xref: /openbmc/linux/arch/x86/kernel/process.c (revision dfc53baa)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45 #include <asm/frame.h>
46 
47 #include "process.h"
48 
49 /*
50  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51  * no more per-task TSS's. The TSS size is kept cacheline-aligned
52  * so they are allowed to end up in the .data..cacheline_aligned
53  * section. Since TSS's are completely CPU-local, we want them
54  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55  */
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 	.x86_tss = {
58 		/*
59 		 * .sp0 is only used when entering ring 0 from a lower
60 		 * privilege level.  Since the init task never runs anything
61 		 * but ring 0 code, there is no need for a valid value here.
62 		 * Poison it.
63 		 */
64 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65 
66 		/*
67 		 * .sp1 is cpu_current_top_of_stack.  The init task never
68 		 * runs user code, but cpu_current_top_of_stack should still
69 		 * be well defined before the first context switch.
70 		 */
71 		.sp1 = TOP_OF_INIT_STACK,
72 
73 #ifdef CONFIG_X86_32
74 		.ss0 = __KERNEL_DS,
75 		.ss1 = __KERNEL_CS,
76 #endif
77 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
78 	 },
79 };
80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81 
82 DEFINE_PER_CPU(bool, __tss_limit_invalid);
83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
84 
85 /*
86  * this gets called so that we can store lazy state into memory and copy the
87  * current task into the new thread.
88  */
89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 	memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 	dst->thread.vm86 = NULL;
94 #endif
95 
96 	return fpu__copy(dst, src);
97 }
98 
99 /*
100  * Free thread data structures etc..
101  */
102 void exit_thread(struct task_struct *tsk)
103 {
104 	struct thread_struct *t = &tsk->thread;
105 	struct fpu *fpu = &t->fpu;
106 
107 	if (test_thread_flag(TIF_IO_BITMAP))
108 		io_bitmap_exit(tsk);
109 
110 	free_vm86(t);
111 
112 	fpu__drop(fpu);
113 }
114 
115 static int set_new_tls(struct task_struct *p, unsigned long tls)
116 {
117 	struct user_desc __user *utls = (struct user_desc __user *)tls;
118 
119 	if (in_ia32_syscall())
120 		return do_set_thread_area(p, -1, utls, 0);
121 	else
122 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123 }
124 
125 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126 		struct task_struct *p, unsigned long tls)
127 {
128 	struct inactive_task_frame *frame;
129 	struct fork_frame *fork_frame;
130 	struct pt_regs *childregs;
131 	int ret = 0;
132 
133 	childregs = task_pt_regs(p);
134 	fork_frame = container_of(childregs, struct fork_frame, regs);
135 	frame = &fork_frame->frame;
136 
137 	frame->bp = encode_frame_pointer(childregs);
138 	frame->ret_addr = (unsigned long) ret_from_fork;
139 	p->thread.sp = (unsigned long) fork_frame;
140 	p->thread.io_bitmap = NULL;
141 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142 
143 #ifdef CONFIG_X86_64
144 	current_save_fsgs();
145 	p->thread.fsindex = current->thread.fsindex;
146 	p->thread.fsbase = current->thread.fsbase;
147 	p->thread.gsindex = current->thread.gsindex;
148 	p->thread.gsbase = current->thread.gsbase;
149 
150 	savesegment(es, p->thread.es);
151 	savesegment(ds, p->thread.ds);
152 #else
153 	p->thread.sp0 = (unsigned long) (childregs + 1);
154 	/*
155 	 * Clear all status flags including IF and set fixed bit. 64bit
156 	 * does not have this initialization as the frame does not contain
157 	 * flags. The flags consistency (especially vs. AC) is there
158 	 * ensured via objtool, which lacks 32bit support.
