xref: /openbmc/linux/arch/x86/kernel/process.c (revision e2f1cf25)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 
33 /*
34  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
35  * no more per-task TSS's. The TSS size is kept cacheline-aligned
36  * so they are allowed to end up in the .data..cacheline_aligned
37  * section. Since TSS's are completely CPU-local, we want them
38  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
39  */
40 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
41 	.x86_tss = {
42 		.sp0 = TOP_OF_INIT_STACK,
43 #ifdef CONFIG_X86_32
44 		.ss0 = __KERNEL_DS,
45 		.ss1 = __KERNEL_CS,
46 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
47 #endif
48 	 },
49 #ifdef CONFIG_X86_32
50 	 /*
51 	  * Note that the .io_bitmap member must be extra-big. This is because
52 	  * the CPU will access an additional byte beyond the end of the IO
53 	  * permission bitmap. The extra byte must be all 1 bits, and must
54 	  * be within the limit.
55 	  */
56 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
57 #endif
58 };
59 EXPORT_PER_CPU_SYMBOL(cpu_tss);
60 
61 #ifdef CONFIG_X86_64
62 static DEFINE_PER_CPU(unsigned char, is_idle);
63 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
64 
65 void idle_notifier_register(struct notifier_block *n)
66 {
67 	atomic_notifier_chain_register(&idle_notifier, n);
68 }
69 EXPORT_SYMBOL_GPL(idle_notifier_register);
70 
71 void idle_notifier_unregister(struct notifier_block *n)
72 {
73 	atomic_notifier_chain_unregister(&idle_notifier, n);
74 }
75 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
76 #endif
77 
78 /*
79  * this gets called so that we can store lazy state into memory and copy the
80  * current task into the new thread.
81  */
82 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
83 {
84 	memcpy(dst, src, arch_task_struct_size);
85 
86 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
87 }
88 
89 /*
90  * Free current thread data structures etc..
91  */
92 void exit_thread(void)
93 {
94 	struct task_struct *me = current;
95 	struct thread_struct *t = &me->thread;
96 	unsigned long *bp = t->io_bitmap_ptr;
97 	struct fpu *fpu = &t->fpu;
98 
99 	if (bp) {
100 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
101 
102 		t->io_bitmap_ptr = NULL;
103 		clear_thread_flag(TIF_IO_BITMAP);
104 		/*
105 		 * Careful, clear this in the TSS too:
106 		 */
107 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
108 		t->io_bitmap_max = 0;
109 		put_cpu();
110 		kfree(bp);
111 	}
112 
113 	fpu__drop(fpu);
114 }
115 
116 void flush_thread(void)
117 {
118 	struct task_struct *tsk = current;
119 
120 	flush_ptrace_hw_breakpoint(tsk);
121 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
122 
123 	fpu__clear(&tsk->thread.fpu);
124 }
125 
126 static void hard_disable_TSC(void)
127 {
128 	cr4_set_bits(X86_CR4_TSD);
129 }
130 
131 void disable_TSC(void)
132 {
133 	preempt_disable();
134 	if (!test_and_set_thread_flag(TIF_NOTSC))
135 		/*
136 		 * Must flip the CPU state synchronously with
137 		 * TIF_NOTSC in the current running context.
138 		 */
139 		hard_disable_TSC();
140 	preempt_enable();
141 }
142 
143 static void hard_enable_TSC(void)
144 {
145 	cr4_clear_bits(X86_CR4_TSD);
146 }
147 
148 static void enable_TSC(void)
149 {
150 	preempt_disable();
151 	if (test_and_clear_thread_flag(TIF_NOTSC))
152 		/*
153 		 * Must flip the CPU state synchronously with
154 		 * TIF_NOTSC in the current running context.
