1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <linux/cpu.h> 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/elfcore.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/user.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/reboot.h> 29 #include <linux/mc146818rtc.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/ptrace.h> 33 #include <linux/personality.h> 34 #include <linux/percpu.h> 35 #include <linux/prctl.h> 36 #include <linux/ftrace.h> 37 #include <linux/uaccess.h> 38 #include <linux/io.h> 39 #include <linux/kdebug.h> 40 #include <linux/syscalls.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/ldt.h> 44 #include <asm/processor.h> 45 #include <asm/fpu/internal.h> 46 #include <asm/desc.h> 47 #ifdef CONFIG_MATH_EMULATION 48 #include <asm/math_emu.h> 49 #endif 50 51 #include <linux/err.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/cpu.h> 55 #include <asm/syscalls.h> 56 #include <asm/debugreg.h> 57 #include <asm/switch_to.h> 58 #include <asm/vm86.h> 59 #include <asm/intel_rdt_sched.h> 60 #include <asm/proto.h> 61 62 void __show_regs(struct pt_regs *regs, int all) 63 { 64 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; 65 unsigned long d0, d1, d2, d3, d6, d7; 66 unsigned long sp; 67 unsigned short ss, gs; 68 69 if (user_mode(regs)) { 70 sp = regs->sp; 71 ss = regs->ss; 72 gs = get_user_gs(regs); 73 } else { 74 sp = kernel_stack_pointer(regs); 75 savesegment(ss, ss); 76 savesegment(gs, gs); 77 } 78 79 printk(KERN_DEFAULT "EIP: %pS\n", (void *)regs->ip); 80 printk(KERN_DEFAULT "EFLAGS: %08lx CPU: %d\n", regs->flags, 81 raw_smp_processor_id()); 82 83 printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", 84 regs->ax, regs->bx, regs->cx, regs->dx); 85 printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", 86 regs->si, regs->di, regs->bp, sp); 87 printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", 88 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); 89 90 if (!all) 91 return; 92 93 cr0 = read_cr0(); 94 cr2 = read_cr2(); 95 cr3 = __read_cr3(); 96 cr4 = __read_cr4(); 97 printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", 98 cr0, cr2, cr3, cr4); 99 100 get_debugreg(d0, 0); 101 get_debugreg(d1, 1); 102 get_debugreg(d2, 2); 103 get_debugreg(d3, 3); 104 get_debugreg(d6, 6); 105 get_debugreg(d7, 7); 106 107 /* Only print out debug registers if they are in their non-default state. */ 108 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && 109 (d6 == DR6_RESERVED) && (d7 == 0x400)) 110 return; 111 112 printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", 113 d0, d1, d2, d3); 114 printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n", 115 d6, d7); 116 } 117 118 void release_thread(struct task_struct *dead_task) 119 { 120 BUG_ON(dead_task->mm); 121 release_vm86_irqs(dead_task); 122 } 123 124 int copy_thread_tls(unsigned long clone_flags, unsigned long sp, 125 unsigned long arg, struct task_struct *p, unsigned long tls) 126 { 127 struct pt_regs *childregs = task_pt_regs(p); 128 struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs); 129 struct inactive_task_frame *frame = &fork_frame->frame; 130 struct task_struct *tsk; 131 int err; 132 133 frame->bp = 0; 134 frame->ret_addr = (unsigned long) ret_from_fork; 135 p->thread.sp = (unsigned long) fork_frame; 136 p->thread.sp0 = (unsigned long) (childregs+1); 137 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 138 139 if (unlikely(p->flags & PF_KTHREAD)) { 140 /* kernel thread */ 141 memset(childregs, 0, sizeof(struct pt_regs)); 142 frame->bx = sp; /* function */ 143 frame->di = arg; 144 p->thread.io_bitmap_ptr = NULL; 145 return 0; 146 } 147 frame->bx = 0; 148 *childregs = *current_pt_regs(); 149 childregs->ax = 0; 150 if (sp) 151 childregs->sp = sp; 152 153 task_user_gs(p) = get_user_gs(current_pt_regs()); 154 155 p->thread.io_bitmap_ptr = NULL; 156 tsk = current; 157 err = -ENOMEM; 158 159 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { 160 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, 161 IO_BITMAP_BYTES, GFP_KERNEL); 162 if (!p->thread.io_bitmap_ptr) { 163 p->thread.io_bitmap_max = 0; 164 return -ENOMEM; 165 } 166 set_tsk_thread_flag(p, TIF_IO_BITMAP); 167 } 168 169 err = 0; 170 171 /* 172 * Set a new TLS for the child thread? 