1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <trace/events/power.h> 28 #include <linux/hw_breakpoint.h> 29 #include <asm/cpu.h> 30 #include <asm/apic.h> 31 #include <linux/uaccess.h> 32 #include <asm/mwait.h> 33 #include <asm/fpu/api.h> 34 #include <asm/fpu/sched.h> 35 #include <asm/fpu/xstate.h> 36 #include <asm/debugreg.h> 37 #include <asm/nmi.h> 38 #include <asm/tlbflush.h> 39 #include <asm/mce.h> 40 #include <asm/vm86.h> 41 #include <asm/switch_to.h> 42 #include <asm/desc.h> 43 #include <asm/prctl.h> 44 #include <asm/spec-ctrl.h> 45 #include <asm/io_bitmap.h> 46 #include <asm/proto.h> 47 #include <asm/frame.h> 48 #include <asm/unwind.h> 49 #include <asm/tdx.h> 50 51 #include "process.h" 52 53 /* 54 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 55 * no more per-task TSS's. The TSS size is kept cacheline-aligned 56 * so they are allowed to end up in the .data..cacheline_aligned 57 * section. Since TSS's are completely CPU-local, we want them 58 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 59 */ 60 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 61 .x86_tss = { 62 /* 63 * .sp0 is only used when entering ring 0 from a lower 64 * privilege level. Since the init task never runs anything 65 * but ring 0 code, there is no need for a valid value here. 66 * Poison it. 67 */ 68 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 69 70 #ifdef CONFIG_X86_32 71 .sp1 = TOP_OF_INIT_STACK, 72 73 .ss0 = __KERNEL_DS, 74 .ss1 = __KERNEL_CS, 75 #endif 76 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 77 }, 78 }; 79 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 80 81 DEFINE_PER_CPU(bool, __tss_limit_invalid); 82 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 83 84 /* 85 * this gets called so that we can store lazy state into memory and copy the 86 * current task into the new thread. 87 */ 88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 89 { 90 memcpy(dst, src, arch_task_struct_size); 91 #ifdef CONFIG_VM86 92 dst->thread.vm86 = NULL; 93 #endif 94 /* Drop the copied pointer to current's fpstate */ 95 dst->thread.fpu.fpstate = NULL; 96 97 return 0; 98 } 99 100 #ifdef CONFIG_X86_64 101 void arch_release_task_struct(struct task_struct *tsk) 102 { 103 if (fpu_state_size_dynamic()) 104 fpstate_free(&tsk->thread.fpu); 105 } 106 #endif 107 108 /* 109 * Free thread data structures etc.. 110 */ 111 void exit_thread(struct task_struct *tsk) 112 { 113 struct thread_struct *t = &tsk->thread; 114 struct fpu *fpu = &t->fpu; 115 116 if (test_thread_flag(TIF_IO_BITMAP)) 117 io_bitmap_exit(tsk); 118 119 free_vm86(t); 120 121 fpu__drop(fpu); 122 } 123 124 static int set_new_tls(struct task_struct *p, unsigned long tls) 125 { 126 struct user_desc __user *utls = (struct user_desc __user *)tls; 127 128 if (in_ia32_syscall()) 129 return do_set_thread_area(p, -1, utls, 0); 130 else 131 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 132 } 133 134 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg, 135 struct task_struct *p, unsigned long tls) 136 { 137 struct inactive_task_frame *frame; 138 struct fork_frame *fork_frame; 139 struct pt_regs *childregs; 140 int ret = 0; 141 142 childregs = task_pt_regs(p); 143 fork_frame = container_of(childregs, struct fork_frame, regs); 144 frame = &fork_frame->frame; 145 146 frame->bp = encode_frame_pointer(childregs); 147 frame->ret_addr = (unsigned long) ret_from_fork; 148 p->thread.sp = (unsigned long) fork_frame; 149 p->thread.io_bitmap = NULL; 150 p->thread.iopl_warn = 0; 151 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 152 153 #ifdef CONFIG_X86_64 154 current_save_fsgs(); 155 p->thread.fsindex = current->thread.fsindex; 156 p->thread.fsbase = current->thread.fsbase; 157 p->thread.gsindex = current->thread.gsindex; 158 p->thread.gsbase = current->thread.gsbase; 159 160 savesegment(es, p->thread.es); 161 savesegment(ds, p->thread.ds); 162 #else 163 p->thread.sp0 = (unsigned long) (childregs + 1); 164 savesegment(gs, p->thread.gs); 165 /* 166 * Clear all status flags including IF and set fixed bit. 64bit 167 * does not have this initialization as the frame does not contain 168 * flags. The flags consistency (especially vs. AC) is there 169 * ensured via objtool, which lacks 32bit support. 