155 		 */
156 		hard_enable_TSC();
157 	preempt_enable();
158 }
159 
160 int get_tsc_mode(unsigned long adr)
161 {
162 	unsigned int val;
163 
164 	if (test_thread_flag(TIF_NOTSC))
165 		val = PR_TSC_SIGSEGV;
166 	else
167 		val = PR_TSC_ENABLE;
168 
169 	return put_user(val, (unsigned int __user *)adr);
170 }
171 
172 int set_tsc_mode(unsigned int val)
173 {
174 	if (val == PR_TSC_SIGSEGV)
175 		disable_TSC();
176 	else if (val == PR_TSC_ENABLE)
177 		enable_TSC();
178 	else
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 
184 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
185 		      struct tss_struct *tss)
186 {
187 	struct thread_struct *prev, *next;
188 
189 	prev = &prev_p->thread;
190 	next = &next_p->thread;
191 
192 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
193 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
194 		unsigned long debugctl = get_debugctlmsr();
195 
196 		debugctl &= ~DEBUGCTLMSR_BTF;
197 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
198 			debugctl |= DEBUGCTLMSR_BTF;
199 
200 		update_debugctlmsr(debugctl);
201 	}
202 
203 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
204 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
205 		/* prev and next are different */
206 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
207 			hard_disable_TSC();
208 		else
209 			hard_enable_TSC();
210 	}
211 
212 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
213 		/*
214 		 * Copy the relevant range of the IO bitmap.
215 		 * Normally this is 128 bytes or less:
216 		 */
217 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
218 		       max(prev->io_bitmap_max, next->io_bitmap_max));
219 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
220 		/*
221 		 * Clear any possible leftover bits:
222 		 */
223 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
224 	}
225 	propagate_user_return_notify(prev_p, next_p);
226 }
227 
228 /*
229  * Idle related variables and functions
230  */
231 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
232 EXPORT_SYMBOL(boot_option_idle_override);
233 
234 static void (*x86_idle)(void);
235 
236 #ifndef CONFIG_SMP
237 static inline void play_dead(void)
238 {
239 	BUG();
240 }
241 #endif
242 
243 #ifdef CONFIG_X86_64
244 void enter_idle(void)
245 {
246 	this_cpu_write(is_idle, 1);
247 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
248 }
249 
250 static void __exit_idle(void)
251 {
252 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
253 		return;
254 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
255 }
256 
257 /* Called from interrupts to signify idle end */
258 void exit_idle(void)
259 {
260 	/* idle loop has pid 0 */
261 	if (current->pid)
262 		return;
263 	__exit_idle();
264 }
265 #endif
266 
267 void arch_cpu_idle_enter(void)
268 {
269 	local_touch_nmi();
270 	enter_idle();
271 }
272 
273 void arch_cpu_idle_exit(void)
274 {
275 	__exit_idle();
276 }
277 
278 void arch_cpu_idle_dead(void)
279 {
280 	play_dead();
281 }
282 
283 /*
284  * Called from the generic idle code.
285  */
286 void arch_cpu_idle(void)
287 {
288 	x86_idle();
289 }
290 
291 /*
292  * We use this if we don't have any better idle routine..
293  */
294 void default_idle(void)
295 {
296 	trace_cpu_idle_rcuidle(1, smp_processor_id());
297 	safe_halt();
298 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
299 }
300 #ifdef CONFIG_APM_MODULE
301 EXPORT_SYMBOL(default_idle);
302 #endif
303 
304 #ifdef CONFIG_XEN
305 bool xen_set_default_idle(void)
306 {
307 	bool ret = !!x86_idle;
308 
309 	x86_idle = default_idle;
310 
311 	return ret;
312 }
313 #endif
314 void stop_this_cpu(void *dummy)
315 {
316 	local_irq_disable();
317 	/*
318 	 * Remove this CPU:
319 	 */
320 	set_cpu_online(smp_processor_id(), false);
321 	disable_local_APIC();
322 
323 	for (;;)
324 		halt();
325 }
326 
327 bool amd_e400_c1e_detected;
328 EXPORT_SYMBOL(amd_e400_c1e_detected);
329 
330 static cpumask_var_t amd_e400_c1e_mask;
331 
332 void amd_e400_remove_cpu(int cpu)
333 {
334 	if (amd_e400_c1e_mask != NULL)
335 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
336 }
337 
338 /*
339  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
340  * pending message MSR. If we detect C1E, then we handle it the same
341  * way as C3 power states (local apic timer and TSC stop)
342  */
343 static void amd_e400_idle(void)
344 {
345 	if (!amd_e400_c1e_detected) {
346 		u32 lo, hi;
347 
348 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
349 
350 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
351 			amd_e400_c1e_detected = true;
352 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
353 				mark_tsc_unstable("TSC halt in AMD C1E");
354 			pr_info("System has AMD C1E enabled\n");
355 		}
356 	}
357 
358 	if (amd_e400_c1e_detected) {
359 		int cpu = smp_processor_id();
360 
361 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
362 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
363 			/* Force broadcast so ACPI can not interfere. */
364 			tick_broadcast_force();
365 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
366 		}
367 		tick_broadcast_enter();
368 
369 		default_idle();
370 
371 		/*
372 		 * The switch back from broadcast mode needs to be
373 		 * called with interrupts disabled.
