xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision 07c7c6bf)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/reboot.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/percpu.h>
35 #include <linux/prctl.h>
36 #include <linux/ftrace.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/kdebug.h>
40 #include <linux/syscalls.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/ldt.h>
44 #include <asm/processor.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/desc.h>
47 
48 #include <linux/err.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/cpu.h>
52 #include <asm/syscalls.h>
53 #include <asm/debugreg.h>
54 #include <asm/switch_to.h>
55 #include <asm/vm86.h>
56 #include <asm/resctrl_sched.h>
57 #include <asm/proto.h>
58 
59 #include "process.h"
60 
61 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
62 {
63 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
64 	unsigned long d0, d1, d2, d3, d6, d7;
65 	unsigned long sp;
66 	unsigned short ss, gs;
67 
68 	if (user_mode(regs)) {
69 		sp = regs->sp;
70 		ss = regs->ss;
71 		gs = get_user_gs(regs);
72 	} else {
73 		sp = kernel_stack_pointer(regs);
74 		savesegment(ss, ss);
75 		savesegment(gs, gs);
76 	}
77 
78 	show_ip(regs, KERN_DEFAULT);
79 
80 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
81 		regs->ax, regs->bx, regs->cx, regs->dx);
82 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
83 		regs->si, regs->di, regs->bp, sp);
84 	printk(KERN_DEFAULT "DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
85 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss, regs->flags);
86 
87 	if (mode != SHOW_REGS_ALL)
88 		return;
89 
90 	cr0 = read_cr0();
91 	cr2 = read_cr2();
92 	cr3 = __read_cr3();
93 	cr4 = __read_cr4();
94 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
95 			cr0, cr2, cr3, cr4);
96 
97 	get_debugreg(d0, 0);
98 	get_debugreg(d1, 1);
99 	get_debugreg(d2, 2);
100 	get_debugreg(d3, 3);
101 	get_debugreg(d6, 6);
102 	get_debugreg(d7, 7);
103 
104 	/* Only print out debug registers if they are in their non-default state. */
105 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
106 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
107 		return;
108 
109 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
110 			d0, d1, d2, d3);
111 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
112 			d6, d7);
113 }
114 
115 void release_thread(struct task_struct *dead_task)
116 {
117 	BUG_ON(dead_task->mm);
118 	release_vm86_irqs(dead_task);
119 }
120 
121 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
122 	unsigned long arg, struct task_struct *p, unsigned long tls)
123 {
124 	struct pt_regs *childregs = task_pt_regs(p);
125 	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
126 	struct inactive_task_frame *frame = &fork_frame->frame;
127 	struct task_struct *tsk;
128 	int err;
129 
130 	/*
131 	 * For a new task use the RESET flags value since there is no before.
132 	 * All the status flags are zero; DF and all the system flags must also
133 	 * be 0, specifically IF must be 0 because we context switch to the new
134 	 * task with interrupts disabled.
135 	 */
136 	frame->flags = X86_EFLAGS_FIXED;
137 	frame->bp = 0;
138 	frame->ret_addr = (unsigned long) ret_from_fork;
139 	p->thread.sp = (unsigned long) fork_frame;
140 	p->thread.sp0 = (unsigned long) (childregs+1);
141 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142 
143 	if (unlikely(p->flags & PF_KTHREAD)) {
144 		/* kernel thread */
145 		memset(childregs, 0, sizeof(struct pt_regs));
146 		frame->bx = sp;		/* function */
147 		frame->di = arg;
148 		p->thread.io_bitmap_ptr = NULL;
149 		return 0;
150 	}
151 	frame->bx = 0;
152 	*childregs = *current_pt_regs();
153 	childregs->ax = 0;
154 	if (sp)
155 		childregs->sp = sp;
156 
157 	task_user_gs(p) = get_user_gs(current_pt_regs());
158 
159 	p->thread.io_bitmap_ptr = NULL;
160 	tsk = current;
161 	err = -ENOMEM;
162 
163 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
164 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
165 						IO_BITMAP_BYTES, GFP_KERNEL);
166 		if (!p->thread.io_bitmap_ptr) {
167 			p->thread.io_bitmap_max = 0;
168 			return -ENOMEM;
169 		}
170 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
171 	}
172 
173 	err = 0;
174 
175 	/*
176 	 * Set a new TLS for the child thread?
