1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/errno.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/smp.h> 7 #include <linux/prctl.h> 8 #include <linux/slab.h> 9 #include <linux/sched.h> 10 #include <linux/init.h> 11 #include <linux/export.h> 12 #include <linux/pm.h> 13 #include <linux/tick.h> 14 #include <linux/random.h> 15 #include <linux/user-return-notifier.h> 16 #include <linux/dmi.h> 17 #include <linux/utsname.h> 18 #include <linux/stackprotector.h> 19 #include <linux/tick.h> 20 #include <linux/cpuidle.h> 21 #include <trace/events/power.h> 22 #include <linux/hw_breakpoint.h> 23 #include <asm/cpu.h> 24 #include <asm/apic.h> 25 #include <asm/syscalls.h> 26 #include <asm/idle.h> 27 #include <asm/uaccess.h> 28 #include <asm/mwait.h> 29 #include <asm/fpu/internal.h> 30 #include <asm/debugreg.h> 31 #include <asm/nmi.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mce.h> 34 #include <asm/vm86.h> 35 #include <asm/switch_to.h> 36 37 /* 38 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 39 * no more per-task TSS's. The TSS size is kept cacheline-aligned 40 * so they are allowed to end up in the .data..cacheline_aligned 41 * section. Since TSS's are completely CPU-local, we want them 42 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 43 */ 44 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = { 45 .x86_tss = { 46 .sp0 = TOP_OF_INIT_STACK, 47 #ifdef CONFIG_X86_32 48 .ss0 = __KERNEL_DS, 49 .ss1 = __KERNEL_CS, 50 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 51 #endif 52 }, 53 #ifdef CONFIG_X86_32 54 /* 55 * Note that the .io_bitmap member must be extra-big. This is because 56 * the CPU will access an additional byte beyond the end of the IO 57 * permission bitmap. The extra byte must be all 1 bits, and must 58 * be within the limit. 59 */ 60 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 61 #endif 62 #ifdef CONFIG_X86_32 63 .SYSENTER_stack_canary = STACK_END_MAGIC, 64 #endif 65 }; 66 EXPORT_PER_CPU_SYMBOL(cpu_tss); 67 68 #ifdef CONFIG_X86_64 69 static DEFINE_PER_CPU(unsigned char, is_idle); 70 static ATOMIC_NOTIFIER_HEAD(idle_notifier); 71 72 void idle_notifier_register(struct notifier_block *n) 73 { 74 atomic_notifier_chain_register(&idle_notifier, n); 75 } 76 EXPORT_SYMBOL_GPL(idle_notifier_register); 77 78 void idle_notifier_unregister(struct notifier_block *n) 79 { 80 atomic_notifier_chain_unregister(&idle_notifier, n); 81 } 82 EXPORT_SYMBOL_GPL(idle_notifier_unregister); 83 #endif 84 85 /* 86 * this gets called so that we can store lazy state into memory and copy the 87 * current task into the new thread. 88 */ 89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 90 { 91 memcpy(dst, src, arch_task_struct_size); 92 #ifdef CONFIG_VM86 93 dst->thread.vm86 = NULL; 94 #endif 95 96 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 97 } 98 99 /* 100 * Free current thread data structures etc.. 101 */ 102 void exit_thread(struct task_struct *tsk) 103 { 104 struct thread_struct *t = &tsk->thread; 105 unsigned long *bp = t->io_bitmap_ptr; 106 struct fpu *fpu = &t->fpu; 107 108 if (bp) { 109 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu()); 110 111 t->io_bitmap_ptr = NULL; 112 clear_thread_flag(TIF_IO_BITMAP); 113 /* 114 * Careful, clear this in the TSS too: 115 */ 116 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 117 t->io_bitmap_max = 0; 118 put_cpu(); 119 kfree(bp); 120 } 121 122 free_vm86(t); 123 124 fpu__drop(fpu); 125 } 126 127 void flush_thread(void) 128 { 129 struct task_struct *tsk = current; 130 131 flush_ptrace_hw_breakpoint(tsk); 132 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 133 134 fpu__clear(&tsk->thread.fpu); 135 } 136 137 static void hard_disable_TSC(void) 138 { 139 cr4_set_bits(X86_CR4_TSD); 140 } 141 142 void disable_TSC(void) 143 { 144 preempt_disable(); 145 if (!test_and_set_thread_flag(TIF_NOTSC)) 146 /* 147 * Must flip the CPU state synchronously with 148 * TIF_NOTSC in the current running context. 