159 	 */
160 	frame->flags = X86_EFLAGS_FIXED;
161 #endif
162 
163 	/* Kernel thread ? */
164 	if (unlikely(p->flags & PF_KTHREAD)) {
165 		memset(childregs, 0, sizeof(struct pt_regs));
166 		kthread_frame_init(frame, sp, arg);
167 		return 0;
168 	}
169 
170 	frame->bx = 0;
171 	*childregs = *current_pt_regs();
172 	childregs->ax = 0;
173 	if (sp)
174 		childregs->sp = sp;
175 
176 #ifdef CONFIG_X86_32
177 	task_user_gs(p) = get_user_gs(current_pt_regs());
178 #endif
179 
180 	/* Set a new TLS for the child thread? */
181 	if (clone_flags & CLONE_SETTLS)
182 		ret = set_new_tls(p, tls);
183 
184 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
185 		io_bitmap_share(p);
186 
187 	return ret;
188 }
189 
190 void flush_thread(void)
191 {
192 	struct task_struct *tsk = current;
193 
194 	flush_ptrace_hw_breakpoint(tsk);
195 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
196 
197 	fpu__clear_all(&tsk->thread.fpu);
198 }
199 
200 void disable_TSC(void)
201 {
202 	preempt_disable();
203 	if (!test_and_set_thread_flag(TIF_NOTSC))
204 		/*
205 		 * Must flip the CPU state synchronously with
206 		 * TIF_NOTSC in the current running context.
207 		 */
208 		cr4_set_bits(X86_CR4_TSD);
209 	preempt_enable();
210 }
211 
212 static void enable_TSC(void)
213 {
214 	preempt_disable();
215 	if (test_and_clear_thread_flag(TIF_NOTSC))
216 		/*
217 		 * Must flip the CPU state synchronously with
218 		 * TIF_NOTSC in the current running context.
219 		 */
220 		cr4_clear_bits(X86_CR4_TSD);
221 	preempt_enable();
222 }
223 
224 int get_tsc_mode(unsigned long adr)
225 {
226 	unsigned int val;
227 
228 	if (test_thread_flag(TIF_NOTSC))
229 		val = PR_TSC_SIGSEGV;
230 	else
231 		val = PR_TSC_ENABLE;
232 
233 	return put_user(val, (unsigned int __user *)adr);
234 }
235 
236 int set_tsc_mode(unsigned int val)
237 {
238 	if (val == PR_TSC_SIGSEGV)
239 		disable_TSC();
240 	else if (val == PR_TSC_ENABLE)
241 		enable_TSC();
242 	else
243 		return -EINVAL;
244 
245 	return 0;
246 }
247 
248 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
249 
250 static void set_cpuid_faulting(bool on)
251 {
252 	u64 msrval;
253 
254 	msrval = this_cpu_read(msr_misc_features_shadow);
255 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
256 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
257 	this_cpu_write(msr_misc_features_shadow, msrval);
258 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
259 }
260 
261 static void disable_cpuid(void)
262 {
263 	preempt_disable();
264 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
265 		/*
266 		 * Must flip the CPU state synchronously with
267 		 * TIF_NOCPUID in the current running context.
268 		 */
269 		set_cpuid_faulting(true);
270 	}
271 	preempt_enable();
272 }
273 
274 static void enable_cpuid(void)
275 {
276 	preempt_disable();
277 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
278 		/*
279 		 * Must flip the CPU state synchronously with
280 		 * TIF_NOCPUID in the current running context.
281 		 */
282 		set_cpuid_faulting(false);
283 	}
284 	preempt_enable();
285 }
286 
287 static int get_cpuid_mode(void)
288 {
289 	return !test_thread_flag(TIF_NOCPUID);
290 }
291 
292 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
293 {
294 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
295 		return -ENODEV;
296 
297 	if (cpuid_enabled)
298 		enable_cpuid();
299 	else
300 		disable_cpuid();
301 
302 	return 0;
303 }
304 
305 /*
306  * Called immediately after a successful exec.
