xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision 384740dc)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 #include <linux/dmi.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/pgtable.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/ldt.h>
47 #include <asm/processor.h>
48 #include <asm/i387.h>
49 #include <asm/desc.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53 
54 #include <linux/err.h>
55 
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 #include <asm/kdebug.h>
59 #include <asm/idle.h>
60 #include <asm/syscalls.h>
61 #include <asm/smp.h>
62 
63 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
64 
65 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
66 EXPORT_PER_CPU_SYMBOL(current_task);
67 
68 DEFINE_PER_CPU(int, cpu_number);
69 EXPORT_PER_CPU_SYMBOL(cpu_number);
70 
71 /*
72  * Return saved PC of a blocked thread.
73  */
74 unsigned long thread_saved_pc(struct task_struct *tsk)
75 {
76 	return ((unsigned long *)tsk->thread.sp)[3];
77 }
78 
79 #ifdef CONFIG_HOTPLUG_CPU
80 #include <asm/nmi.h>
81 
82 static void cpu_exit_clear(void)
83 {
84 	int cpu = raw_smp_processor_id();
85 
86 	idle_task_exit();
87 
88 	cpu_uninit();
89 	irq_ctx_exit(cpu);
90 
91 	cpu_clear(cpu, cpu_callout_map);
92 	cpu_clear(cpu, cpu_callin_map);
93 
94 	numa_remove_cpu(cpu);
95 	c1e_remove_cpu(cpu);
96 }
97 
98 /* We don't actually take CPU down, just spin without interrupts. */
99 static inline void play_dead(void)
100 {
101 	/* This must be done before dead CPU ack */
102 	cpu_exit_clear();
103 	mb();
104 	/* Ack it */
105 	__get_cpu_var(cpu_state) = CPU_DEAD;
106 
107 	/*
108 	 * With physical CPU hotplug, we should halt the cpu
109 	 */
110 	local_irq_disable();
111 	/* mask all interrupts, flush any and all caches, and halt */
112 	wbinvd_halt();
113 }
114 #else
115 static inline void play_dead(void)
116 {
117 	BUG();
118 }
119 #endif /* CONFIG_HOTPLUG_CPU */
120 
121 /*
122  * The idle thread. There's no useful work to be
123  * done, so just try to conserve power and have a
124  * low exit latency (ie sit in a loop waiting for
125  * somebody to say that they'd like to reschedule)
126  */
127 void cpu_idle(void)
128 {
129 	int cpu = smp_processor_id();
130 
131 	current_thread_info()->status |= TS_POLLING;
132 
133 	/* endless idle loop with no priority at all */
134 	while (1) {
135 		tick_nohz_stop_sched_tick(1);
136 		while (!need_resched()) {
137 
138 			check_pgt_cache();
139 			rmb();
140 
141 			if (rcu_pending(cpu))
142 				rcu_check_callbacks(cpu, 0);
143 
144 			if (cpu_is_offline(cpu))
145 				play_dead();
146 
147 			local_irq_disable();
148 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
149 			/* Don't trace irqs off for idle */
150 			stop_critical_timings();
151 			pm_idle();
152 			start_critical_timings();
153 		}
154 		tick_nohz_restart_sched_tick();
155 		preempt_enable_no_resched();
156 		schedule();
157 		preempt_disable();
158 	}
159 }
160 
161 void __show_registers(struct pt_regs *regs, int all)
162 {
163 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
164 	unsigned long d0, d1, d2, d3, d6, d7;
165 	unsigned long sp;
166 	unsigned short ss, gs;
167 	const char *board;
168 
169 	if (user_mode_vm(regs)) {
170 		sp = regs->sp;
171 		ss = regs->ss & 0xffff;
172 		savesegment(gs, gs);
173 	} else {
174 		sp = (unsigned long) (&regs->sp);
175 		savesegment(ss, ss);
176 		savesegment(gs, gs);
177 	}
178 
179 	printk("\n");
180 
181 	board = dmi_get_system_info(DMI_PRODUCT_NAME);
182 	if (!board)
183 		board = "";
184 	printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
185 			task_pid_nr(current), current->comm,
186 			print_tainted(), init_utsname()->release,
187 			(int)strcspn(init_utsname()->version, " "),
188 			init_utsname()->version, board);
189 
190 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
191 			(u16)regs->cs, regs->ip, regs->flags,
192 			smp_processor_id());
193 	print_symbol("EIP is at %s\n", regs->ip);
194 
195 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
196 		regs->ax, regs->bx, regs->cx, regs->dx);
197 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
198 		regs->si, regs->di, regs->bp, sp);
199 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
200 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
201 
202 	if (!all)
203 		return;
204 
205 	cr0 = read_cr0();
206 	cr2 = read_cr2();
207 	cr3 = read_cr3();
208 	cr4 = read_cr4_safe();
209 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
210 			cr0, cr2, cr3, cr4);
211 
212 	get_debugreg(d0, 0);
213 	get_debugreg(d1, 1);
214 	get_debugreg(d2, 2);
215 	get_debugreg(d3, 3);
216 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
217 			d0, d1, d2, d3);
218 
219 	get_debugreg(d6, 6);
220 	get_debugreg(d7, 7);
221 	printk("DR6: %08lx DR7: %08lx\n",
222 			d6, d7);
223 }
224 
225 void show_regs(struct pt_regs *regs)
226 {
227 	__show_registers(regs, 1);
228 	show_trace(NULL, regs, &regs->sp, regs->bp);
229 }
230 
231 /*
232  * This gets run with %bx containing the
233  * function to call, and %dx containing
234  * the "args".
