xref: /openbmc/linux/arch/x86/kernel/process.c (revision f3a8b664)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <asm/idle.h>
27 #include <asm/uaccess.h>
28 #include <asm/mwait.h>
29 #include <asm/fpu/internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mce.h>
34 #include <asm/vm86.h>
35 #include <asm/switch_to.h>
36 
37 /*
38  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
39  * no more per-task TSS's. The TSS size is kept cacheline-aligned
40  * so they are allowed to end up in the .data..cacheline_aligned
41  * section. Since TSS's are completely CPU-local, we want them
42  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
43  */
44 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
45 	.x86_tss = {
46 		.sp0 = TOP_OF_INIT_STACK,
47 #ifdef CONFIG_X86_32
48 		.ss0 = __KERNEL_DS,
49 		.ss1 = __KERNEL_CS,
50 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
51 #endif
52 	 },
53 #ifdef CONFIG_X86_32
54 	 /*
55 	  * Note that the .io_bitmap member must be extra-big. This is because
56 	  * the CPU will access an additional byte beyond the end of the IO
57 	  * permission bitmap. The extra byte must be all 1 bits, and must
58 	  * be within the limit.
59 	  */
60 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
61 #endif
62 #ifdef CONFIG_X86_32
63 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
64 #endif
65 };
66 EXPORT_PER_CPU_SYMBOL(cpu_tss);
67 
68 #ifdef CONFIG_X86_64
69 static DEFINE_PER_CPU(unsigned char, is_idle);
70 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
71 
72 void idle_notifier_register(struct notifier_block *n)
73 {
74 	atomic_notifier_chain_register(&idle_notifier, n);
75 }
76 EXPORT_SYMBOL_GPL(idle_notifier_register);
77 
78 void idle_notifier_unregister(struct notifier_block *n)
79 {
80 	atomic_notifier_chain_unregister(&idle_notifier, n);
81 }
82 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
83 #endif
84 
85 /*
86  * this gets called so that we can store lazy state into memory and copy the
87  * current task into the new thread.
88  */
89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 	memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 	dst->thread.vm86 = NULL;
94 #endif
95 
96 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
97 }
98 
99 /*
100  * Free current thread data structures etc..
101  */
102 void exit_thread(struct task_struct *tsk)
103 {
104 	struct thread_struct *t = &tsk->thread;
105 	unsigned long *bp = t->io_bitmap_ptr;
106 	struct fpu *fpu = &t->fpu;
107 
108 	if (bp) {
109 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
110 
111 		t->io_bitmap_ptr = NULL;
112 		clear_thread_flag(TIF_IO_BITMAP);
113 		/*
114 		 * Careful, clear this in the TSS too:
115 		 */
116 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
117 		t->io_bitmap_max = 0;
118 		put_cpu();
119 		kfree(bp);
120 	}
121 
122 	free_vm86(t);
123 
124 	fpu__drop(fpu);
125 }
126 
127 void flush_thread(void)
128 {
129 	struct task_struct *tsk = current;
130 
131 	flush_ptrace_hw_breakpoint(tsk);
132 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
133 
134 	fpu__clear(&tsk->thread.fpu);
135 }
136 
137 static void hard_disable_TSC(void)
138 {
139 	cr4_set_bits(X86_CR4_TSD);
140 }
141 
142 void disable_TSC(void)
143 {
144 	preempt_disable();
145 	if (!test_and_set_thread_flag(TIF_NOTSC))
146 		/*
147 		 * Must flip the CPU state synchronously with
148 		 * TIF_NOTSC in the current running context.
149 		 */
150 		hard_disable_TSC();
151 	preempt_enable();
152 }
153 
154 static void hard_enable_TSC(void)
155 {
156 	cr4_clear_bits(X86_CR4_TSD);
157 }
158 
159 static void enable_TSC(void)
160 {
161 	preempt_disable();
162 	if (test_and_clear_thread_flag(TIF_NOTSC))
163 		/*
164 		 * Must flip the CPU state synchronously with
165 		 * TIF_NOTSC in the current running context.
166 		 */
167 		hard_enable_TSC();
168 	preempt_enable();
169 }
170 
171 int get_tsc_mode(unsigned long adr)
172 {
173 	unsigned int val;
174 
175 	if (test_thread_flag(TIF_NOTSC))
176 		val = PR_TSC_SIGSEGV;
177 	else
178 		val = PR_TSC_ENABLE;
179 
180 	return put_user(val, (unsigned int __user *)adr);
181 }
182 
183 int set_tsc_mode(unsigned int val)
184 {
185 	if (val == PR_TSC_SIGSEGV)
186 		disable_TSC();
187 	else if (val == PR_TSC_ENABLE)
188 		enable_TSC();
189 	else
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
196 		      struct tss_struct *tss)
197 {
198 	struct thread_struct *prev, *next;
199 
200 	prev = &prev_p->thread;
201 	next = &next_p->thread;
202 
203 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
204 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
205 		unsigned long debugctl = get_debugctlmsr();
206 
207 		debugctl &= ~DEBUGCTLMSR_BTF;
208 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
209 			debugctl |= DEBUGCTLMSR_BTF;
210 
211 		update_debugctlmsr(debugctl);
212 	}
213 
214 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
215 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
216 		/* prev and next are different */
217 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
218 			hard_disable_TSC();
219 		else
220 			hard_enable_TSC();
221 	}
222 
223 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
224 		/*
225 		 * Copy the relevant range of the IO bitmap.
