1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/cpu.h> 18 #include <asm/system.h> 19 #include <asm/apic.h> 20 #include <asm/syscalls.h> 21 #include <asm/idle.h> 22 #include <asm/uaccess.h> 23 #include <asm/i387.h> 24 #include <asm/debugreg.h> 25 26 struct kmem_cache *task_xstate_cachep; 27 EXPORT_SYMBOL_GPL(task_xstate_cachep); 28 29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 30 { 31 int ret; 32 33 *dst = *src; 34 if (fpu_allocated(&src->thread.fpu)) { 35 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 36 ret = fpu_alloc(&dst->thread.fpu); 37 if (ret) 38 return ret; 39 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 40 } 41 return 0; 42 } 43 44 void free_thread_xstate(struct task_struct *tsk) 45 { 46 fpu_free(&tsk->thread.fpu); 47 } 48 49 void free_thread_info(struct thread_info *ti) 50 { 51 free_thread_xstate(ti->task); 52 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 53 } 54 55 void arch_task_cache_init(void) 56 { 57 task_xstate_cachep = 58 kmem_cache_create("task_xstate", xstate_size, 59 __alignof__(union thread_xstate), 60 SLAB_PANIC | SLAB_NOTRACK, NULL); 61 } 62 63 /* 64 * Free current thread data structures etc.. 65 */ 66 void exit_thread(void) 67 { 68 struct task_struct *me = current; 69 struct thread_struct *t = &me->thread; 70 unsigned long *bp = t->io_bitmap_ptr; 71 72 if (bp) { 73 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 74 75 t->io_bitmap_ptr = NULL; 76 clear_thread_flag(TIF_IO_BITMAP); 77 /* 78 * Careful, clear this in the TSS too: 79 */ 80 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 81 t->io_bitmap_max = 0; 82 put_cpu(); 83 kfree(bp); 84 } 85 } 86 87 void show_regs(struct pt_regs *regs) 88 { 89 show_registers(regs); 90 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs)); 91 } 92 93 void show_regs_common(void) 94 { 95 const char *vendor, *product, *board; 96 97 vendor = dmi_get_system_info(DMI_SYS_VENDOR); 98 if (!vendor) 99 vendor = ""; 100 product = dmi_get_system_info(DMI_PRODUCT_NAME); 101 if (!product) 102 product = ""; 103 104 /* Board Name is optional */ 105 board = dmi_get_system_info(DMI_BOARD_NAME); 106 107 printk(KERN_CONT "\n"); 108 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s", 109 current->pid, current->comm, print_tainted(), 110 init_utsname()->release, 111 (int)strcspn(init_utsname()->version, " "), 112 init_utsname()->version); 113 printk(KERN_CONT " "); 114 printk(KERN_CONT "%s %s", vendor, product); 115 if (board) { 116 printk(KERN_CONT "/"); 117 printk(KERN_CONT "%s", board); 118 } 119 printk(KERN_CONT "\n"); 120 } 121 122 void flush_thread(void) 123 { 124 struct task_struct *tsk = current; 125 126 flush_ptrace_hw_breakpoint(tsk); 127 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 128 /* 129 * Forget coprocessor state.. 130 */ 131 tsk->fpu_counter = 0; 132 clear_fpu(tsk); 133 clear_used_math(); 134 } 135 136 static void hard_disable_TSC(void) 137 { 138 write_cr4(read_cr4() | X86_CR4_TSD); 139 } 140 141 void disable_TSC(void) 142 { 143 preempt_disable(); 144 if (!test_and_set_thread_flag(TIF_NOTSC)) 145 /* 146 * Must flip the CPU state synchronously with 147 * TIF_NOTSC in the current running context. 148 */ 149 hard_disable_TSC(); 150 preempt_enable(); 151 } 152 153 static void hard_enable_TSC(void) 154 { 155 write_cr4(read_cr4() & ~X86_CR4_TSD); 156 } 157 158 static void enable_TSC(void) 159 { 160 preempt_disable(); 161 if (test_and_clear_thread_flag(TIF_NOTSC)) 162 /* 163 * Must flip the CPU state synchronously with 164 * TIF_NOTSC in the current running context. 165 */ 166 hard_enable_TSC(); 167 preempt_enable(); 168 } 169 170 int get_tsc_mode(unsigned long adr) 171 { 172 unsigned int val; 173 174 if (test_thread_flag(TIF_NOTSC)) 175 val = PR_TSC_SIGSEGV; 176 else 177 val = PR_TSC_ENABLE; 178 179 return put_user(val, (unsigned int __user *)adr); 180 } 181 182 int set_tsc_mode(unsigned int val) 183 { 184 if (val == PR_TSC_SIGSEGV) 185 disable_TSC(); 186 else if (val == PR_TSC_ENABLE) 187 enable_TSC(); 188 else 189 return -EINVAL; 190 191 return 0; 192 } 193 194 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 195 struct tss_struct *tss) 196 { 197 struct thread_struct *prev, *next; 198 199 prev = &prev_p->thread; 200 next = &next_p->thread; 201 202 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 203 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 204 unsigned long debugctl = get_debugctlmsr(); 205 206 debugctl &= ~DEBUGCTLMSR_BTF; 207 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 208 debugctl |= DEBUGCTLMSR_BTF; 209 210 update_debugctlmsr(debugctl); 211 } 212 213 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 214 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 215 /* prev and next are different */ 216 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 217 hard_disable_TSC(); 218 else 219 hard_enable_TSC(); 220 } 221 222 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 223 /* 224 * Copy the relevant range of the IO bitmap. 