170 */ 171 frame->flags = X86_EFLAGS_FIXED; 172 #endif 173 174 fpu_clone(p, clone_flags); 175 176 /* Kernel thread ? */ 177 if (unlikely(p->flags & PF_KTHREAD)) { 178 p->thread.pkru = pkru_get_init_value(); 179 memset(childregs, 0, sizeof(struct pt_regs)); 180 kthread_frame_init(frame, sp, arg); 181 return 0; 182 } 183 184 /* 185 * Clone current's PKRU value from hardware. tsk->thread.pkru 186 * is only valid when scheduled out. 187 */ 188 p->thread.pkru = read_pkru(); 189 190 frame->bx = 0; 191 *childregs = *current_pt_regs(); 192 childregs->ax = 0; 193 if (sp) 194 childregs->sp = sp; 195 196 if (unlikely(p->flags & PF_IO_WORKER)) { 197 /* 198 * An IO thread is a user space thread, but it doesn't 199 * return to ret_after_fork(). 200 * 201 * In order to indicate that to tools like gdb, 202 * we reset the stack and instruction pointers. 203 * 204 * It does the same kernel frame setup to return to a kernel 205 * function that a kernel thread does. 206 */ 207 childregs->sp = 0; 208 childregs->ip = 0; 209 kthread_frame_init(frame, sp, arg); 210 return 0; 211 } 212 213 /* Set a new TLS for the child thread? */ 214 if (clone_flags & CLONE_SETTLS) 215 ret = set_new_tls(p, tls); 216 217 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 218 io_bitmap_share(p); 219 220 return ret; 221 } 222 223 static void pkru_flush_thread(void) 224 { 225 /* 226 * If PKRU is enabled the default PKRU value has to be loaded into 227 * the hardware right here (similar to context switch). 228 */ 229 pkru_write_default(); 230 } 231 232 void flush_thread(void) 233 { 234 struct task_struct *tsk = current; 235 236 flush_ptrace_hw_breakpoint(tsk); 237 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 238 239 fpu_flush_thread(); 240 pkru_flush_thread(); 241 } 242 243 void disable_TSC(void) 244 { 245 preempt_disable(); 246 if (!test_and_set_thread_flag(TIF_NOTSC)) 247 /* 248 * Must flip the CPU state synchronously with 249 * TIF_NOTSC in the current running context. 250 */ 251 cr4_set_bits(X86_CR4_TSD); 252 preempt_enable(); 253 } 254 255 static void enable_TSC(void) 256 { 257 preempt_disable(); 258 if (test_and_clear_thread_flag(TIF_NOTSC)) 259 /* 260 * Must flip the CPU state synchronously with 261 * TIF_NOTSC in the current running context. 262 */ 263 cr4_clear_bits(X86_CR4_TSD); 264 preempt_enable(); 265 } 266 267 int get_tsc_mode(unsigned long adr) 268 { 269 unsigned int val; 270 271 if (test_thread_flag(TIF_NOTSC)) 272 val = PR_TSC_SIGSEGV; 273 else 274 val = PR_TSC_ENABLE; 275 276 return put_user(val, (unsigned int __user *)adr); 277 } 278 279 int set_tsc_mode(unsigned int val) 280 { 281 if (val == PR_TSC_SIGSEGV) 282 disable_TSC(); 283 else if (val == PR_TSC_ENABLE) 284 enable_TSC(); 285 else 286 return -EINVAL; 287 288 return 0; 289 } 290 291 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 292 293 static void set_cpuid_faulting(bool on) 294 { 295 u64 msrval; 296 297 msrval = this_cpu_read(msr_misc_features_shadow); 298 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 299 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 300 this_cpu_write(msr_misc_features_shadow, msrval); 301 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 302 } 303 304 static void disable_cpuid(void) 305 { 306 preempt_disable(); 307 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 308 /* 309 * Must flip the CPU state synchronously with 310 * TIF_NOCPUID in the current running context. 