226 		 * Normally this is 128 bytes or less:
227 		 */
228 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
229 		       max(prev->io_bitmap_max, next->io_bitmap_max));
230 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
231 		/*
232 		 * Clear any possible leftover bits:
233 		 */
234 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
235 	}
236 	propagate_user_return_notify(prev_p, next_p);
237 }
238 
239 /*
240  * Idle related variables and functions
241  */
242 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
243 EXPORT_SYMBOL(boot_option_idle_override);
244 
245 static void (*x86_idle)(void);
246 
247 #ifndef CONFIG_SMP
248 static inline void play_dead(void)
249 {
250 	BUG();
251 }
252 #endif
253 
254 #ifdef CONFIG_X86_64
255 void enter_idle(void)
256 {
257 	this_cpu_write(is_idle, 1);
258 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
259 }
260 
261 static void __exit_idle(void)
262 {
263 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
264 		return;
265 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
266 }
267 
268 /* Called from interrupts to signify idle end */
269 void exit_idle(void)
270 {
271 	/* idle loop has pid 0 */
272 	if (current->pid)
273 		return;
274 	__exit_idle();
275 }
276 #endif
277 
278 void arch_cpu_idle_enter(void)
279 {
280 	local_touch_nmi();
281 	enter_idle();
282 }
283 
284 void arch_cpu_idle_exit(void)
285 {
286 	__exit_idle();
287 }
288 
289 void arch_cpu_idle_dead(void)
290 {
291 	play_dead();
292 }
293 
294 /*
295  * Called from the generic idle code.
296  */
297 void arch_cpu_idle(void)
298 {
299 	x86_idle();
300 }
301 
302 /*
303  * We use this if we don't have any better idle routine..
304  */
305 void __cpuidle default_idle(void)
306 {
307 	trace_cpu_idle_rcuidle(1, smp_processor_id());
308 	safe_halt();
309 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
310 }
311 #ifdef CONFIG_APM_MODULE
312 EXPORT_SYMBOL(default_idle);
313 #endif
314 
315 #ifdef CONFIG_XEN
316 bool xen_set_default_idle(void)
317 {
318 	bool ret = !!x86_idle;
319 
320 	x86_idle = default_idle;
321 
322 	return ret;
323 }
324 #endif
325 void stop_this_cpu(void *dummy)
326 {
327 	local_irq_disable();
328 	/*
329 	 * Remove this CPU:
330 	 */
331 	set_cpu_online(smp_processor_id(), false);
332 	disable_local_APIC();
333 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
334 
335 	for (;;)
336 		halt();
337 }
338 
339 bool amd_e400_c1e_detected;
340 EXPORT_SYMBOL(amd_e400_c1e_detected);
341 
342 static cpumask_var_t amd_e400_c1e_mask;
343 
344 void amd_e400_remove_cpu(int cpu)
345 {
346 	if (amd_e400_c1e_mask != NULL)
347 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
348 }
349 
350 /*
351  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
352  * pending message MSR. If we detect C1E, then we handle it the same
353  * way as C3 power states (local apic timer and TSC stop)
354  */
355 static void amd_e400_idle(void)
356 {
357 	if (!amd_e400_c1e_detected) {
358 		u32 lo, hi;
359 
360 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
361 
362 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
363 			amd_e400_c1e_detected = true;
364 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
365 				mark_tsc_unstable("TSC halt in AMD C1E");
366 			pr_info("System has AMD C1E enabled\n");
367 		}
368 	}
369 
370 	if (amd_e400_c1e_detected) {
371 		int cpu = smp_processor_id();
372 
373 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
374 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
375 			/* Force broadcast so ACPI can not interfere. */
376 			tick_broadcast_force();
377 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
378 		}
379 		tick_broadcast_enter();
380 
381 		default_idle();
382 
383 		/*
384 		 * The switch back from broadcast mode needs to be
385 		 * called with interrupts disabled.
386 		 */
387 		local_irq_disable();
388 		tick_broadcast_exit();
389 		local_irq_enable();
390 	} else
391 		default_idle();
392 }
393 
394 /*
395  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
396  * We can't rely on cpuidle installing MWAIT, because it will not load
397  * on systems that support only C1 -- so the boot default must be MWAIT.
398  *
399  * Some AMD machines are the opposite, they depend on using HALT.
400  *
401  * So for default C1, which is used during boot until cpuidle loads,
402  * use MWAIT-C1 on Intel HW that has it, else use HALT.
403  */
404 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
405 {
406 	if (c->x86_vendor != X86_VENDOR_INTEL)
407 		return 0;
408 
409 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
410 		return 0;
411 
412 	return 1;
413 }
414 
415 /*
416  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
417  * with interrupts enabled and no flags, which is backwards compatible with the
418  * original MWAIT implementation.