307  */
308 void arch_setup_new_exec(void)
309 {
310 	/* If cpuid was previously disabled for this task, re-enable it. */
311 	if (test_thread_flag(TIF_NOCPUID))
312 		enable_cpuid();
313 
314 	/*
315 	 * Don't inherit TIF_SSBD across exec boundary when
316 	 * PR_SPEC_DISABLE_NOEXEC is used.
317 	 */
318 	if (test_thread_flag(TIF_SSBD) &&
319 	    task_spec_ssb_noexec(current)) {
320 		clear_thread_flag(TIF_SSBD);
321 		task_clear_spec_ssb_disable(current);
322 		task_clear_spec_ssb_noexec(current);
323 		speculation_ctrl_update(task_thread_info(current)->flags);
324 	}
325 }
326 
327 #ifdef CONFIG_X86_IOPL_IOPERM
328 static inline void switch_to_bitmap(unsigned long tifp)
329 {
330 	/*
331 	 * Invalidate I/O bitmap if the previous task used it. This prevents
332 	 * any possible leakage of an active I/O bitmap.
333 	 *
334 	 * If the next task has an I/O bitmap it will handle it on exit to
335 	 * user mode.
336 	 */
337 	if (tifp & _TIF_IO_BITMAP)
338 		tss_invalidate_io_bitmap();
339 }
340 
341 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
342 {
343 	/*
344 	 * Copy at least the byte range of the incoming tasks bitmap which
345 	 * covers the permitted I/O ports.
346 	 *
347 	 * If the previous task which used an I/O bitmap had more bits
348 	 * permitted, then the copy needs to cover those as well so they
349 	 * get turned off.
350 	 */
351 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
352 	       max(tss->io_bitmap.prev_max, iobm->max));
353 
354 	/*
355 	 * Store the new max and the sequence number of this bitmap
356 	 * and a pointer to the bitmap itself.
357 	 */
358 	tss->io_bitmap.prev_max = iobm->max;
359 	tss->io_bitmap.prev_sequence = iobm->sequence;
360 }
361 
362 /**
363  * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
364  */
365 void native_tss_update_io_bitmap(void)
366 {
367 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
368 	struct thread_struct *t = &current->thread;
369 	u16 *base = &tss->x86_tss.io_bitmap_base;
370 
371 	if (!test_thread_flag(TIF_IO_BITMAP)) {
372 		native_tss_invalidate_io_bitmap();
373 		return;
374 	}
375 
376 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
377 		*base = IO_BITMAP_OFFSET_VALID_ALL;
378 	} else {
379 		struct io_bitmap *iobm = t->io_bitmap;
380 
381 		/*
382 		 * Only copy bitmap data when the sequence number differs. The
383 		 * update time is accounted to the incoming task.
384 		 */
385 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
386 			tss_copy_io_bitmap(tss, iobm);
387 
388 		/* Enable the bitmap */
389 		*base = IO_BITMAP_OFFSET_VALID_MAP;
390 	}
391 
392 	/*
393 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
394 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
395 	 * access from user space to trigger a #GP because tbe bitmap is outside
396 	 * the TSS limit.
397 	 */
398 	refresh_tss_limit();
399 }
400 #else /* CONFIG_X86_IOPL_IOPERM */
401 static inline void switch_to_bitmap(unsigned long tifp) { }
402 #endif
403 
404 #ifdef CONFIG_SMP
405 
406 struct ssb_state {
407 	struct ssb_state	*shared_state;
408 	raw_spinlock_t		lock;
409 	unsigned int		disable_state;
410 	unsigned long		local_state;
411 };
412 
413 #define LSTATE_SSB	0
414 
415 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
416 
417 void speculative_store_bypass_ht_init(void)
418 {
419 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
420 	unsigned int this_cpu = smp_processor_id();
421 	unsigned int cpu;
422 
423 	st->local_state = 0;
424 
425 	/*
426 	 * Shared state setup happens once on the first bringup
427 	 * of the CPU. It's not destroyed on CPU hotunplug.
