xref: /openbmc/linux/arch/x86/kernel/process.c (revision e8e0929d)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <trace/events/power.h>
13 #include <asm/system.h>
14 #include <asm/apic.h>
15 #include <asm/syscalls.h>
16 #include <asm/idle.h>
17 #include <asm/uaccess.h>
18 #include <asm/i387.h>
19 #include <asm/ds.h>
20 
21 unsigned long idle_halt;
22 EXPORT_SYMBOL(idle_halt);
23 unsigned long idle_nomwait;
24 EXPORT_SYMBOL(idle_nomwait);
25 
26 struct kmem_cache *task_xstate_cachep;
27 
28 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
29 {
30 	*dst = *src;
31 	if (src->thread.xstate) {
32 		dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
33 						      GFP_KERNEL);
34 		if (!dst->thread.xstate)
35 			return -ENOMEM;
36 		WARN_ON((unsigned long)dst->thread.xstate & 15);
37 		memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
38 	}
39 	return 0;
40 }
41 
42 void free_thread_xstate(struct task_struct *tsk)
43 {
44 	if (tsk->thread.xstate) {
45 		kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
46 		tsk->thread.xstate = NULL;
47 	}
48 
49 	WARN(tsk->thread.ds_ctx, "leaking DS context\n");
50 }
51 
52 void free_thread_info(struct thread_info *ti)
53 {
54 	free_thread_xstate(ti->task);
55 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
56 }
57 
58 void arch_task_cache_init(void)
59 {
60         task_xstate_cachep =
61         	kmem_cache_create("task_xstate", xstate_size,
62 				  __alignof__(union thread_xstate),
63 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
64 }
65 
66 /*
67  * Free current thread data structures etc..
68  */
69 void exit_thread(void)
70 {
71 	struct task_struct *me = current;
72 	struct thread_struct *t = &me->thread;
73 	unsigned long *bp = t->io_bitmap_ptr;
74 
75 	if (bp) {
76 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
77 
78 		t->io_bitmap_ptr = NULL;
79 		clear_thread_flag(TIF_IO_BITMAP);
80 		/*
81 		 * Careful, clear this in the TSS too:
82 		 */
83 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
84 		t->io_bitmap_max = 0;
85 		put_cpu();
86 		kfree(bp);
87 	}
88 }
89 
90 void flush_thread(void)
91 {
92 	struct task_struct *tsk = current;
93 
94 #ifdef CONFIG_X86_64
95 	if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
96 		clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
97 		if (test_tsk_thread_flag(tsk, TIF_IA32)) {
98 			clear_tsk_thread_flag(tsk, TIF_IA32);
99 		} else {
100 			set_tsk_thread_flag(tsk, TIF_IA32);
101 			current_thread_info()->status |= TS_COMPAT;
102 		}
103 	}
104 #endif
105 
106 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
107 
108 	tsk->thread.debugreg0 = 0;
109 	tsk->thread.debugreg1 = 0;
110 	tsk->thread.debugreg2 = 0;
111 	tsk->thread.debugreg3 = 0;
112 	tsk->thread.debugreg6 = 0;
113 	tsk->thread.debugreg7 = 0;
114 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115 	/*
116 	 * Forget coprocessor state..
117 	 */
118 	tsk->fpu_counter = 0;
119 	clear_fpu(tsk);
120 	clear_used_math();
121 }
122 
123 static void hard_disable_TSC(void)
124 {
125 	write_cr4(read_cr4() | X86_CR4_TSD);
126 }
127 
128 void disable_TSC(void)
129 {
130 	preempt_disable();
131 	if (!test_and_set_thread_flag(TIF_NOTSC))
132 		/*
133 		 * Must flip the CPU state synchronously with
134 		 * TIF_NOTSC in the current running context.
135 		 */
136 		hard_disable_TSC();
137 	preempt_enable();
138 }
139 
140 static void hard_enable_TSC(void)
141 {
142 	write_cr4(read_cr4() & ~X86_CR4_TSD);
143 }
144 
145 static void enable_TSC(void)
146 {
147 	preempt_disable();
148 	if (test_and_clear_thread_flag(TIF_NOTSC))
149 		/*
150 		 * Must flip the CPU state synchronously with
151 		 * TIF_NOTSC in the current running context.