149 */ 150 hard_disable_TSC(); 151 preempt_enable(); 152 } 153 154 static void hard_enable_TSC(void) 155 { 156 cr4_clear_bits(X86_CR4_TSD); 157 } 158 159 static void enable_TSC(void) 160 { 161 preempt_disable(); 162 if (test_and_clear_thread_flag(TIF_NOTSC)) 163 /* 164 * Must flip the CPU state synchronously with 165 * TIF_NOTSC in the current running context. 166 */ 167 hard_enable_TSC(); 168 preempt_enable(); 169 } 170 171 int get_tsc_mode(unsigned long adr) 172 { 173 unsigned int val; 174 175 if (test_thread_flag(TIF_NOTSC)) 176 val = PR_TSC_SIGSEGV; 177 else 178 val = PR_TSC_ENABLE; 179 180 return put_user(val, (unsigned int __user *)adr); 181 } 182 183 int set_tsc_mode(unsigned int val) 184 { 185 if (val == PR_TSC_SIGSEGV) 186 disable_TSC(); 187 else if (val == PR_TSC_ENABLE) 188 enable_TSC(); 189 else 190 return -EINVAL; 191 192 return 0; 193 } 194 195 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 196 struct tss_struct *tss) 197 { 198 struct thread_struct *prev, *next; 199 200 prev = &prev_p->thread; 201 next = &next_p->thread; 202 203 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 204 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 205 unsigned long debugctl = get_debugctlmsr(); 206 207 debugctl &= ~DEBUGCTLMSR_BTF; 208 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 209 debugctl |= DEBUGCTLMSR_BTF; 210 211 update_debugctlmsr(debugctl); 212 } 213 214 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 215 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 216 /* prev and next are different */ 217 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 218 hard_disable_TSC(); 219 else 220 hard_enable_TSC(); 221 } 222 223 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 224 /* 225 * Copy the relevant range of the IO bitmap. 226 * Normally this is 128 bytes or less: 227 */ 228 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 229 max(prev->io_bitmap_max, next->io_bitmap_max)); 230 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 231 /* 232 * Clear any possible leftover bits: 233 */ 234 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 235 } 236 propagate_user_return_notify(prev_p, next_p); 237 } 238 239 /* 240 * Idle related variables and functions 241 */ 242 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 243 EXPORT_SYMBOL(boot_option_idle_override); 244 245 static void (*x86_idle)(void); 246 247 #ifndef CONFIG_SMP 248 static inline void play_dead(void) 249 { 250 BUG(); 251 } 252 #endif 253 254 #ifdef CONFIG_X86_64 255 void enter_idle(void) 256 { 257 this_cpu_write(is_idle, 1); 258 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); 259 } 260 261 static void __exit_idle(void) 262 { 263 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) 264 return; 265 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); 266 } 267 268 /* Called from interrupts to signify idle end */ 269 void exit_idle(void) 270 { 271 /* idle loop has pid 0 */ 272 if (current->pid) 273 return; 274 __exit_idle(); 275 } 276 #endif 277 278 void arch_cpu_idle_enter(void) 279 { 280 local_touch_nmi(); 281 enter_idle(); 282 } 283 284 void arch_cpu_idle_exit(void) 285 { 286 __exit_idle(); 287 } 288 289 void arch_cpu_idle_dead(void) 290 { 291 play_dead(); 292 } 293 294 /* 295 * Called from the generic idle code. 296 */ 297 void arch_cpu_idle(void) 298 { 299 x86_idle(); 300 } 301 302 /* 303 * We use this if we don't have any better idle routine.. 