374 		 */
375 		local_irq_disable();
376 		tick_broadcast_exit();
377 		local_irq_enable();
378 	} else
379 		default_idle();
380 }
381 
382 /*
383  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
384  * We can't rely on cpuidle installing MWAIT, because it will not load
385  * on systems that support only C1 -- so the boot default must be MWAIT.
386  *
387  * Some AMD machines are the opposite, they depend on using HALT.
388  *
389  * So for default C1, which is used during boot until cpuidle loads,
390  * use MWAIT-C1 on Intel HW that has it, else use HALT.
391  */
392 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
393 {
394 	if (c->x86_vendor != X86_VENDOR_INTEL)
395 		return 0;
396 
397 	if (!cpu_has(c, X86_FEATURE_MWAIT))
398 		return 0;
399 
400 	return 1;
401 }
402 
403 /*
404  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
405  * with interrupts enabled and no flags, which is backwards compatible with the
406  * original MWAIT implementation.
407  */
408 static void mwait_idle(void)
409 {
410 	if (!current_set_polling_and_test()) {
411 		trace_cpu_idle_rcuidle(1, smp_processor_id());
412 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
413 			smp_mb(); /* quirk */
414 			clflush((void *)&current_thread_info()->flags);
415 			smp_mb(); /* quirk */
416 		}
417 
418 		__monitor((void *)&current_thread_info()->flags, 0, 0);
419 		if (!need_resched())
420 			__sti_mwait(0, 0);
421 		else
422 			local_irq_enable();
423 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
424 	} else {
425 		local_irq_enable();
426 	}
427 	__current_clr_polling();
428 }
429 
430 void select_idle_routine(const struct cpuinfo_x86 *c)
431 {
432 #ifdef CONFIG_SMP
433 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
434 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
435 #endif
436 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
437 		return;
438 
439 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
440 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
441 		pr_info("using AMD E400 aware idle routine\n");
442 		x86_idle = amd_e400_idle;
443 	} else if (prefer_mwait_c1_over_halt(c)) {
444 		pr_info("using mwait in idle threads\n");
445 		x86_idle = mwait_idle;
446 	} else
447 		x86_idle = default_idle;
448 }
449 
450 void __init init_amd_e400_c1e_mask(void)
451 {
452 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
453 	if (x86_idle == amd_e400_idle)
454 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
455 }
456 
457 static int __init idle_setup(char *str)
458 {
459 	if (!str)
460 		return -EINVAL;
461 
462 	if (!strcmp(str, "poll")) {
463 		pr_info("using polling idle threads\n");
464 		boot_option_idle_override = IDLE_POLL;
465 		cpu_idle_poll_ctrl(true);
466 	} else if (!strcmp(str, "halt")) {
467 		/*
468 		 * When the boot option of idle=halt is added, halt is
469 		 * forced to be used for CPU idle. In such case CPU C2/C3
470 		 * won't be used again.
471 		 * To continue to load the CPU idle driver, don't touch
472 		 * the boot_option_idle_override.
473 		 */
474 		x86_idle = default_idle;
475 		boot_option_idle_override = IDLE_HALT;
476 	} else if (!strcmp(str, "nomwait")) {
477 		/*
478 		 * If the boot option of "idle=nomwait" is added,
479 		 * it means that mwait will be disabled for CPU C2/C3
480 		 * states. In such case it won't touch the variable
481 		 * of boot_option_idle_override.
482 		 */
483 		boot_option_idle_override = IDLE_NOMWAIT;
484 	} else
485 		return -1;
486 
487 	return 0;
488 }
489 early_param("idle", idle_setup);
490 
491 unsigned long arch_align_stack(unsigned long sp)
492 {
493 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
494 		sp -= get_random_int() % 8192;
495 	return sp & ~0xf;
496 }
497 
498 unsigned long arch_randomize_brk(struct mm_struct *mm)
499 {
500 	unsigned long range_end = mm->brk + 0x02000000;
501 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
502 }
503 
504