225 * Normally this is 128 bytes or less: 226 */ 227 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 228 max(prev->io_bitmap_max, next->io_bitmap_max)); 229 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 230 /* 231 * Clear any possible leftover bits: 232 */ 233 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 234 } 235 propagate_user_return_notify(prev_p, next_p); 236 } 237 238 int sys_fork(struct pt_regs *regs) 239 { 240 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 241 } 242 243 /* 244 * This is trivial, and on the face of it looks like it 245 * could equally well be done in user mode. 246 * 247 * Not so, for quite unobvious reasons - register pressure. 248 * In user mode vfork() cannot have a stack frame, and if 249 * done by calling the "clone()" system call directly, you 250 * do not have enough call-clobbered registers to hold all 251 * the information you need. 252 */ 253 int sys_vfork(struct pt_regs *regs) 254 { 255 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 256 NULL, NULL); 257 } 258 259 long 260 sys_clone(unsigned long clone_flags, unsigned long newsp, 261 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 262 { 263 if (!newsp) 264 newsp = regs->sp; 265 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 266 } 267 268 /* 269 * This gets run with %si containing the 270 * function to call, and %di containing 271 * the "args". 272 */ 273 extern void kernel_thread_helper(void); 274 275 /* 276 * Create a kernel thread 277 */ 278 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 279 { 280 struct pt_regs regs; 281 282 memset(®s, 0, sizeof(regs)); 283 284 regs.si = (unsigned long) fn; 285 regs.di = (unsigned long) arg; 286 287 #ifdef CONFIG_X86_32 288 regs.ds = __USER_DS; 289 regs.es = __USER_DS; 290 regs.fs = __KERNEL_PERCPU; 291 regs.gs = __KERNEL_STACK_CANARY; 292 #else 293 regs.ss = __KERNEL_DS; 294 #endif 295 296 regs.orig_ax = -1; 297 regs.ip = (unsigned long) kernel_thread_helper; 298 regs.cs = __KERNEL_CS | get_kernel_rpl(); 299 regs.flags = X86_EFLAGS_IF | 0x2; 300 301 /* Ok, create the new process.. */ 302 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 303 } 304 EXPORT_SYMBOL(kernel_thread); 305 306 /* 307 * sys_execve() executes a new program. 308 */ 309 long sys_execve(const char __user *name, 310 const char __user *const __user *argv, 311 const char __user *const __user *envp, struct pt_regs *regs) 312 { 313 long error; 314 char *filename; 315 316 filename = getname(name); 317 error = PTR_ERR(filename); 318 if (IS_ERR(filename)) 319 return error; 320 error = do_execve(filename, argv, envp, regs); 321 322 #ifdef CONFIG_X86_32 323 if (error == 0) { 324 /* Make sure we don't return using sysenter.. */ 325 set_thread_flag(TIF_IRET); 326 } 327 #endif 328 329 putname(filename); 330 return error; 331 } 332 333 /* 334 * Idle related variables and functions 335 */ 336 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 337 EXPORT_SYMBOL(boot_option_idle_override); 338 339 /* 340 * Powermanagement idle function, if any.. 341 */ 342 void (*pm_idle)(void); 343 EXPORT_SYMBOL(pm_idle); 344 345 #ifdef CONFIG_X86_32 346 /* 347 * This halt magic was a workaround for ancient floppy DMA 348 * wreckage. It should be safe to remove. 349 */ 350 static int hlt_counter; 351 void disable_hlt(void) 352 { 353 hlt_counter++; 354 } 355 EXPORT_SYMBOL(disable_hlt); 356 357 void enable_hlt(void) 358 { 359 hlt_counter--; 360 } 361 EXPORT_SYMBOL(enable_hlt); 362 363 static inline int hlt_use_halt(void) 364 { 365 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 366 } 367 #else 368 static inline int hlt_use_halt(void) 369 { 370 return 1; 371 } 372 #endif 373 374 /* 375 * We use this if we don't have any better 376 * idle routine.. 