304 */ 305 void __cpuidle default_idle(void) 306 { 307 trace_cpu_idle_rcuidle(1, smp_processor_id()); 308 safe_halt(); 309 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 310 } 311 #ifdef CONFIG_APM_MODULE 312 EXPORT_SYMBOL(default_idle); 313 #endif 314 315 #ifdef CONFIG_XEN 316 bool xen_set_default_idle(void) 317 { 318 bool ret = !!x86_idle; 319 320 x86_idle = default_idle; 321 322 return ret; 323 } 324 #endif 325 void stop_this_cpu(void *dummy) 326 { 327 local_irq_disable(); 328 /* 329 * Remove this CPU: 330 */ 331 set_cpu_online(smp_processor_id(), false); 332 disable_local_APIC(); 333 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 334 335 for (;;) 336 halt(); 337 } 338 339 bool amd_e400_c1e_detected; 340 EXPORT_SYMBOL(amd_e400_c1e_detected); 341 342 static cpumask_var_t amd_e400_c1e_mask; 343 344 void amd_e400_remove_cpu(int cpu) 345 { 346 if (amd_e400_c1e_mask != NULL) 347 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 348 } 349 350 /* 351 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 352 * pending message MSR. If we detect C1E, then we handle it the same 353 * way as C3 power states (local apic timer and TSC stop) 354 */ 355 static void amd_e400_idle(void) 356 { 357 if (!amd_e400_c1e_detected) { 358 u32 lo, hi; 359 360 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 361 362 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 363 amd_e400_c1e_detected = true; 364 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 365 mark_tsc_unstable("TSC halt in AMD C1E"); 366 pr_info("System has AMD C1E enabled\n"); 367 } 368 } 369 370 if (amd_e400_c1e_detected) { 371 int cpu = smp_processor_id(); 372 373 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 374 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 375 /* Force broadcast so ACPI can not interfere. */ 376 tick_broadcast_force(); 377 pr_info("Switch to broadcast mode on CPU%d\n", cpu); 378 } 379 tick_broadcast_enter(); 380 381 default_idle(); 382 383 /* 384 * The switch back from broadcast mode needs to be 385 * called with interrupts disabled. 386 */ 387 local_irq_disable(); 388 tick_broadcast_exit(); 389 local_irq_enable(); 390 } else 391 default_idle(); 392 } 393 394 /* 395 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 396 * We can't rely on cpuidle installing MWAIT, because it will not load 397 * on systems that support only C1 -- so the boot default must be MWAIT. 398 * 399 * Some AMD machines are the opposite, they depend on using HALT. 400 * 401 * So for default C1, which is used during boot until cpuidle loads, 402 * use MWAIT-C1 on Intel HW that has it, else use HALT. 403 */ 404 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 405 { 406 if (c->x86_vendor != X86_VENDOR_INTEL) 407 return 0; 408 409 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 410 return 0; 411 412 return 1; 413 } 414 415 /* 416 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 417 * with interrupts enabled and no flags, which is backwards compatible with the 418 * original MWAIT implementation. 419 */ 420 static __cpuidle void mwait_idle(void) 421 { 422 if (!current_set_polling_and_test()) { 423 trace_cpu_idle_rcuidle(1, smp_processor_id()); 424 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 425 mb(); /* quirk */ 426 clflush((void *)¤t_thread_info()->flags); 427 mb(); /* quirk */ 428 } 429 430 __monitor((void *)¤t_thread_info()->flags, 0, 0); 431 if (!need_resched()) 432 __sti_mwait(0, 0); 433 else 434 local_irq_enable(); 435 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 436 } else { 437 local_irq_enable(); 438 } 439 __current_clr_polling(); 440 } 441 442 void select_idle_routine(const struct cpuinfo_x86 *c) 443 { 444 #ifdef CONFIG_SMP 445 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 446 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 447 #endif 448 if (x86_idle || boot_option_idle_override == IDLE_POLL) 449 return; 450 451 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) { 452 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 453 