428 	 */
429 	if (st->shared_state)
430 		return;
431 
432 	raw_spin_lock_init(&st->lock);
433 
434 	/*
435 	 * Go over HT siblings and check whether one of them has set up the
436 	 * shared state pointer already.
437 	 */
438 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
439 		if (cpu == this_cpu)
440 			continue;
441 
442 		if (!per_cpu(ssb_state, cpu).shared_state)
443 			continue;
444 
445 		/* Link it to the state of the sibling: */
446 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
447 		return;
448 	}
449 
450 	/*
451 	 * First HT sibling to come up on the core.  Link shared state of
452 	 * the first HT sibling to itself. The siblings on the same core
453 	 * which come up later will see the shared state pointer and link
454 	 * themself to the state of this CPU.
455 	 */
456 	st->shared_state = st;
457 }
458 
459 /*
460  * Logic is: First HT sibling enables SSBD for both siblings in the core
461  * and last sibling to disable it, disables it for the whole core. This how
462  * MSR_SPEC_CTRL works in "hardware":
463  *
464  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
465  */
466 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
467 {
468 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
469 	u64 msr = x86_amd_ls_cfg_base;
470 
471 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
472 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
473 		wrmsrl(MSR_AMD64_LS_CFG, msr);
474 		return;
475 	}
476 
477 	if (tifn & _TIF_SSBD) {
478 		/*
479 		 * Since this can race with prctl(), block reentry on the
480 		 * same CPU.
481 		 */
482 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
483 			return;
484 
485 		msr |= x86_amd_ls_cfg_ssbd_mask;
486 
487 		raw_spin_lock(&st->shared_state->lock);
488 		/* First sibling enables SSBD: */
489 		if (!st->shared_state->disable_state)
490 			wrmsrl(MSR_AMD64_LS_CFG, msr);
491 		st->shared_state->disable_state++;
492 		raw_spin_unlock(&st->shared_state->lock);
493 	} else {
494 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
495 			return;
496 
497 		raw_spin_lock(&st->shared_state->lock);
498 		st->shared_state->disable_state--;
499 		if (!st->shared_state->disable_state)
500 			wrmsrl(MSR_AMD64_LS_CFG, msr);
501 		raw_spin_unlock(&st->shared_state->lock);
502 	}
503 }
504 #else
505 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
506 {
507 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
508 
509 	wrmsrl(MSR_AMD64_LS_CFG, msr);
510 }
511 #endif
512 
513 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
514 {
515 	/*
516 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
517 	 * so ssbd_tif_to_spec_ctrl() just works.
518 	 */
519 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
520 }
521 
522 /*
523  * Update the MSRs managing speculation control, during context switch.