235  */
236 extern void kernel_thread_helper(void);
237 
238 /*
239  * Create a kernel thread
240  */
241 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
242 {
243 	struct pt_regs regs;
244 
245 	memset(&regs, 0, sizeof(regs));
246 
247 	regs.bx = (unsigned long) fn;
248 	regs.dx = (unsigned long) arg;
249 
250 	regs.ds = __USER_DS;
251 	regs.es = __USER_DS;
252 	regs.fs = __KERNEL_PERCPU;
253 	regs.orig_ax = -1;
254 	regs.ip = (unsigned long) kernel_thread_helper;
255 	regs.cs = __KERNEL_CS | get_kernel_rpl();
256 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
257 
258 	/* Ok, create the new process.. */
259 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
260 }
261 EXPORT_SYMBOL(kernel_thread);
262 
263 /*
264  * Free current thread data structures etc..
265  */
266 void exit_thread(void)
267 {
268 	/* The process may have allocated an io port bitmap... nuke it. */
269 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
270 		struct task_struct *tsk = current;
271 		struct thread_struct *t = &tsk->thread;
272 		int cpu = get_cpu();
273 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
274 
275 		kfree(t->io_bitmap_ptr);
276 		t->io_bitmap_ptr = NULL;
277 		clear_thread_flag(TIF_IO_BITMAP);
278 		/*
279 		 * Careful, clear this in the TSS too:
280 		 */
281 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
282 		t->io_bitmap_max = 0;
283 		tss->io_bitmap_owner = NULL;
284 		tss->io_bitmap_max = 0;
285 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
286 		put_cpu();
287 	}
288 #ifdef CONFIG_X86_DS
289 	/* Free any DS contexts that have not been properly released. */
290 	if (unlikely(current->thread.ds_ctx)) {
291 		/* we clear debugctl to make sure DS is not used. */
292 		update_debugctlmsr(0);
293 		ds_free(current->thread.ds_ctx);
294 	}
295 #endif /* CONFIG_X86_DS */
296 }
297 
298 void flush_thread(void)
299 {
300 	struct task_struct *tsk = current;
301 
302 	tsk->thread.debugreg0 = 0;
303 	tsk->thread.debugreg1 = 0;
304 	tsk->thread.debugreg2 = 0;
305 	tsk->thread.debugreg3 = 0;
306 	tsk->thread.debugreg6 = 0;
307 	tsk->thread.debugreg7 = 0;
308 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
309 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
310 	/*
311 	 * Forget coprocessor state..
312 	 */
313 	tsk->fpu_counter = 0;
314 	clear_fpu(tsk);
315 	clear_used_math();
316 }
317 
318 void release_thread(struct task_struct *dead_task)
319 {
320 	BUG_ON(dead_task->mm);
321 	release_vm86_irqs(dead_task);
322 }
323 
324 /*
325  * This gets called before we allocate a new thread and copy
326  * the current task into it.