377 */ 378 void default_idle(void) 379 { 380 if (hlt_use_halt()) { 381 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 382 trace_cpu_idle(1, smp_processor_id()); 383 current_thread_info()->status &= ~TS_POLLING; 384 /* 385 * TS_POLLING-cleared state must be visible before we 386 * test NEED_RESCHED: 387 */ 388 smp_mb(); 389 390 if (!need_resched()) 391 safe_halt(); /* enables interrupts racelessly */ 392 else 393 local_irq_enable(); 394 current_thread_info()->status |= TS_POLLING; 395 trace_power_end(smp_processor_id()); 396 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 397 } else { 398 local_irq_enable(); 399 /* loop is done by the caller */ 400 cpu_relax(); 401 } 402 } 403 #ifdef CONFIG_APM_MODULE 404 EXPORT_SYMBOL(default_idle); 405 #endif 406 407 void stop_this_cpu(void *dummy) 408 { 409 local_irq_disable(); 410 /* 411 * Remove this CPU: 412 */ 413 set_cpu_online(smp_processor_id(), false); 414 disable_local_APIC(); 415 416 for (;;) { 417 if (hlt_works(smp_processor_id())) 418 halt(); 419 } 420 } 421 422 static void do_nothing(void *unused) 423 { 424 } 425 426 /* 427 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 428 * pm_idle and update to new pm_idle value. Required while changing pm_idle 429 * handler on SMP systems. 430 * 431 * Caller must have changed pm_idle to the new value before the call. Old 432 * pm_idle value will not be used by any CPU after the return of this function. 433 */ 434 void cpu_idle_wait(void) 435 { 436 smp_mb(); 437 /* kick all the CPUs so that they exit out of pm_idle */ 438 smp_call_function(do_nothing, NULL, 1); 439 } 440 EXPORT_SYMBOL_GPL(cpu_idle_wait); 441 442 /* 443 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 444 * which can obviate IPI to trigger checking of need_resched. 445 * We execute MONITOR against need_resched and enter optimized wait state 446 * through MWAIT. Whenever someone changes need_resched, we would be woken 447 * up from MWAIT (without an IPI). 448 * 449 * New with Core Duo processors, MWAIT can take some hints based on CPU 450 * capability. 451 */ 452 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 453 { 454 if (!need_resched()) { 455 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR)) 456 clflush((void *)¤t_thread_info()->flags); 457 458 __monitor((void *)¤t_thread_info()->flags, 0, 0); 459 smp_mb(); 460 if (!need_resched()) 461 __mwait(ax, cx); 462 } 463 } 464 465 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 466 static void mwait_idle(void) 467 { 468 if (!need_resched()) { 469 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 470 trace_cpu_idle(1, smp_processor_id()); 471 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR)) 472 clflush((void *)¤t_thread_info()->flags); 473 474 __monitor((void *)¤t_thread_info()->flags, 0, 0); 475 smp_mb(); 476 if (!need_resched()) 477 __sti_mwait(0, 0); 478 else 479 local_irq_enable(); 480 trace_power_end(smp_processor_id()); 481 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 482 } else 483 local_irq_enable(); 484 } 485 486 /* 487 * On SMP it's slightly faster (but much more power-consuming!) 488 * to poll the ->work.need_resched flag instead of waiting for the 489 * cross-CPU IPI to arrive. Use this option with caution. 490 */ 491 static void poll_idle(void) 492 { 493 trace_power_start(POWER_CSTATE, 0, smp_processor_id()); 494 trace_cpu_idle(0, smp_processor_id()); 495 local_irq_enable(); 496 while (!need_resched()) 497 cpu_relax(); 498 trace_power_end(smp_processor_id()); 499 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 500 } 501 502 /* 503 * mwait selection logic: 504 * 505 * It depends on the CPU. For AMD CPUs that support MWAIT this is 506 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 507 * then depend on a clock divisor and current Pstate of the core. If 508 * all cores of a processor are in halt state (C1) the processor can 509 * enter the C1E (C1 enhanced) state. If mwait is used this will never 510 * happen. 511 * 512 * idle=mwait overrides this decision and forces the usage of mwait. 