311 */ 312 set_cpuid_faulting(true); 313 } 314 preempt_enable(); 315 } 316 317 static void enable_cpuid(void) 318 { 319 preempt_disable(); 320 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 321 /* 322 * Must flip the CPU state synchronously with 323 * TIF_NOCPUID in the current running context. 324 */ 325 set_cpuid_faulting(false); 326 } 327 preempt_enable(); 328 } 329 330 static int get_cpuid_mode(void) 331 { 332 return !test_thread_flag(TIF_NOCPUID); 333 } 334 335 static int set_cpuid_mode(unsigned long cpuid_enabled) 336 { 337 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 338 return -ENODEV; 339 340 if (cpuid_enabled) 341 enable_cpuid(); 342 else 343 disable_cpuid(); 344 345 return 0; 346 } 347 348 /* 349 * Called immediately after a successful exec. 350 */ 351 void arch_setup_new_exec(void) 352 { 353 /* If cpuid was previously disabled for this task, re-enable it. */ 354 if (test_thread_flag(TIF_NOCPUID)) 355 enable_cpuid(); 356 357 /* 358 * Don't inherit TIF_SSBD across exec boundary when 359 * PR_SPEC_DISABLE_NOEXEC is used. 360 */ 361 if (test_thread_flag(TIF_SSBD) && 362 task_spec_ssb_noexec(current)) { 363 clear_thread_flag(TIF_SSBD); 364 task_clear_spec_ssb_disable(current); 365 task_clear_spec_ssb_noexec(current); 366 speculation_ctrl_update(read_thread_flags()); 367 } 368 } 369 370 #ifdef CONFIG_X86_IOPL_IOPERM 371 static inline void switch_to_bitmap(unsigned long tifp) 372 { 373 /* 374 * Invalidate I/O bitmap if the previous task used it. This prevents 375 * any possible leakage of an active I/O bitmap. 376 * 377 * If the next task has an I/O bitmap it will handle it on exit to 378 * user mode. 379 */ 380 if (tifp & _TIF_IO_BITMAP) 381 tss_invalidate_io_bitmap(); 382 } 383 384 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 385 { 386 /* 387 * Copy at least the byte range of the incoming tasks bitmap which 388 * covers the permitted I/O ports. 389 * 390 * If the previous task which used an I/O bitmap had more bits 391 * permitted, then the copy needs to cover those as well so they 392 * get turned off. 393 */ 394 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 395 max(tss->io_bitmap.prev_max, iobm->max)); 396 397 /* 398 * Store the new max and the sequence number of this bitmap 399 * and a pointer to the bitmap itself. 400 */ 401 tss->io_bitmap.prev_max = iobm->max; 402 tss->io_bitmap.prev_sequence = iobm->sequence; 403 } 404 405 /** 406 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode 407 */ 408 void native_tss_update_io_bitmap(void) 409 { 410 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 411 struct thread_struct *t = ¤t->thread; 412 u16 *base = &tss->x86_tss.io_bitmap_base; 413 414 if (!test_thread_flag(TIF_IO_BITMAP)) { 415 native_tss_invalidate_io_bitmap(); 416 return; 417 } 418 419 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 420 *base = IO_BITMAP_OFFSET_VALID_ALL; 421 } else { 422 struct io_bitmap *iobm = t->io_bitmap; 423 424 /* 425 * Only copy bitmap data when the sequence number differs. The 426 * update time is accounted to the incoming task. 427 */ 428 if (tss->io_bitmap.prev_sequence != iobm->sequence) 429 tss_copy_io_bitmap(tss, iobm); 430 431 /* Enable the bitmap */ 432 *base = IO_BITMAP_OFFSET_VALID_MAP; 433 } 434 435 /* 436 * Make sure that the TSS limit is covering the IO bitmap. It might have 437 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 438 * access from user space to trigger a #GP because tbe bitmap is outside 439 * the TSS limit. 