524  *
525  * tifp: Previous task's thread flags
526  * tifn: Next task's thread flags
527  */
528 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
529 						      unsigned long tifn)
530 {
531 	unsigned long tif_diff = tifp ^ tifn;
532 	u64 msr = x86_spec_ctrl_base;
533 	bool updmsr = false;
534 
535 	lockdep_assert_irqs_disabled();
536 
537 	/* Handle change of TIF_SSBD depending on the mitigation method. */
538 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
539 		if (tif_diff & _TIF_SSBD)
540 			amd_set_ssb_virt_state(tifn);
541 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
542 		if (tif_diff & _TIF_SSBD)
543 			amd_set_core_ssb_state(tifn);
544 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
545 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
546 		updmsr |= !!(tif_diff & _TIF_SSBD);
547 		msr |= ssbd_tif_to_spec_ctrl(tifn);
548 	}
549 
550 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
551 	if (IS_ENABLED(CONFIG_SMP) &&
552 	    static_branch_unlikely(&switch_to_cond_stibp)) {
553 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
554 		msr |= stibp_tif_to_spec_ctrl(tifn);
555 	}
556 
557 	if (updmsr)
558 		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
559 }
560 
561 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
562 {
563 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
564 		if (task_spec_ssb_disable(tsk))
565 			set_tsk_thread_flag(tsk, TIF_SSBD);
566 		else
567 			clear_tsk_thread_flag(tsk, TIF_SSBD);
568 
569 		if (task_spec_ib_disable(tsk))
570 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
571 		else
572 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
573 	}
574 	/* Return the updated threadinfo flags*/
575 	return task_thread_info(tsk)->flags;
576 }
577 
578 void speculation_ctrl_update(unsigned long tif)
579 {
580 	unsigned long flags;
581 
582 	/* Forced update. Make sure all relevant TIF flags are different */
583 	local_irq_save(flags);
584 	__speculation_ctrl_update(~tif, tif);
585 	local_irq_restore(flags);
586 }
587 
588 /* Called from seccomp/prctl update */
589 void speculation_ctrl_update_current(void)
590 {
591 	preempt_disable();
592 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
593 	preempt_enable();
594 }
595 
596 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
597 {
598 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
599 
600 	newval = cr4 ^ mask;
601 	if (newval != cr4) {
602 		this_cpu_write(cpu_tlbstate.cr4, newval);
603 		__write_cr4(newval);
604 	}
605 }
606 
607 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
608 {
609 	unsigned long tifp, tifn;
610 
611 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
612 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
613 
614 	switch_to_bitmap(tifp);
615 
616 	propagate_user_return_notify(prev_p, next_p);
617 
618 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
619 	    arch_has_block_step()) {
620 		unsigned long debugctl, msk;
621 
622 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
623 		debugctl &= ~DEBUGCTLMSR_BTF;
624 		msk = tifn & _TIF_BLOCKSTEP;
625 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
626 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
627 	}
628 
629 	if ((tifp ^ tifn) & _TIF_NOTSC)
630 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
631 
632 	if ((tifp ^ tifn) & _TIF_NOCPUID)
633 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
634 
635 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
636 		__speculation_ctrl_update(tifp, tifn);
637 	} else {
638 		speculation_ctrl_update_tif(prev_p);
639 		tifn = speculation_ctrl_update_tif(next_p);
640 
641 		/* Enforce MSR update to ensure consistent state */
642 		__speculation_ctrl_update(~tifn, tifn);
643 	}
644 
645 	if ((tifp ^ tifn) & _TIF_SLD)
646 		switch_to_sld(tifn);
647 }
648 
649 /*
650  * Idle related variables and functions
651  */
652 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
653 EXPORT_SYMBOL(boot_option_idle_override);
654 
655 static void (*x86_idle)(void);
656 
657 #ifndef CONFIG_SMP
658 static inline void play_dead(void)
659 {
660 	BUG();
661 }
662 #endif
663 
664 void arch_cpu_idle_enter(void)
665 {
666 	tsc_verify_tsc_adjust(false);
667 	local_touch_nmi();
668 }
669 
670 void arch_cpu_idle_dead(void)
671 {
672 	play_dead();
673 }
674 
675 /*
676  * Called from the generic idle code.
677  */
678 void arch_cpu_idle(void)
679 {
680 	x86_idle();
681 }
682 
683 /*
684  * We use this if we don't have any better idle routine..
685  */
686 void __cpuidle default_idle(void)
687 {
688 	safe_halt();
689 }
690 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
691 EXPORT_SYMBOL(default_idle);
692 #endif
693 
694 #ifdef CONFIG_XEN
695 bool xen_set_default_idle(void)
696 {
697 	bool ret = !!x86_idle;
698 
699 	x86_idle = default_idle;
700 
701 	return ret;
702 }
703 #endif
704 
705 void stop_this_cpu(void *dummy)
706 {
707 	local_irq_disable();
708 	/*
709 	 * Remove this CPU:
710 	 */
711 	set_cpu_online(smp_processor_id(), false);
712 	disable_local_APIC();
713 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
714 
715 	/*
716 	 * Use wbinvd on processors that support SME. This provides support
717 	 * for performing a successful kexec when going from SME inactive
718 	 * to SME active (or vice-versa). The cache must be cleared so that
719 	 * if there are entries with the same physical address, both with and
720 	 * without the encryption bit, they don't race each other when flushed
721 	 * and potentially end up with the wrong entry being committed to
722 	 * memory.