513 */ 514 515 #define MWAIT_INFO 0x05 516 #define MWAIT_ECX_EXTENDED_INFO 0x01 517 #define MWAIT_EDX_C1 0xf0 518 519 int mwait_usable(const struct cpuinfo_x86 *c) 520 { 521 u32 eax, ebx, ecx, edx; 522 523 if (boot_option_idle_override == IDLE_FORCE_MWAIT) 524 return 1; 525 526 if (c->cpuid_level < MWAIT_INFO) 527 return 0; 528 529 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 530 /* Check, whether EDX has extended info about MWAIT */ 531 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 532 return 1; 533 534 /* 535 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 536 * C1 supports MWAIT 537 */ 538 return (edx & MWAIT_EDX_C1); 539 } 540 541 bool c1e_detected; 542 EXPORT_SYMBOL(c1e_detected); 543 544 static cpumask_var_t c1e_mask; 545 546 void c1e_remove_cpu(int cpu) 547 { 548 if (c1e_mask != NULL) 549 cpumask_clear_cpu(cpu, c1e_mask); 550 } 551 552 /* 553 * C1E aware idle routine. We check for C1E active in the interrupt 554 * pending message MSR. If we detect C1E, then we handle it the same 555 * way as C3 power states (local apic timer and TSC stop) 556 */ 557 static void c1e_idle(void) 558 { 559 if (need_resched()) 560 return; 561 562 if (!c1e_detected) { 563 u32 lo, hi; 564 565 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 566 567 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 568 c1e_detected = true; 569 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 570 mark_tsc_unstable("TSC halt in AMD C1E"); 571 printk(KERN_INFO "System has AMD C1E enabled\n"); 572 } 573 } 574 575 if (c1e_detected) { 576 int cpu = smp_processor_id(); 577 578 if (!cpumask_test_cpu(cpu, c1e_mask)) { 579 cpumask_set_cpu(cpu, c1e_mask); 580 /* 581 * Force broadcast so ACPI can not interfere. 582 */ 583 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 584 &cpu); 585 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 586 cpu); 587 } 588 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 589 590 default_idle(); 591 592 /* 593 * The switch back from broadcast mode needs to be 594 * called with interrupts disabled. 595 */ 596 local_irq_disable(); 597 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 598 local_irq_enable(); 599 } else 600 default_idle(); 601 } 602 603 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 604 { 605 #ifdef CONFIG_SMP 606 if (pm_idle == poll_idle && smp_num_siblings > 1) { 607 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 608 " performance may degrade.\n"); 609 } 610 #endif 611 if (pm_idle) 612 return; 613 614 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 615 /* 616 * One CPU supports mwait => All CPUs supports mwait 617 */ 618 printk(KERN_INFO "using mwait in idle threads.\n"); 619 pm_idle = mwait_idle; 620 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 621 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 622 printk(KERN_INFO "using C1E aware idle routine\n"); 623 pm_idle = c1e_idle; 624 } else 625 pm_idle = default_idle; 626 } 627 628 void __init init_c1e_mask(void) 629 { 630 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 631 if (pm_idle == c1e_idle) 632 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 633 } 634 635 static int __init idle_setup(char *str) 636 { 637 if (!str) 638 return -EINVAL; 639 640 if (!strcmp(str, "poll")) { 641 printk("using polling idle threads.\n"); 642 pm_idle = poll_idle; 643 boot_option_idle_override = IDLE_POLL; 644 } else if (!strcmp(str, "mwait")) { 645 boot_option_idle_override = IDLE_FORCE_MWAIT; 646 } else if (!strcmp(str, "halt")) { 647 /* 648 * When the boot option of idle=halt is added, halt is 649 * forced to be used for CPU idle. In such case CPU C2/C3 650 * won't be used again. 651 * To continue to load the CPU idle driver, don't touch 652 * the boot_option_idle_override. 653 */ 654 pm_idle = default_idle; 655 boot_option_idle_override = IDLE_HALT; 656 } else if (!strcmp(str, "nomwait")) { 657 /* 658 * If the boot option of "idle=nomwait" is added, 659 * it means that mwait will be disabled for CPU C2/C3 660 * states. In such case it won't touch the variable 661 * of boot_option_idle_override. 662 */ 663 boot_option_idle_override = IDLE_NOMWAIT; 664 } else 665 return -1; 666 667 return 0; 668 } 669 early_param("idle", idle_setup); 670 671 unsigned long arch_align_stack(unsigned long sp) 672 { 673 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 674 sp -= get_random_int() % 8192; 675 return sp & ~0xf; 676 } 677 678 unsigned long arch_randomize_brk(struct mm_struct *mm) 679 { 680 unsigned long range_end = mm->brk + 0x02000000; 681 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 682 } 683 684