440 */ 441 refresh_tss_limit(); 442 } 443 #else /* CONFIG_X86_IOPL_IOPERM */ 444 static inline void switch_to_bitmap(unsigned long tifp) { } 445 #endif 446 447 #ifdef CONFIG_SMP 448 449 struct ssb_state { 450 struct ssb_state *shared_state; 451 raw_spinlock_t lock; 452 unsigned int disable_state; 453 unsigned long local_state; 454 }; 455 456 #define LSTATE_SSB 0 457 458 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 459 460 void speculative_store_bypass_ht_init(void) 461 { 462 struct ssb_state *st = this_cpu_ptr(&ssb_state); 463 unsigned int this_cpu = smp_processor_id(); 464 unsigned int cpu; 465 466 st->local_state = 0; 467 468 /* 469 * Shared state setup happens once on the first bringup 470 * of the CPU. It's not destroyed on CPU hotunplug. 471 */ 472 if (st->shared_state) 473 return; 474 475 raw_spin_lock_init(&st->lock); 476 477 /* 478 * Go over HT siblings and check whether one of them has set up the 479 * shared state pointer already. 480 */ 481 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 482 if (cpu == this_cpu) 483 continue; 484 485 if (!per_cpu(ssb_state, cpu).shared_state) 486 continue; 487 488 /* Link it to the state of the sibling: */ 489 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 490 return; 491 } 492 493 /* 494 * First HT sibling to come up on the core. Link shared state of 495 * the first HT sibling to itself. The siblings on the same core 496 * which come up later will see the shared state pointer and link 497 * themselves to the state of this CPU. 498 */ 499 st->shared_state = st; 500 } 501 502 /* 503 * Logic is: First HT sibling enables SSBD for both siblings in the core 504 * and last sibling to disable it, disables it for the whole core. This how 505 * MSR_SPEC_CTRL works in "hardware": 506 * 507 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 508 */ 509 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 510 { 511 struct ssb_state *st = this_cpu_ptr(&ssb_state); 512 u64 msr = x86_amd_ls_cfg_base; 513 514 if (!static_cpu_has(X86_FEATURE_ZEN)) { 515 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 516 wrmsrl(MSR_AMD64_LS_CFG, msr); 517 return; 518 } 519 520 if (tifn & _TIF_SSBD) { 521 /* 522 * Since this can race with prctl(), block reentry on the 523 * same CPU. 524 */ 525 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 526 return; 527 528 msr |= x86_amd_ls_cfg_ssbd_mask; 529 530 raw_spin_lock(&st->shared_state->lock); 531 /* First sibling enables SSBD: */ 532 if (!st->shared_state->disable_state) 533 wrmsrl(MSR_AMD64_LS_CFG, msr); 534 st->shared_state->disable_state++; 535 raw_spin_unlock(&st->shared_state->lock); 536 } else { 537 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 538 return; 539 540 raw_spin_lock(&st->shared_state->lock); 541 st->shared_state->disable_state--; 542 if (!st->shared_state->disable_state) 543 wrmsrl(MSR_AMD64_LS_CFG, msr); 544 raw_spin_unlock(&st->shared_state->lock); 545 } 546 } 547 #else 548 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 549 { 550 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 551 552 wrmsrl(MSR_AMD64_LS_CFG, msr); 553 } 554 #endif 555 556 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 557 { 558 /* 559 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 560 * so ssbd_tif_to_spec_ctrl() just works. 561 */ 562 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 563 } 564 565 /* 566 * Update the MSRs managing speculation control, during context switch. 567 * 568 * tifp: Previous task's thread flags 569 * tifn: Next task's thread flags 570 */ 571 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 572 unsigned long tifn) 573 { 574 unsigned long tif_diff = tifp ^ tifn; 575 u64 msr = x86_spec_ctrl_base; 576 bool updmsr = false; 577 578 lockdep_assert_irqs_disabled(); 579 580 /* Handle change of TIF_SSBD depending on the mitigation method. */ 581 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 582 if (tif_diff & _TIF_SSBD) 583 amd_set_ssb_virt_state(tifn); 584 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 585 if (tif_diff & _TIF_SSBD) 586 amd_set_core_ssb_state(tifn); 587 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 588 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 589 updmsr |= !!