152 		 */
153 		hard_enable_TSC();
154 	preempt_enable();
155 }
156 
157 int get_tsc_mode(unsigned long adr)
158 {
159 	unsigned int val;
160 
161 	if (test_thread_flag(TIF_NOTSC))
162 		val = PR_TSC_SIGSEGV;
163 	else
164 		val = PR_TSC_ENABLE;
165 
166 	return put_user(val, (unsigned int __user *)adr);
167 }
168 
169 int set_tsc_mode(unsigned int val)
170 {
171 	if (val == PR_TSC_SIGSEGV)
172 		disable_TSC();
173 	else if (val == PR_TSC_ENABLE)
174 		enable_TSC();
175 	else
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 
181 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
182 		      struct tss_struct *tss)
183 {
184 	struct thread_struct *prev, *next;
185 
186 	prev = &prev_p->thread;
187 	next = &next_p->thread;
188 
189 	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
190 	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
191 		ds_switch_to(prev_p, next_p);
192 	else if (next->debugctlmsr != prev->debugctlmsr)
193 		update_debugctlmsr(next->debugctlmsr);
194 
195 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
196 		set_debugreg(next->debugreg0, 0);
197 		set_debugreg(next->debugreg1, 1);
198 		set_debugreg(next->debugreg2, 2);
199 		set_debugreg(next->debugreg3, 3);
200 		/* no 4 and 5 */
201 		set_debugreg(next->debugreg6, 6);
202 		set_debugreg(next->debugreg7, 7);
203 	}
204 
205 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
206 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
207 		/* prev and next are different */
208 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
209 			hard_disable_TSC();
210 		else
211 			hard_enable_TSC();
212 	}
213 
214 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
215 		/*
216 		 * Copy the relevant range of the IO bitmap.
217 		 * Normally this is 128 bytes or less:
218 		 */
219 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
220 		       max(prev->io_bitmap_max, next->io_bitmap_max));
221 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
222 		/*
223 		 * Clear any possible leftover bits:
224 		 */
225 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
226 	}
227 }
228 
229 int sys_fork(struct pt_regs *regs)
230 {
231 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
232 }
233 
234 /*
235  * This is trivial, and on the face of it looks like it
236  * could equally well be done in user mode.
237  *
238  * Not so, for quite unobvious reasons - register pressure.
239  * In user mode vfork() cannot have a stack frame, and if
240  * done by calling the "clone()" system call directly, you
241  * do not have enough call-clobbered registers to hold all
242  * the information you need.
243  */
244 int sys_vfork(struct pt_regs *regs)
245 {
246 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
247 		       NULL, NULL);
248 }
249 
250 
251 /*
252  * Idle related variables and functions
253  */
254 unsigned long boot_option_idle_override = 0;
255 EXPORT_SYMBOL(boot_option_idle_override);
256 
257 /*
258  * Powermanagement idle function, if any..
259  */
260 void (*pm_idle)(void);
261 EXPORT_SYMBOL(pm_idle);
262 
263 #ifdef CONFIG_X86_32
264 /*
265  * This halt magic was a workaround for ancient floppy DMA
266  * wreckage. It should be safe to remove.
267  */
268 static int hlt_counter;
269 void disable_hlt(void)
270 {
271 	hlt_counter++;
272 }
273 EXPORT_SYMBOL(disable_hlt);
274 
275 void enable_hlt(void)
276 {
277 	hlt_counter--;
278 }
279 EXPORT_SYMBOL(enable_hlt);
280 
281 static inline int hlt_use_halt(void)
282 {
283 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
284 }
285 #else
286 static inline int hlt_use_halt(void)
287 {
288 	return 1;
289 }
290 #endif
291 
292 /*
293  * We use this if we don't have any better
294  * idle routine..
