 { 447 if (val == PR_TSC_SIGSEGV) 448 disable_TSC(); 449 else if (val == PR_TSC_ENABLE) 450 enable_TSC(); 451 else 452 return -EINVAL; 453 454 return 0; 455 } 456 457 #ifdef CONFIG_X86_DS 458 static int update_debugctl(struct thread_struct *prev, 459 struct thread_struct *next, unsigned long debugctl) 460 { 461 unsigned long ds_prev = 0; 462 unsigned long ds_next = 0; 463 464 if (prev->ds_ctx) 465 ds_prev = (unsigned long)prev->ds_ctx->ds; 466 if (next->ds_ctx) 467 ds_next = (unsigned long)next->ds_ctx->ds; 468 469 if (ds_next != ds_prev) { 470 /* we clear debugctl to make sure DS 471 * is not in use when we change it */ 472 debugctl = 0; 473 update_debugctlmsr(0); 474 wrmsr(MSR_IA32_DS_AREA, ds_next, 0); 475 } 476 return debugctl; 477 } 478 #else 479 static int update_debugctl(struct thread_struct *prev, 480 struct thread_struct *next, unsigned long debugctl) 481 { 482 return debugctl; 483 } 484 #endif /* CONFIG_X86_DS */ 485 486 static noinline void 487 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 488 struct tss_struct *tss) 489 { 490 struct thread_struct *prev, *next; 491 unsigned long debugctl; 492 493 prev = &prev_p->thread; 494 next = &next_p->thread; 495 496 debugctl = update_debugctl(prev, next, prev->debugctlmsr); 497 498 if (next->debugctlmsr != debugctl) 499 update_debugctlmsr(next->debugctlmsr); 500 501 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 502 set_debugreg(next->debugreg0, 0); 503 set_debugreg(next->debugreg1, 1); 504 set_debugreg(next->debugreg2, 2); 505 set_debugreg(next->debugreg3, 3); 506 /* no 4 and 5 */ 507 set_debugreg(next->debugreg6, 6); 508 set_debugreg(next->debugreg7, 7); 509 } 510 511 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 512 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 513 /* prev and next are different */ 514 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 515 hard_disable_TSC(); 516 else 517 hard_enable_TSC(); 518 } 519 520 #ifdef CONFIG_X86_PTRACE_BTS 521 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS)) 522 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS); 523 524 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS)) 525 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES); 526 #endif /* CONFIG_X86_PTRACE_BTS */ 527 528 529 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 530 /* 531 * Disable the bitmap via an invalid offset. We still cache 532 * the previous bitmap owner and the IO bitmap contents: 533 */ 534 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 535 return; 536 } 537 538 if (likely(next == tss->io_bitmap_owner)) { 539 /* 540 * Previous owner of the bitmap (hence the bitmap content) 541 * matches the next task, we dont have to do anything but 542 * to set a valid offset in the TSS: 543 */ 544 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 545 return; 546 } 547 /* 548 * Lazy TSS's I/O bitmap copy. We set an invalid offset here 549 * and we let the task to get a GPF in case an I/O instruction 550 * is performed. The handler of the GPF will verify that the 551 * faulting task has a valid I/O bitmap and, it true, does the 552 * real copy and restart the instruction. This will save us 553 * redundant copies when the currently switched task does not 554 * perform any I/O during its timeslice. 555 */ 556 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; 557 } 558 559 /* 560 * switch_to(x,yn) should switch tasks from x to y. 561 * 562 * We fsave/fwait so that an exception goes off at the right time 563 * (as a call from the fsave or fwait in effect) rather than to 564 * the wrong process. Lazy FP saving no longer makes any sense 565 * with modern CPU's, and this simplifies a lot of things (SMP 566 * and UP become the same). 567 * 568 * NOTE! We used to use the x86 hardware context switching. The 569 * reason for not using it any more becomes apparent when you 570 * try to recover gracefully from saved state that is no longer 571 * valid (stale segment register values in particular). With the 572 * hardware task-switch, there is no way to fix up bad state in 573 * a reasonable manner. 574 * 575 * The fact that Intel documents the hardware task-switching to 576 * be slow is a fairly red herring - this code is not noticeably 577 * faster. However, there _is_ some room for improvement here, 578 * so the performance issues may eventually be a valid point. 579 * More important, however, is the fact that this allows us much 580 * more flexibility. 581 * 582 * The return value (in %ax) will be the "prev" task after 583 * the task-switch, and shows up in ret_from_fork in entry.S, 584 * for example. 585 */ 586 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 587 { 588 struct thread_struct *prev = &prev_p->thread, 589 *next = &next_p->thread; 590 int cpu = smp_processor_id(); 591 struct tss_struct *tss = &per_cpu(init_tss, cpu); 592 593 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ 594 595 __unlazy_fpu(prev_p); 596 597 598 /* we're going to use this soon, after a few expensive things */ 599 if (next_p->fpu_counter > 5) 600 prefetch(next->xstate); 601 602 /* 603 * Reload esp0. 