(tif_diff & _TIF_SSBD); 590 msr |= ssbd_tif_to_spec_ctrl(tifn); 591 } 592 593 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 594 if (IS_ENABLED(CONFIG_SMP) && 595 static_branch_unlikely(&switch_to_cond_stibp)) { 596 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 597 msr |= stibp_tif_to_spec_ctrl(tifn); 598 } 599 600 if (updmsr) 601 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 602 } 603 604 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 605 { 606 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 607 if (task_spec_ssb_disable(tsk)) 608 set_tsk_thread_flag(tsk, TIF_SSBD); 609 else 610 clear_tsk_thread_flag(tsk, TIF_SSBD); 611 612 if (task_spec_ib_disable(tsk)) 613 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 614 else 615 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 616 } 617 /* Return the updated threadinfo flags*/ 618 return read_task_thread_flags(tsk); 619 } 620 621 void speculation_ctrl_update(unsigned long tif) 622 { 623 unsigned long flags; 624 625 /* Forced update. Make sure all relevant TIF flags are different */ 626 local_irq_save(flags); 627 __speculation_ctrl_update(~tif, tif); 628 local_irq_restore(flags); 629 } 630 631 /* Called from seccomp/prctl update */ 632 void speculation_ctrl_update_current(void) 633 { 634 preempt_disable(); 635 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 636 preempt_enable(); 637 } 638 639 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 640 { 641 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 642 643 newval = cr4 ^ mask; 644 if (newval != cr4) { 645 this_cpu_write(cpu_tlbstate.cr4, newval); 646 __write_cr4(newval); 647 } 648 } 649 650 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 651 { 652 unsigned long tifp, tifn; 653 654 tifn = read_task_thread_flags(next_p); 655 tifp = read_task_thread_flags(prev_p); 656 657 switch_to_bitmap(tifp); 658 659 propagate_user_return_notify(prev_p, next_p); 660 661 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 662 arch_has_block_step()) { 663 unsigned long debugctl, msk; 664 665 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 666 debugctl &= ~DEBUGCTLMSR_BTF; 667 msk = tifn & _TIF_BLOCKSTEP; 668 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 669 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 670 } 671 672 if ((tifp ^ tifn) & _TIF_NOTSC) 673 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 674 675 if ((tifp ^ tifn) & _TIF_NOCPUID) 676 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 677 678 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 679 __speculation_ctrl_update(tifp, tifn); 680 } else { 681 speculation_ctrl_update_tif(prev_p); 682 tifn = speculation_ctrl_update_tif(next_p); 683 684 /* Enforce MSR update to ensure consistent state */ 685 __speculation_ctrl_update(~tifn, tifn); 686 } 687 } 688 689 /* 690 * Idle related variables and functions 691 */ 692 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 693 EXPORT_SYMBOL(boot_option_idle_override); 694 695 static void (*x86_idle)(void); 696 697 #ifndef CONFIG_SMP 698 static inline void play_dead(void) 699 { 700 BUG(); 701 } 702 #endif 703 704 void arch_cpu_idle_enter(void) 705 { 706 tsc_verify_tsc_adjust(false); 707 local_touch_nmi(); 708 } 709 710 void arch_cpu_idle_dead(void) 711 { 712 play_dead(); 713 } 714 715 /* 716 * Called from the generic idle code. 717 */ 718 void arch_cpu_idle(void) 719 { 720 x86_idle(); 721 } 722 723 /* 724 * We use this if we don't have any better idle routine.. 