295  */
296 void default_idle(void)
297 {
298 	if (hlt_use_halt()) {
299 		trace_power_start(POWER_CSTATE, 1);
300 		current_thread_info()->status &= ~TS_POLLING;
301 		/*
302 		 * TS_POLLING-cleared state must be visible before we
303 		 * test NEED_RESCHED:
304 		 */
305 		smp_mb();
306 
307 		if (!need_resched())
308 			safe_halt();	/* enables interrupts racelessly */
309 		else
310 			local_irq_enable();
311 		current_thread_info()->status |= TS_POLLING;
312 	} else {
313 		local_irq_enable();
314 		/* loop is done by the caller */
315 		cpu_relax();
316 	}
317 }
318 #ifdef CONFIG_APM_MODULE
319 EXPORT_SYMBOL(default_idle);
320 #endif
321 
322 void stop_this_cpu(void *dummy)
323 {
324 	local_irq_disable();
325 	/*
326 	 * Remove this CPU:
327 	 */
328 	set_cpu_online(smp_processor_id(), false);
329 	disable_local_APIC();
330 
331 	for (;;) {
332 		if (hlt_works(smp_processor_id()))
333 			halt();
334 	}
335 }
336 
337 static void do_nothing(void *unused)
338 {
339 }
340 
341 /*
342  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
343  * pm_idle and update to new pm_idle value. Required while changing pm_idle
344  * handler on SMP systems.
345  *
346  * Caller must have changed pm_idle to the new value before the call. Old
347  * pm_idle value will not be used by any CPU after the return of this function.
348  */
349 void cpu_idle_wait(void)
350 {
351 	smp_mb();
352 	/* kick all the CPUs so that they exit out of pm_idle */
353 	smp_call_function(do_nothing, NULL, 1);
354 }
355 EXPORT_SYMBOL_GPL(cpu_idle_wait);
356 
357 /*
358  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
359  * which can obviate IPI to trigger checking of need_resched.
360  * We execute MONITOR against need_resched and enter optimized wait state
361  * through MWAIT. Whenever someone changes need_resched, we would be woken
362  * up from MWAIT (without an IPI).
363  *
364  * New with Core Duo processors, MWAIT can take some hints based on CPU
365  * capability.
366  */
367 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
368 {
369 	trace_power_start(POWER_CSTATE, (ax>>4)+1);
370 	if (!need_resched()) {
371 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
372 			clflush((void *)&current_thread_info()->flags);
373 
374 		__monitor((void *)&current_thread_info()->flags, 0, 0);
375 		smp_mb();
376 		if (!need_resched())
377 			__mwait(ax, cx);
378 	}
379 }
380 
381 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
382 static void mwait_idle(void)
383 {
384 	if (!need_resched()) {
385 		trace_power_start(POWER_CSTATE, 1);
386 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
387 			clflush((void *)&current_thread_info()->flags);
388 
389 		__monitor((void *)&current_thread_info()->flags, 0, 0);
390 		smp_mb();
391 		if (!need_resched())
392 			__sti_mwait(0, 0);
393 		else
394 			local_irq_enable();
395 	} else
396 		local_irq_enable();
397 }
398 
399 /*
400  * On SMP it's slightly faster (but much more power-consuming!)
401  * to poll the ->work.need_resched flag instead of waiting for the
402  * cross-CPU IPI to arrive. Use this option with caution.
403  */
404 static void poll_idle(void)
405 {
406 	trace_power_start(POWER_CSTATE, 0);
407 	local_irq_enable();
408 	while (!need_resched())
409 		cpu_relax();
410 	trace_power_end(0);
411 }
412 
413 /*
414  * mwait selection logic:
415  *
416  * It depends on the CPU. For AMD CPUs that support MWAIT this is
417  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
418  * then depend on a clock divisor and current Pstate of the core. If
419  * all cores of a processor are in halt state (C1) the processor can
420  * enter the C1E (C1 enhanced) state. If mwait is used this will never
421  * happen.
422  *
423  * idle=mwait overrides this decision and forces the usage of mwait.