327  */
328 void prepare_to_copy(struct task_struct *tsk)
329 {
330 	unlazy_fpu(tsk);
331 }
332 
333 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
334 	unsigned long unused,
335 	struct task_struct * p, struct pt_regs * regs)
336 {
337 	struct pt_regs * childregs;
338 	struct task_struct *tsk;
339 	int err;
340 
341 	childregs = task_pt_regs(p);
342 	*childregs = *regs;
343 	childregs->ax = 0;
344 	childregs->sp = sp;
345 
346 	p->thread.sp = (unsigned long) childregs;
347 	p->thread.sp0 = (unsigned long) (childregs+1);
348 
349 	p->thread.ip = (unsigned long) ret_from_fork;
350 
351 	savesegment(gs, p->thread.gs);
352 
353 	tsk = current;
354 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
355 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
356 						IO_BITMAP_BYTES, GFP_KERNEL);
357 		if (!p->thread.io_bitmap_ptr) {
358 			p->thread.io_bitmap_max = 0;
359 			return -ENOMEM;
360 		}
361 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
362 	}
363 
364 	err = 0;
365 
366 	/*
367 	 * Set a new TLS for the child thread?
368 	 */
369 	if (clone_flags & CLONE_SETTLS)
370 		err = do_set_thread_area(p, -1,
371 			(struct user_desc __user *)childregs->si, 0);
372 
373 	if (err && p->thread.io_bitmap_ptr) {
374 		kfree(p->thread.io_bitmap_ptr);
375 		p->thread.io_bitmap_max = 0;
376 	}
377 	return err;
378 }
379 
380 void
381 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
382 {
383 	__asm__("movl %0, %%gs" :: "r"(0));
384 	regs->fs		= 0;
385 	set_fs(USER_DS);
386 	regs->ds		= __USER_DS;
387 	regs->es		= __USER_DS;
388 	regs->ss		= __USER_DS;
389 	regs->cs		= __USER_CS;
390 	regs->ip		= new_ip;
391 	regs->sp		= new_sp;
392 	/*
393 	 * Free the old FP and other extended state
394 	 */
395 	free_thread_xstate(current);
396 }
397 EXPORT_SYMBOL_GPL(start_thread);
398 
399 static void hard_disable_TSC(void)
400 {
401 	write_cr4(read_cr4() | X86_CR4_TSD);
402 }
403 
404 void disable_TSC(void)
405 {
406 	preempt_disable();
407 	if (!test_and_set_thread_flag(TIF_NOTSC))
408 		/*
409 		 * Must flip the CPU state synchronously with
410 		 * TIF_NOTSC in the current running context.
411 		 */
412 		hard_disable_TSC();
413 	preempt_enable();
414 }
415 
416 static void hard_enable_TSC(void)
417 {
418 	write_cr4(read_cr4() & ~X86_CR4_TSD);
419 }
420 
421 static void enable_TSC(void)
422 {
423 	preempt_disable();
424 	if (test_and_clear_thread_flag(TIF_NOTSC))
425 		/*
426 		 * Must flip the CPU state synchronously with
427 		 * TIF_NOTSC in the current running context.
428 		 */
429 		hard_enable_TSC();
430 	preempt_enable();
431 }
432 
433 int get_tsc_mode(unsigned long adr)
434 {
435 	unsigned int val;
436 
437 	if (test_thread_flag(TIF_NOTSC))
438 		val = PR_TSC_SIGSEGV;
439 	else
440 		val = PR_TSC_ENABLE;
441 
442 	return put_user(val, (unsigned int __user *)adr);
443 }
444 
445 int set_tsc_mode(unsigned int val)
446 {
447 	if (val == PR_TSC_SIGSEGV)
448 		disable_TSC();
449 	else if (val == PR_TSC_ENABLE)
450 		enable_TSC();
451 	else
452 		return -EINVAL;
453 
454 	return 0;
455 }
456 
457 #ifdef CONFIG_X86_DS
458 static int update_debugctl(struct thread_struct *prev,
459 			struct thread_struct *next, unsigned long debugctl)
460 {
461 	unsigned long ds_prev = 0;
462 	unsigned long ds_next = 0;
463 
464 	if (prev->ds_ctx)
465 		ds_prev = (unsigned long)prev->ds_ctx->ds;
466 	if (next->ds_ctx)
467 		ds_next = (unsigned long)next->ds_ctx->ds;
468 
469 	if (ds_next != ds_prev) {
470 		/* we clear debugctl to make sure DS
471 		 * is not in use when we change it */
472 		debugctl = 0;
473 		update_debugctlmsr(0);
474 		wrmsr(MSR_IA32_DS_AREA, ds_next, 0);
475 	}
476 	return debugctl;
477 }
478 #else
479 static int update_debugctl(struct thread_struct *prev,
480 			struct thread_struct *next, unsigned long debugctl)
481 {
482 	return debugctl;
483 }
484 #endif /* CONFIG_X86_DS */
485 
486 static noinline void
487 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
488 		 struct tss_struct *tss)
489 {
490 	struct thread_struct *prev, *next;
491 	unsigned long debugctl;
492 
493 	prev = &prev_p->thread;
494 	next = &next_p->thread;
495 
496 	debugctl = update_debugctl(prev, next, prev->debugctlmsr);
497 
498 	if (next->debugctlmsr != debugctl)
499 		update_debugctlmsr(next->debugctlmsr);
500 
501 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
502 		set_debugreg(next->debugreg0, 0);
503 		set_debugreg(next->debugreg1, 1);