725 */ 726 void __cpuidle default_idle(void) 727 { 728 raw_safe_halt(); 729 } 730 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 731 EXPORT_SYMBOL(default_idle); 732 #endif 733 734 #ifdef CONFIG_XEN 735 bool xen_set_default_idle(void) 736 { 737 bool ret = !!x86_idle; 738 739 x86_idle = default_idle; 740 741 return ret; 742 } 743 #endif 744 745 void __noreturn stop_this_cpu(void *dummy) 746 { 747 local_irq_disable(); 748 /* 749 * Remove this CPU: 750 */ 751 set_cpu_online(smp_processor_id(), false); 752 disable_local_APIC(); 753 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 754 755 /* 756 * Use wbinvd on processors that support SME. This provides support 757 * for performing a successful kexec when going from SME inactive 758 * to SME active (or vice-versa). The cache must be cleared so that 759 * if there are entries with the same physical address, both with and 760 * without the encryption bit, they don't race each other when flushed 761 * and potentially end up with the wrong entry being committed to 762 * memory. 763 * 764 * Test the CPUID bit directly because the machine might've cleared 765 * X86_FEATURE_SME due to cmdline options. 766 */ 767 if (cpuid_eax(0x8000001f) & BIT(0)) 768 native_wbinvd(); 769 for (;;) { 770 /* 771 * Use native_halt() so that memory contents don't change 772 * (stack usage and variables) after possibly issuing the 773 * native_wbinvd() above. 774 */ 775 native_halt(); 776 } 777 } 778 779 /* 780 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 781 * states (local apic timer and TSC stop). 782 * 783 * XXX this function is completely buggered vs RCU and tracing. 784 */ 785 static void amd_e400_idle(void) 786 { 787 /* 788 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 789 * gets set after static_cpu_has() places have been converted via 790 * alternatives. 791 */ 792 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 793 default_idle(); 794 return; 795 } 796 797 tick_broadcast_enter(); 798 799 default_idle(); 800 801 /* 802 * The switch back from broadcast mode needs to be called with 803 * interrupts disabled. 804 */ 805 raw_local_irq_disable(); 806 tick_broadcast_exit(); 807 raw_local_irq_enable(); 808 } 809 810 /* 811 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 812 * We can't rely on cpuidle installing MWAIT, because it will not load 813 * on systems that support only C1 -- so the boot default must be MWAIT. 814 * 815 * Some AMD machines are the opposite, they depend on using HALT. 816 * 817 * So for default C1, which is used during boot until cpuidle loads, 818 * use MWAIT-C1 on Intel HW that has it, else use HALT. 819 */ 820 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 821 { 822 if (c->x86_vendor != X86_VENDOR_INTEL) 823 return 0; 824 825 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) 826 return 0; 827 828 return 1; 829 } 830 831 /* 832 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 833 * with interrupts enabled and no flags, which is backwards compatible with the 834 * original MWAIT implementation. 835 */ 836 static __cpuidle void mwait_idle(void) 837 { 838 if (!current_set_polling_and_test()) { 839 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 840 mb(); /* quirk */ 841 clflush((void *)¤t_thread_info()->flags); 842 mb(); /* quirk */ 843 } 844 845 __monitor((void *)¤t_thread_info()->flags, 0, 0); 846 if (!need_resched()) 847 __sti_mwait(0, 0); 848 else 849 raw_local_irq_enable(); 850 } else { 851 raw_local_irq_enable(); 852 } 853 __current_clr_polling(); 854 } 855 856 void select_idle_routine(const struct cpuinfo_x86 *c) 857 { 858 #ifdef CONFIG_SMP 859 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 860 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 861 #endif 862 if (x86_idle || boot_option_idle_override == IDLE_POLL) 863 return; 864 865 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 