723 	 */
724 	if (boot_cpu_has(X86_FEATURE_SME))
725 		native_wbinvd();
726 	for (;;) {
727 		/*
728 		 * Use native_halt() so that memory contents don't change
729 		 * (stack usage and variables) after possibly issuing the
730 		 * native_wbinvd() above.
731 		 */
732 		native_halt();
733 	}
734 }
735 
736 /*
737  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
738  * states (local apic timer and TSC stop).
739  */
740 static void amd_e400_idle(void)
741 {
742 	/*
743 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
744 	 * gets set after static_cpu_has() places have been converted via
745 	 * alternatives.
746 	 */
747 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
748 		default_idle();
749 		return;
750 	}
751 
752 	tick_broadcast_enter();
753 
754 	default_idle();
755 
756 	/*
757 	 * The switch back from broadcast mode needs to be called with
758 	 * interrupts disabled.
759 	 */
760 	local_irq_disable();
761 	tick_broadcast_exit();
762 	local_irq_enable();
763 }
764 
765 /*
766  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
767  * We can't rely on cpuidle installing MWAIT, because it will not load
768  * on systems that support only C1 -- so the boot default must be MWAIT.
769  *
770  * Some AMD machines are the opposite, they depend on using HALT.
771  *
772  * So for default C1, which is used during boot until cpuidle loads,
773  * use MWAIT-C1 on Intel HW that has it, else use HALT.
774  */
775 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
776 {
777 	if (c->x86_vendor != X86_VENDOR_INTEL)
778 		return 0;
779 
780 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
781 		return 0;
782 
783 	return 1;
784 }
785 
786 /*
787  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
788  * with interrupts enabled and no flags, which is backwards compatible with the
789  * original MWAIT implementation.
790  */
791 static __cpuidle void mwait_idle(void)
792 {
793 	if (!current_set_polling_and_test()) {
794 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
795 			mb(); /* quirk */
796 			clflush((void *)&current_thread_info()->flags);
797 			mb(); /* quirk */
798 		}
799 
800 		__monitor((void *)&current_thread_info()->flags, 0, 0);
801 		if (!need_resched())
802 			__sti_mwait(0, 0);
803 		else
804 			local_irq_enable();
805 	} else {
806 		local_irq_enable();
807 	}
808 	__current_clr_polling();
809 }
810 
811 void select_idle_routine(const struct cpuinfo_x86 *c)
812 {
813 #ifdef CONFIG_SMP
814 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
815 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
816 #endif
817 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
818 		return;
819 
820 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
821 		pr_info("using AMD E400 aware idle routine\n");
822 		x86_idle = amd_e400_idle;
823 	} else if (prefer_mwait_c1_over_halt(c)) {
824 		pr_info("using mwait in idle threads\n");
825 		x86_idle = mwait_idle;
826 	} else
827 		x86_idle = default_idle;
828 }
829 
830 void amd_e400_c1e_apic_setup(void)
831 {
832 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
833 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
834 		local_irq_disable();
835 		tick_broadcast_force();
836 		local_irq_enable();
837 	}
838 }
839 
840 void __init arch_post_acpi_subsys_init(void)
841 {
842 	u32 lo, hi;
843 
844 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
845 		return;
846 
847 	/*
848 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
849 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
850 	 * MSR_K8_INT_PENDING_MSG.