pr_info("using AMD E400 aware idle routine\n"); 454 x86_idle = amd_e400_idle; 455 } else if (prefer_mwait_c1_over_halt(c)) { 456 pr_info("using mwait in idle threads\n"); 457 x86_idle = mwait_idle; 458 } else 459 x86_idle = default_idle; 460 } 461 462 void __init init_amd_e400_c1e_mask(void) 463 { 464 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 465 if (x86_idle == amd_e400_idle) 466 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 467 } 468 469 static int __init idle_setup(char *str) 470 { 471 if (!str) 472 return -EINVAL; 473 474 if (!strcmp(str, "poll")) { 475 pr_info("using polling idle threads\n"); 476 boot_option_idle_override = IDLE_POLL; 477 cpu_idle_poll_ctrl(true); 478 } else if (!strcmp(str, "halt")) { 479 /* 480 * When the boot option of idle=halt is added, halt is 481 * forced to be used for CPU idle. In such case CPU C2/C3 482 * won't be used again. 483 * To continue to load the CPU idle driver, don't touch 484 * the boot_option_idle_override. 485 */ 486 x86_idle = default_idle; 487 boot_option_idle_override = IDLE_HALT; 488 } else if (!strcmp(str, "nomwait")) { 489 /* 490 * If the boot option of "idle=nomwait" is added, 491 * it means that mwait will be disabled for CPU C2/C3 492 * states. In such case it won't touch the variable 493 * of boot_option_idle_override. 494 */ 495 boot_option_idle_override = IDLE_NOMWAIT; 496 } else 497 return -1; 498 499 return 0; 500 } 501 early_param("idle", idle_setup); 502 503 unsigned long arch_align_stack(unsigned long sp) 504 { 505 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 506 sp -= get_random_int() % 8192; 507 return sp & ~0xf; 508 } 509 510 unsigned long arch_randomize_brk(struct mm_struct *mm) 511 { 512 return randomize_page(mm->brk, 0x02000000); 513 } 514 515 /* 516 * Return saved PC of a blocked thread. 517 * What is this good for? it will be always the scheduler or ret_from_fork. 518 */ 519 unsigned long thread_saved_pc(struct task_struct *tsk) 520 { 521 struct inactive_task_frame *frame = 522 (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp); 523 return READ_ONCE_NOCHECK(frame->ret_addr); 524 } 525 526 /* 527 * Called from fs/proc with a reference on @p to find the function 528 * which called into schedule(). This needs to be done carefully 529 * because the task might wake up and we might look at a stack 530 * changing under us. 531 */ 532 unsigned long get_wchan(struct task_struct *p) 533 { 534 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 535 int count = 0; 536 537 if (!p || p == current || p->state == TASK_RUNNING) 538 return 0; 539 540 if (!try_get_task_stack(p)) 541 return 0; 542 543 start = (unsigned long)task_stack_page(p); 544 if (!start) 545 goto out; 546 547 /* 548 * Layout of the stack page: 549 * 550 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 551 * PADDING 552 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 553 * stack 554 * ----------- bottom = start 555 * 556 * The tasks stack pointer points at the location where the 557 * framepointer is stored. The data on the stack is: 558 * ... IP FP ... IP FP 559 * 560 * We need to read FP and IP, so we need to adjust the upper 561 * bound by another unsigned long. 562 */ 563 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 564 top -= 2 * sizeof(unsigned long); 565 bottom = start; 566 567 sp = READ_ONCE(p->thread.sp); 568 if (sp < bottom || sp > top) 569 goto out; 570 571 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 572 do { 573 if (fp < bottom || fp > top) 574 goto out; 575 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 576 if (!in_sched_functions(ip)) { 577 ret = ip; 578 goto out; 579 } 580 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 581 } while (count++ < 16 && p->state != TASK_RUNNING); 582 583 out: 584 put_task_stack(p); 585 return ret; 586 } 587