866 pr_info("using AMD E400 aware idle routine\n"); 867 x86_idle = amd_e400_idle; 868 } else if (prefer_mwait_c1_over_halt(c)) { 869 pr_info("using mwait in idle threads\n"); 870 x86_idle = mwait_idle; 871 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) { 872 pr_info("using TDX aware idle routine\n"); 873 x86_idle = tdx_safe_halt; 874 } else 875 x86_idle = default_idle; 876 } 877 878 void amd_e400_c1e_apic_setup(void) 879 { 880 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 881 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 882 local_irq_disable(); 883 tick_broadcast_force(); 884 local_irq_enable(); 885 } 886 } 887 888 void __init arch_post_acpi_subsys_init(void) 889 { 890 u32 lo, hi; 891 892 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 893 return; 894 895 /* 896 * AMD E400 detection needs to happen after ACPI has been enabled. If 897 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 898 * MSR_K8_INT_PENDING_MSG. 899 */ 900 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 901 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 902 return; 903 904 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 905 906 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 907 mark_tsc_unstable("TSC halt in AMD C1E"); 908 pr_info("System has AMD C1E enabled\n"); 909 } 910 911 static int __init idle_setup(char *str) 912 { 913 if (!str) 914 return -EINVAL; 915 916 if (!strcmp(str, "poll")) { 917 pr_info("using polling idle threads\n"); 918 boot_option_idle_override = IDLE_POLL; 919 cpu_idle_poll_ctrl(true); 920 } else if (!strcmp(str, "halt")) { 921 /* 922 * When the boot option of idle=halt is added, halt is 923 * forced to be used for CPU idle. In such case CPU C2/C3 924 * won't be used again. 925 * To continue to load the CPU idle driver, don't touch 926 * the boot_option_idle_override. 927 */ 928 x86_idle = default_idle; 929 boot_option_idle_override = IDLE_HALT; 930 } else if (!strcmp(str, "nomwait")) { 931 /* 932 * If the boot option of "idle=nomwait" is added, 933 * it means that mwait will be disabled for CPU C2/C3 934 * states. In such case it won't touch the variable 935 * of boot_option_idle_override. 936 */ 937 boot_option_idle_override = IDLE_NOMWAIT; 938 } else 939 return -1; 940 941 return 0; 942 } 943 early_param("idle", idle_setup); 944 945 unsigned long arch_align_stack(unsigned long sp) 946 { 947 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 948 sp -= get_random_int() % 8192; 949 return sp & ~0xf; 950 } 951 952 unsigned long arch_randomize_brk(struct mm_struct *mm) 953 { 954 return randomize_page(mm->brk, 0x02000000); 955 } 956 957 /* 958 * Called from fs/proc with a reference on @p to find the function 959 * which called into schedule(). This needs to be done carefully 960 * because the task might wake up and we might look at a stack 961 * changing under us. 962 */ 963 unsigned long __get_wchan(struct task_struct *p) 964 { 965 struct unwind_state state; 966 unsigned long addr = 0; 967 968 if (!try_get_task_stack(p)) 969 return 0; 970 971 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state); 972 unwind_next_frame(&state)) { 973 addr = unwind_get_return_address(&state); 974 if (!addr) 975 break; 976 if (in_sched_functions(addr)) 977 continue; 978 break; 979 } 980 981 put_task_stack(p); 982 983 return addr; 984 } 985 986 long do_arch_prctl_common(int option, unsigned long arg2) 987 { 988 switch (option) { 989 case ARCH_GET_CPUID: 990 return get_cpuid_mode(); 991 case ARCH_SET_CPUID: 992 return set_cpuid_mode(arg2); 993 case ARCH_GET_XCOMP_SUPP: 994 case ARCH_GET_XCOMP_PERM: 995 case ARCH_REQ_XCOMP_PERM: 996 case ARCH_GET_XCOMP_GUEST_PERM: 997 case ARCH_REQ_XCOMP_GUEST_PERM: 998 return fpu_xstate_prctl(option, arg2); 999 } 1000 1001 return -EINVAL; 1002 } 1003