419  */
420 static __cpuidle void mwait_idle(void)
421 {
422 	if (!current_set_polling_and_test()) {
423 		trace_cpu_idle_rcuidle(1, smp_processor_id());
424 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
425 			mb(); /* quirk */
426 			clflush((void *)&current_thread_info()->flags);
427 			mb(); /* quirk */
428 		}
429 
430 		__monitor((void *)&current_thread_info()->flags, 0, 0);
431 		if (!need_resched())
432 			__sti_mwait(0, 0);
433 		else
434 			local_irq_enable();
435 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
436 	} else {
437 		local_irq_enable();
438 	}
439 	__current_clr_polling();
440 }
441 
442 void select_idle_routine(const struct cpuinfo_x86 *c)
443 {
444 #ifdef CONFIG_SMP
445 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
446 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
447 #endif
448 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
449 		return;
450 
451 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
452 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
453 		pr_info("using AMD E400 aware idle routine\n");
454 		x86_idle = amd_e400_idle;
455 	} else if (prefer_mwait_c1_over_halt(c)) {
456 		pr_info("using mwait in idle threads\n");
457 		x86_idle = mwait_idle;
458 	} else
459 		x86_idle = default_idle;
460 }
461 
462 void __init init_amd_e400_c1e_mask(void)
463 {
464 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
465 	if (x86_idle == amd_e400_idle)
466 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
467 }
468 
469 static int __init idle_setup(char *str)
470 {
471 	if (!str)
472 		return -EINVAL;
473 
474 	if (!strcmp(str, "poll")) {
475 		pr_info("using polling idle threads\n");
476 		boot_option_idle_override = IDLE_POLL;
477 		cpu_idle_poll_ctrl(true);
478 	} else if (!strcmp(str, "halt")) {
479 		/*
480 		 * When the boot option of idle=halt is added, halt is
481 		 * forced to be used for CPU idle. In such case CPU C2/C3
482 		 * won't be used again.
483 		 * To continue to load the CPU idle driver, don't touch
484 		 * the boot_option_idle_override.
485 		 */
486 		x86_idle = default_idle;
487 		boot_option_idle_override = IDLE_HALT;
488 	} else if (!strcmp(str, "nomwait")) {
489 		/*
490 		 * If the boot option of "idle=nomwait" is added,
491 		 * it means that mwait will be disabled for CPU C2/C3
492 		 * states. In such case it won't touch the variable
493 		 * of boot_option_idle_override.
494 		 */
495 		boot_option_idle_override = IDLE_NOMWAIT;
496 	} else
497 		return -1;
498 
499 	return 0;
500 }
501 early_param("idle", idle_setup);
502 
503 unsigned long arch_align_stack(unsigned long sp)
504 {
505 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
506 		sp -= get_random_int() % 8192;
507 	return sp & ~0xf;
508 }
509 
510 unsigned long arch_randomize_brk(struct mm_struct *mm)
511 {
512 	return randomize_page(mm->brk, 0x02000000);
513 }
514 
515 /*
516  * Return saved PC of a blocked thread.
517  * What is this good for? it will be always the scheduler or ret_from_fork.
518  */
519 unsigned long thread_saved_pc(struct task_struct *tsk)
520 {
521 	struct inactive_task_frame *frame =
522 		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
523 	return READ_ONCE_NOCHECK(frame->ret_addr);
524 }
525 
526 /*
527  * Called from fs/proc with a reference on @p to find the function
528  * which called into schedule(). This needs to be done carefully
529  * because the task might wake up and we might look at a stack
530  * changing under us.
531  */
532 unsigned long get_wchan(struct task_struct *p)
533 {
534 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
535 	int count = 0;
536 
537 	if (!p || p == current || p->state == TASK_RUNNING)
538 		return 0;
539 
540 	if (!try_get_task_stack(p))
541 		return 0;
542 
543 	start = (unsigned long)task_stack_page(p);
544 	if (!start)
545 		goto out;
546 
547 	/*
548 	 * Layout of the stack page:
549 	 *
550 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
551 	 * PADDING
552 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
553 	 * stack
554 	 * ----------- bottom = start
555 	 *
556 	 * The tasks stack pointer points at the location where the
557 	 * framepointer is stored. The data on the stack is:
558 	 * ... IP FP ... IP FP
559 	 *
560 	 * We need to read FP and IP, so we need to adjust the upper
561 	 * bound by another unsigned long.
562 	 */
563 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
564 	top -= 2 * sizeof(unsigned long);
565 	bottom = start;
566 
567 	sp = READ_ONCE(p->thread.sp);
568 	if (sp < bottom || sp > top)
569 		goto out;
570 
571 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
572 	do {
573 		if (fp < bottom || fp > top)
574 			goto out;
575 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
576 		if (!in_sched_functions(ip)) {
577 			ret = ip;
578 			goto out;
579 		}
580 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
581 	} while (count++ < 16 && p->state != TASK_RUNNING);
582 
583 out:
584 	put_task_stack(p);
585 	return ret;
586 }
587