424  */
425 static int __cpuinitdata force_mwait;
426 
427 #define MWAIT_INFO			0x05
428 #define MWAIT_ECX_EXTENDED_INFO		0x01
429 #define MWAIT_EDX_C1			0xf0
430 
431 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
432 {
433 	u32 eax, ebx, ecx, edx;
434 
435 	if (force_mwait)
436 		return 1;
437 
438 	if (c->cpuid_level < MWAIT_INFO)
439 		return 0;
440 
441 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
442 	/* Check, whether EDX has extended info about MWAIT */
443 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
444 		return 1;
445 
446 	/*
447 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
448 	 * C1  supports MWAIT
449 	 */
450 	return (edx & MWAIT_EDX_C1);
451 }
452 
453 /*
454  * Check for AMD CPUs, which have potentially C1E support
455  */
456 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
457 {
458 	if (c->x86_vendor != X86_VENDOR_AMD)
459 		return 0;
460 
461 	if (c->x86 < 0x0F)
462 		return 0;
463 
464 	/* Family 0x0f models < rev F do not have C1E */
465 	if (c->x86 == 0x0f && c->x86_model < 0x40)
466 		return 0;
467 
468 	return 1;
469 }
470 
471 static cpumask_var_t c1e_mask;
472 static int c1e_detected;
473 
474 void c1e_remove_cpu(int cpu)
475 {
476 	if (c1e_mask != NULL)
477 		cpumask_clear_cpu(cpu, c1e_mask);
478 }
479 
480 /*
481  * C1E aware idle routine. We check for C1E active in the interrupt
482  * pending message MSR. If we detect C1E, then we handle it the same
483  * way as C3 power states (local apic timer and TSC stop)
484  */
485 static void c1e_idle(void)
486 {
487 	if (need_resched())
488 		return;
489 
490 	if (!c1e_detected) {
491 		u32 lo, hi;
492 
493 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
494 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
495 			c1e_detected = 1;
496 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
497 				mark_tsc_unstable("TSC halt in AMD C1E");
498 			printk(KERN_INFO "System has AMD C1E enabled\n");
499 			set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
500 		}
501 	}
502 
503 	if (c1e_detected) {
504 		int cpu = smp_processor_id();
505 
506 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
507 			cpumask_set_cpu(cpu, c1e_mask);
508 			/*
509 			 * Force broadcast so ACPI can not interfere.
510 			 */
511 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
512 					   &cpu);
513 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
514 			       cpu);
515 		}
516 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
517 
518 		default_idle();
519 
520 		/*
521 		 * The switch back from broadcast mode needs to be
522 		 * called with interrupts disabled.
523 		 */
524 		 local_irq_disable();
525 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
526 		 local_irq_enable();
527 	} else
528 		default_idle();
529 }
530 
531 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
532 {
533 #ifdef CONFIG_SMP
534 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
535 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
536 			" performance may degrade.\n");
537 	}
538 #endif
539 	if (pm_idle)
540 		return;
541 
542 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
543 		/*
544 		 * One CPU supports mwait => All CPUs supports mwait
545 		 */
546 		printk(KERN_INFO "using mwait in idle threads.\n");
547 		pm_idle = mwait_idle;
548 	} else if (check_c1e_idle(c)) {
549 		printk(KERN_INFO "using C1E aware idle routine\n");
550 		pm_idle = c1e_idle;
551 	} else
552 		pm_idle = default_idle;
553 }
554 
555 void __init init_c1e_mask(void)
556 {
557 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
558 	if (pm_idle == c1e_idle)
559 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
560 }
561 
562 static int __init idle_setup(char *str)
563 {
564 	if (!str)
565 		return -EINVAL;
566 
567 	if (!strcmp(str, "poll")) {
568 		printk("using polling idle threads.\n");
569 		pm_idle = poll_idle;
570 	} else if (!strcmp(str, "mwait"))
571 		force_mwait = 1;
572 	else if (!strcmp(str, "halt")) {
573 		/*
574 		 * When the boot option of idle=halt is added, halt is
575 		 * forced to be used for CPU idle. In such case CPU C2/C3
576 		 * won't be used again.
577 		 * To continue to load the CPU idle driver, don't touch
578 		 * the boot_option_idle_override.
579 		 */
580 		pm_idle = default_idle;
581 		idle_halt = 1;
582 		return 0;
583 	} else if (!strcmp(str, "nomwait")) {
584 		/*
585 		 * If the boot option of "idle=nomwait" is added,
586 		 * it means that mwait will be disabled for CPU C2/C3
587 		 * states. In such case it won't touch the variable
588 		 * of boot_option_idle_override.
589 		 */
590 		idle_nomwait = 1;
591 		return 0;
592 	} else
593 		return -1;
594 
595 	boot_option_idle_override = 1;
596 	return 0;
597 }
598 early_param("idle", idle_setup);
599 
600 unsigned long arch_align_stack(unsigned long sp)
601 {
602 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
603 		sp -= get_random_int() % 8192;
604 	return sp & ~0xf;
605 }
606 
607 unsigned long arch_randomize_brk(struct mm_struct *mm)
608 {
609 	unsigned long range_end = mm->brk + 0x02000000;
610 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
611 }
612 
613