177 	 */
178 	if (clone_flags & CLONE_SETTLS)
179 		err = do_set_thread_area(p, -1,
180 			(struct user_desc __user *)tls, 0);
181 
182 	if (err && p->thread.io_bitmap_ptr) {
183 		kfree(p->thread.io_bitmap_ptr);
184 		p->thread.io_bitmap_max = 0;
185 	}
186 	return err;
187 }
188 
189 void
190 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
191 {
192 	set_user_gs(regs, 0);
193 	regs->fs		= 0;
194 	regs->ds		= __USER_DS;
195 	regs->es		= __USER_DS;
196 	regs->ss		= __USER_DS;
197 	regs->cs		= __USER_CS;
198 	regs->ip		= new_ip;
199 	regs->sp		= new_sp;
200 	regs->flags		= X86_EFLAGS_IF;
201 	force_iret();
202 }
203 EXPORT_SYMBOL_GPL(start_thread);
204 
205 
206 /*
207  *	switch_to(x,y) should switch tasks from x to y.
208  *
209  * We fsave/fwait so that an exception goes off at the right time
210  * (as a call from the fsave or fwait in effect) rather than to
211  * the wrong process. Lazy FP saving no longer makes any sense
212  * with modern CPU's, and this simplifies a lot of things (SMP
213  * and UP become the same).
214  *
215  * NOTE! We used to use the x86 hardware context switching. The
216  * reason for not using it any more becomes apparent when you
217  * try to recover gracefully from saved state that is no longer
218  * valid (stale segment register values in particular). With the
219  * hardware task-switch, there is no way to fix up bad state in
220  * a reasonable manner.
221  *
222  * The fact that Intel documents the hardware task-switching to
223  * be slow is a fairly red herring - this code is not noticeably
224  * faster. However, there _is_ some room for improvement here,
225  * so the performance issues may eventually be a valid point.
226  * More important, however, is the fact that this allows us much
227  * more flexibility.
228  *
229  * The return value (in %ax) will be the "prev" task after
230  * the task-switch, and shows up in ret_from_fork in entry.S,
231  * for example.
232  */
233 __visible __notrace_funcgraph struct task_struct *
234 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
235 {
236 	struct thread_struct *prev = &prev_p->thread,
237 			     *next = &next_p->thread;
238 	struct fpu *prev_fpu = &prev->fpu;
239 	struct fpu *next_fpu = &next->fpu;
240 	int cpu = smp_processor_id();
241 
242 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
243 
244 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
245 		switch_fpu_prepare(prev_fpu, cpu);
246 
247 	/*
248 	 * Save away %gs. No need to save %fs, as it was saved on the
249 	 * stack on entry.  No need to save %es and %ds, as those are
250 	 * always kernel segments while inside the kernel.  Doing this
251 	 * before setting the new TLS descriptors avoids the situation
252 	 * where we temporarily have non-reloadable segments in %fs
253 	 * and %gs.  This could be an issue if the NMI handler ever
254 	 * used %fs or %gs (it does not today), or if the kernel is
255 	 * running inside of a hypervisor layer.
256 	 */
257 	lazy_save_gs(prev->gs);
258 
259 	/*
260 	 * Load the per-thread Thread-Local Storage descriptor.
261 	 */
262 	load_TLS(next, cpu);
263 
264 	/*
265 	 * Restore IOPL if needed.  In normal use, the flags restore
266 	 * in the switch assembly will handle this.  But if the kernel
267 	 * is running virtualized at a non-zero CPL, the popf will
268 	 * not restore flags, so it must be done in a separate step.
269 	 */
270 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
271 		set_iopl_mask(next->iopl);
272 
273 	switch_to_extra(prev_p, next_p);
274 
275 	/*
276 	 * Leave lazy mode, flushing any hypercalls made here.
277 	 * This must be done before restoring TLS segments so
278 	 * the GDT and LDT are properly updated.
279 	 */
280 	arch_end_context_switch(next_p);
281 
282 	/*
283 	 * Reload esp0 and cpu_current_top_of_stack.  This changes
284 	 * current_thread_info().  Refresh the SYSENTER configuration in
285 	 * case prev or next is vm86.
286 	 */
287 	update_task_stack(next_p);
288 	refresh_sysenter_cs(next);
289 	this_cpu_write(cpu_current_top_of_stack,
290 		       (unsigned long)task_stack_page(next_p) +
291 		       THREAD_SIZE);
292 
293 	/*
294 	 * Restore %gs if needed (which is common)
295 	 */
296 	if (prev->gs | next->gs)
297 		lazy_load_gs(next->gs);
298 
299 	this_cpu_write(current_task, next_p);
300 
301 	switch_fpu_finish(next_fpu);
302 
303 	/* Load the Intel cache allocation PQR MSR. */
304 	resctrl_sched_in();
305 
306 	return prev_p;
307 }
308 
309 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
310 {
311 	return do_arch_prctl_common(current, option, arg2);
312 }
313