504 		set_debugreg(next->debugreg2, 2);
505 		set_debugreg(next->debugreg3, 3);
506 		/* no 4 and 5 */
507 		set_debugreg(next->debugreg6, 6);
508 		set_debugreg(next->debugreg7, 7);
509 	}
510 
511 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
512 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
513 		/* prev and next are different */
514 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
515 			hard_disable_TSC();
516 		else
517 			hard_enable_TSC();
518 	}
519 
520 #ifdef CONFIG_X86_PTRACE_BTS
521 	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
522 		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
523 
524 	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
525 		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
526 #endif /* CONFIG_X86_PTRACE_BTS */
527 
528 
529 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
530 		/*
531 		 * Disable the bitmap via an invalid offset. We still cache
532 		 * the previous bitmap owner and the IO bitmap contents:
533 		 */
534 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
535 		return;
536 	}
537 
538 	if (likely(next == tss->io_bitmap_owner)) {
539 		/*
540 		 * Previous owner of the bitmap (hence the bitmap content)
541 		 * matches the next task, we dont have to do anything but
542 		 * to set a valid offset in the TSS:
543 		 */
544 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
545 		return;
546 	}
547 	/*
548 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
549 	 * and we let the task to get a GPF in case an I/O instruction
550 	 * is performed.  The handler of the GPF will verify that the
551 	 * faulting task has a valid I/O bitmap and, it true, does the
552 	 * real copy and restart the instruction.  This will save us
553 	 * redundant copies when the currently switched task does not
554 	 * perform any I/O during its timeslice.
555 	 */
556 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
557 }
558 
559 /*
560  *	switch_to(x,yn) should switch tasks from x to y.
561  *
562  * We fsave/fwait so that an exception goes off at the right time
563  * (as a call from the fsave or fwait in effect) rather than to
564  * the wrong process. Lazy FP saving no longer makes any sense
565  * with modern CPU's, and this simplifies a lot of things (SMP
566  * and UP become the same).
567  *
568  * NOTE! We used to use the x86 hardware context switching. The
569  * reason for not using it any more becomes apparent when you
570  * try to recover gracefully from saved state that is no longer
571  * valid (stale segment register values in particular). With the
572  * hardware task-switch, there is no way to fix up bad state in
573  * a reasonable manner.
574  *
575  * The fact that Intel documents the hardware task-switching to
576  * be slow is a fairly red herring - this code is not noticeably
577  * faster. However, there _is_ some room for improvement here,
578  * so the performance issues may eventually be a valid point.
579  * More important, however, is the fact that this allows us much
580  * more flexibility.
581  *
582  * The return value (in %ax) will be the "prev" task after
583  * the task-switch, and shows up in ret_from_fork in entry.S,
584  * for example.
585  */
586 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
587 {
588 	struct thread_struct *prev = &prev_p->thread,
589 				 *next = &next_p->thread;
590 	int cpu = smp_processor_id();
591 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
592 
593 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
594 
595 	__unlazy_fpu(prev_p);
596 
597 
598 	/* we're going to use this soon, after a few expensive things */
599 	if (next_p->fpu_counter > 5)
600 		prefetch(next->xstate);
601 
602 	/*
603 	 * Reload esp0.
604 	 */
605 	load_sp0(tss, next);
606 
607 	/*
608 	 * Save away %gs. No need to save %fs, as it was saved on the
609 	 * stack on entry.  No need to save %es and %ds, as those are
610 	 * always kernel segments while inside the kernel.  Doing this
611 	 * before setting the new TLS descriptors avoids the situation
612 	 * where we temporarily have non-reloadable segments in %fs
613 	 * and %gs.  This could be an issue if the NMI handler ever
614 	 * used %fs or %gs (it does not today), or if the kernel is
615 	 * running inside of a hypervisor layer.
616 	 */
617 	savesegment(gs, prev->gs);
618 
619 	/*
620 	 * Load the per-thread Thread-Local Storage descriptor.