851 	 */
852 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
853 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
854 		return;
855 
856 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
857 
858 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
859 		mark_tsc_unstable("TSC halt in AMD C1E");
860 	pr_info("System has AMD C1E enabled\n");
861 }
862 
863 static int __init idle_setup(char *str)
864 {
865 	if (!str)
866 		return -EINVAL;
867 
868 	if (!strcmp(str, "poll")) {
869 		pr_info("using polling idle threads\n");
870 		boot_option_idle_override = IDLE_POLL;
871 		cpu_idle_poll_ctrl(true);
872 	} else if (!strcmp(str, "halt")) {
873 		/*
874 		 * When the boot option of idle=halt is added, halt is
875 		 * forced to be used for CPU idle. In such case CPU C2/C3
876 		 * won't be used again.
877 		 * To continue to load the CPU idle driver, don't touch
878 		 * the boot_option_idle_override.
879 		 */
880 		x86_idle = default_idle;
881 		boot_option_idle_override = IDLE_HALT;
882 	} else if (!strcmp(str, "nomwait")) {
883 		/*
884 		 * If the boot option of "idle=nomwait" is added,
885 		 * it means that mwait will be disabled for CPU C2/C3
886 		 * states. In such case it won't touch the variable
887 		 * of boot_option_idle_override.
888 		 */
889 		boot_option_idle_override = IDLE_NOMWAIT;
890 	} else
891 		return -1;
892 
893 	return 0;
894 }
895 early_param("idle", idle_setup);
896 
897 unsigned long arch_align_stack(unsigned long sp)
898 {
899 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
900 		sp -= get_random_int() % 8192;
901 	return sp & ~0xf;
902 }
903 
904 unsigned long arch_randomize_brk(struct mm_struct *mm)
905 {
906 	return randomize_page(mm->brk, 0x02000000);
907 }
908 
909 /*
910  * Called from fs/proc with a reference on @p to find the function
911  * which called into schedule(). This needs to be done carefully
912  * because the task might wake up and we might look at a stack
913  * changing under us.
914  */
915 unsigned long get_wchan(struct task_struct *p)
916 {
917 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
918 	int count = 0;
919 
920 	if (p == current || p->state == TASK_RUNNING)
921 		return 0;
922 
923 	if (!try_get_task_stack(p))
924 		return 0;
925 
926 	start = (unsigned long)task_stack_page(p);
927 	if (!start)
928 		goto out;
929 
930 	/*
931 	 * Layout of the stack page:
932 	 *
933 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
934 	 * PADDING
935 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
936 	 * stack
937 	 * ----------- bottom = start
938 	 *
939 	 * The tasks stack pointer points at the location where the
940 	 * framepointer is stored. The data on the stack is:
941 	 * ... IP FP ... IP FP
942 	 *
943 	 * We need to read FP and IP, so we need to adjust the upper
944 	 * bound by another unsigned long.
945 	 */
946 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
947 	top -= 2 * sizeof(unsigned long);
948 	bottom = start;
949 
950 	sp = READ_ONCE(p->thread.sp);
951 	if (sp < bottom || sp > top)
952 		goto out;
953 
954 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
955 	do {
956 		if (fp < bottom || fp > top)
957 			goto out;
958 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
959 		if (!in_sched_functions(ip)) {
960 			ret = ip;
961 			goto out;
962 		}
963 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
964 	} while (count++ < 16 && p->state != TASK_RUNNING);
965 
966 out:
967 	put_task_stack(p);
968 	return ret;
969 }
970 
971 long do_arch_prctl_common(struct task_struct *task, int option,
972 			  unsigned long cpuid_enabled)
973 {
974 	switch (option) {
975 	case ARCH_GET_CPUID:
976 		return get_cpuid_mode();
977 	case ARCH_SET_CPUID:
978 		return set_cpuid_mode(task, cpuid_enabled);
979 	}
980 
981 	return -EINVAL;
982 }
983