173 */ 174 if (clone_flags & CLONE_SETTLS) 175 err = do_set_thread_area(p, -1, 176 (struct user_desc __user *)tls, 0); 177 178 if (err && p->thread.io_bitmap_ptr) { 179 kfree(p->thread.io_bitmap_ptr); 180 p->thread.io_bitmap_max = 0; 181 } 182 return err; 183 } 184 185 void 186 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 187 { 188 set_user_gs(regs, 0); 189 regs->fs = 0; 190 regs->ds = __USER_DS; 191 regs->es = __USER_DS; 192 regs->ss = __USER_DS; 193 regs->cs = __USER_CS; 194 regs->ip = new_ip; 195 regs->sp = new_sp; 196 regs->flags = X86_EFLAGS_IF; 197 force_iret(); 198 } 199 EXPORT_SYMBOL_GPL(start_thread); 200 201 202 /* 203 * switch_to(x,y) should switch tasks from x to y. 204 * 205 * We fsave/fwait so that an exception goes off at the right time 206 * (as a call from the fsave or fwait in effect) rather than to 207 * the wrong process. Lazy FP saving no longer makes any sense 208 * with modern CPU's, and this simplifies a lot of things (SMP 209 * and UP become the same). 210 * 211 * NOTE! We used to use the x86 hardware context switching. The 212 * reason for not using it any more becomes apparent when you 213 * try to recover gracefully from saved state that is no longer 214 * valid (stale segment register values in particular). With the 215 * hardware task-switch, there is no way to fix up bad state in 216 * a reasonable manner. 217 * 218 * The fact that Intel documents the hardware task-switching to 219 * be slow is a fairly red herring - this code is not noticeably 220 * faster. However, there _is_ some room for improvement here, 221 * so the performance issues may eventually be a valid point. 222 * More important, however, is the fact that this allows us much 223 * more flexibility. 224 * 225 * The return value (in %ax) will be the "prev" task after 226 * the task-switch, and shows up in ret_from_fork in entry.S, 227 * for example. 228 */ 229 __visible __notrace_funcgraph struct task_struct * 230 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 231 { 232 struct thread_struct *prev = &prev_p->thread, 233 *next = &next_p->thread; 234 struct fpu *prev_fpu = &prev->fpu; 235 struct fpu *next_fpu = &next->fpu; 236 int cpu = smp_processor_id(); 237 struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu); 238 239 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ 240 241 switch_fpu_prepare(prev_fpu, cpu); 242 243 /* 244 * Save away %gs. No need to save %fs, as it was saved on the 245 * stack on entry. No need to save %es and %ds, as those are 246 * always kernel segments while inside the kernel. Doing this 247 * before setting the new TLS descriptors avoids the situation 248 * where we temporarily have non-reloadable segments in %fs 249 * and %gs. This could be an issue if the NMI handler ever 250 * used %fs or %gs (it does not today), or if the kernel is 251 * running inside of a hypervisor layer. 252 */ 253 lazy_save_gs(prev->gs); 254 255 /* 256 * Load the per-thread Thread-Local Storage descriptor. 257 */ 258 load_TLS(next, cpu); 259 260 /* 261 * Restore IOPL if needed. In normal use, the flags restore 262 * in the switch assembly will handle this. But if the kernel 263 * is running virtualized at a non-zero CPL, the popf will 264 * not restore flags, so it must be done in a separate step. 265 */ 266 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) 267 set_iopl_mask(next->iopl); 268 269 /* 270 * Now maybe handle debug registers and/or IO bitmaps 271 */ 272 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || 273 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) 274 __switch_to_xtra(prev_p, next_p, tss); 275 276 /* 277 * Leave lazy mode, flushing any hypercalls made here. 278 * This must be done before restoring TLS segments so 279 * the GDT and LDT are properly updated, and must be 280 * done before fpu__restore(), so the TS bit is up 281 * to date. 282 */ 283 arch_end_context_switch(next_p); 284 285 /* 286 * Reload esp0 and cpu_current_top_of_stack. This changes 287 * current_thread_info(). Refresh the SYSENTER configuration in 288 * case prev or next is vm86. 289 */ 290 update_sp0(next_p); 291 refresh_sysenter_cs(next); 292 this_cpu_write(cpu_current_top_of_stack, 293 (unsigned long)task_stack_page(next_p) + 294 THREAD_SIZE); 295 296 /* 297 * Restore %gs if needed (which is common) 298 */ 299 if (prev->gs | next->gs) 300 lazy_load_gs(next->gs); 301 302 switch_fpu_finish(next_fpu, cpu); 303 304 this_cpu_write(current_task, next_p); 305 306 /* Load the Intel cache allocation PQR MSR. */ 307 intel_rdt_sched_in(); 308 309 return prev_p; 310 } 311 312 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 313 { 314 return do_arch_prctl_common(current, option, arg2); 315 } 316