621 	 */
622 	load_TLS(next, cpu);
623 
624 	/*
625 	 * Restore IOPL if needed.  In normal use, the flags restore
626 	 * in the switch assembly will handle this.  But if the kernel
627 	 * is running virtualized at a non-zero CPL, the popf will
628 	 * not restore flags, so it must be done in a separate step.
629 	 */
630 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
631 		set_iopl_mask(next->iopl);
632 
633 	/*
634 	 * Now maybe handle debug registers and/or IO bitmaps
635 	 */
636 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
637 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
638 		__switch_to_xtra(prev_p, next_p, tss);
639 
640 	/*
641 	 * Leave lazy mode, flushing any hypercalls made here.
642 	 * This must be done before restoring TLS segments so
643 	 * the GDT and LDT are properly updated, and must be
644 	 * done before math_state_restore, so the TS bit is up
645 	 * to date.
646 	 */
647 	arch_leave_lazy_cpu_mode();
648 
649 	/* If the task has used fpu the last 5 timeslices, just do a full
650 	 * restore of the math state immediately to avoid the trap; the
651 	 * chances of needing FPU soon are obviously high now
652 	 *
653 	 * tsk_used_math() checks prevent calling math_state_restore(),
654 	 * which can sleep in the case of !tsk_used_math()
655 	 */
656 	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
657 		math_state_restore();
658 
659 	/*
660 	 * Restore %gs if needed (which is common)
661 	 */
662 	if (prev->gs | next->gs)
663 		loadsegment(gs, next->gs);
664 
665 	x86_write_percpu(current_task, next_p);
666 
667 	return prev_p;
668 }
669 
670 asmlinkage int sys_fork(struct pt_regs regs)
671 {
672 	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
673 }
674 
675 asmlinkage int sys_clone(struct pt_regs regs)
676 {
677 	unsigned long clone_flags;
678 	unsigned long newsp;
679 	int __user *parent_tidptr, *child_tidptr;
680 
681 	clone_flags = regs.bx;
682 	newsp = regs.cx;
683 	parent_tidptr = (int __user *)regs.dx;
684 	child_tidptr = (int __user *)regs.di;
685 	if (!newsp)
686 		newsp = regs.sp;
687 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
688 }
689 
690 /*
691  * This is trivial, and on the face of it looks like it
692  * could equally well be done in user mode.
693  *
694  * Not so, for quite unobvious reasons - register pressure.
695  * In user mode vfork() cannot have a stack frame, and if
696  * done by calling the "clone()" system call directly, you
697  * do not have enough call-clobbered registers to hold all
698  * the information you need.
699  */
700 asmlinkage int sys_vfork(struct pt_regs regs)
701 {
702 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
703 }
704 
705 /*
706  * sys_execve() executes a new program.
707  */
708 asmlinkage int sys_execve(struct pt_regs regs)
709 {
710 	int error;
711 	char * filename;
712 
713 	filename = getname((char __user *) regs.bx);
714 	error = PTR_ERR(filename);
715 	if (IS_ERR(filename))
716 		goto out;
717 	error = do_execve(filename,
718 			(char __user * __user *) regs.cx,
719 			(char __user * __user *) regs.dx,
720 			&regs);
721 	if (error == 0) {
722 		/* Make sure we don't return using sysenter.. */
723 		set_thread_flag(TIF_IRET);
724 	}
725 	putname(filename);
726 out:
727 	return error;
728 }
729 
730 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
731 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
732 
733 unsigned long get_wchan(struct task_struct *p)
734 {
735 	unsigned long bp, sp, ip;
736 	unsigned long stack_page;
737 	int count = 0;
738 	if (!p || p == current || p->state == TASK_RUNNING)
739 		return 0;
740 	stack_page = (unsigned long)task_stack_page(p);
741 	sp = p->thread.sp;
742 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
743 		return 0;
744 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
745 	bp = *(unsigned long *) sp;
746 	do {
747 		if (bp < stack_page || bp > top_ebp+stack_page)
748 			return 0;
749 		ip = *(unsigned long *) (bp+4);
750 		if (!in_sched_functions(ip))
751 			return ip;
752 		bp = *(unsigned long *) bp;
753 	} while (count++ < 16);
754 	return 0;
755 }
756 
757 unsigned long arch_align_stack(unsigned long sp)
758 {
759 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
760 		sp -= get_random_int() % 8192;
761 	return sp & ~0xf;
762 }
763 
764 unsigned long arch_randomize_brk(struct mm_struct *mm)
765 {
766 	unsigned long range_end = mm->brk + 0x02000000;
767 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
768 }
769