604 */ 605 load_sp0(tss, next); 606 607 /* 608 * Save away %gs. No need to save %fs, as it was saved on the 609 * stack on entry. No need to save %es and %ds, as those are 610 * always kernel segments while inside the kernel. Doing this 611 * before setting the new TLS descriptors avoids the situation 612 * where we temporarily have non-reloadable segments in %fs 613 * and %gs. This could be an issue if the NMI handler ever 614 * used %fs or %gs (it does not today), or if the kernel is 615 * running inside of a hypervisor layer. 616 */ 617 savesegment(gs, prev->gs); 618 619 /* 620 * Load the per-thread Thread-Local Storage descriptor. 621 */ 622 load_TLS(next, cpu); 623 624 /* 625 * Restore IOPL if needed. In normal use, the flags restore 626 * in the switch assembly will handle this. But if the kernel 627 * is running virtualized at a non-zero CPL, the popf will 628 * not restore flags, so it must be done in a separate step. 629 */ 630 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) 631 set_iopl_mask(next->iopl); 632 633 /* 634 * Now maybe handle debug registers and/or IO bitmaps 635 */ 636 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || 637 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) 638 __switch_to_xtra(prev_p, next_p, tss); 639 640 /* 641 * Leave lazy mode, flushing any hypercalls made here. 642 * This must be done before restoring TLS segments so 643 * the GDT and LDT are properly updated, and must be 644 * done before math_state_restore, so the TS bit is up 645 * to date. 646 */ 647 arch_leave_lazy_cpu_mode(); 648 649 /* If the task has used fpu the last 5 timeslices, just do a full 650 * restore of the math state immediately to avoid the trap; the 651 * chances of needing FPU soon are obviously high now 652 * 653 * tsk_used_math() checks prevent calling math_state_restore(), 654 * which can sleep in the case of !tsk_used_math() 655 */ 656 if (tsk_used_math(next_p) && next_p->fpu_counter > 5) 657 math_state_restore(); 658 659 /* 660 * Restore %gs if needed (which is common) 661 */ 662 if (prev->gs | next->gs) 663 loadsegment(gs, next->gs); 664 665 x86_write_percpu(current_task, next_p); 666 667 return prev_p; 668 } 669 670 asmlinkage int sys_fork(struct pt_regs regs) 671 { 672 return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 673 } 674 675 asmlinkage int sys_clone(struct pt_regs regs) 676 { 677 unsigned long clone_flags; 678 unsigned long newsp; 679 int __user *parent_tidptr, *child_tidptr; 680 681 clone_flags = regs.bx; 682 newsp = regs.cx; 683 parent_tidptr = (int __user *)regs.dx; 684 child_tidptr = (int __user *)regs.di; 685 if (!newsp) 686 newsp = regs.sp; 687 return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); 688 } 689 690 /* 691 * This is trivial, and on the face of it looks like it 692 * could equally well be done in user mode. 693 * 694 * Not so, for quite unobvious reasons - register pressure. 695 * In user mode vfork() cannot have a stack frame, and if 696 * done by calling the "clone()" system call directly, you 697 * do not have enough call-clobbered registers to hold all 698 * the information you need. 699 */ 700 asmlinkage int sys_vfork(struct pt_regs regs) 701 { 702 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 703 } 704 705 /* 706 * sys_execve() executes a new program. 707 */ 708 asmlinkage int sys_execve(struct pt_regs regs) 709 { 710 int error; 711 char * filename; 712 713 filename = getname((char __user *) regs.bx); 714 error = PTR_ERR(filename); 715 if (IS_ERR(filename)) 716 goto out; 717 error = do_execve(filename, 718 (char __user * __user *) regs.cx, 719 (char __user * __user *) regs.dx, 720 ®s); 721 if (error == 0) { 722 /* Make sure we don't return using sysenter.. */ 723 set_thread_flag(TIF_IRET); 724 } 725 putname(filename); 726 out: 727 return error; 728 } 729 730 #define top_esp (THREAD_SIZE - sizeof(unsigned long)) 731 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) 732 733 unsigned long get_wchan(struct task_struct *p) 734 { 735 unsigned long bp, sp, ip; 736 unsigned long stack_page; 737 int count = 0; 738 if (!p || p == current || p->state == TASK_RUNNING) 739 return 0; 740 stack_page = (unsigned long)task_stack_page(p); 741 sp = p->thread.sp; 742 if (!stack_page || sp < stack_page || sp > top_esp+stack_page) 743 return 0; 744 /* include/asm-i386/system.h:switch_to() pushes bp last. */ 745 bp = *(unsigned long *) sp; 746 do { 747 if (bp < stack_page || bp > top_ebp+stack_page) 748 return 0; 749 ip = *(unsigned long *) (bp+4); 750 if (!in_sched_functions(ip)) 751 return ip; 752 bp = *(unsigned long *) bp; 753 } while (count++ < 16); 754 return 0; 755 } 756 757 unsigned long arch_align_stack(unsigned long sp) 758 { 759 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 760 sp -= get_random_int() % 8192; 761 return sp & ~0xf; 762 } 763 764 unsigned long arch_randomize_brk(struct mm_struct *mm) 765 { 766 unsigned long range_end = mm->brk + 0x02000000; 767 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 768 } 769