xref: /openbmc/linux/arch/x86/kernel/process.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/cpu.h>
18 #include <asm/system.h>
19 #include <asm/apic.h>
20 #include <asm/syscalls.h>
21 #include <asm/idle.h>
22 #include <asm/uaccess.h>
23 #include <asm/i387.h>
24 #include <asm/debugreg.h>
25 
26 struct kmem_cache *task_xstate_cachep;
27 EXPORT_SYMBOL_GPL(task_xstate_cachep);
28 
29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
30 {
31 	int ret;
32 
33 	*dst = *src;
34 	if (fpu_allocated(&src->thread.fpu)) {
35 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 		ret = fpu_alloc(&dst->thread.fpu);
37 		if (ret)
38 			return ret;
39 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
40 	}
41 	return 0;
42 }
43 
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 	fpu_free(&tsk->thread.fpu);
47 }
48 
49 void free_thread_info(struct thread_info *ti)
50 {
51 	free_thread_xstate(ti->task);
52 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
53 }
54 
55 void arch_task_cache_init(void)
56 {
57         task_xstate_cachep =
58         	kmem_cache_create("task_xstate", xstate_size,
59 				  __alignof__(union thread_xstate),
60 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
61 }
62 
63 /*
64  * Free current thread data structures etc..
65  */
66 void exit_thread(void)
67 {
68 	struct task_struct *me = current;
69 	struct thread_struct *t = &me->thread;
70 	unsigned long *bp = t->io_bitmap_ptr;
71 
72 	if (bp) {
73 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
74 
75 		t->io_bitmap_ptr = NULL;
76 		clear_thread_flag(TIF_IO_BITMAP);
77 		/*
78 		 * Careful, clear this in the TSS too:
79 		 */
80 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
81 		t->io_bitmap_max = 0;
82 		put_cpu();
83 		kfree(bp);
84 	}
85 }
86 
87 void show_regs(struct pt_regs *regs)
88 {
89 	show_registers(regs);
90 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs));
91 }
92 
93 void show_regs_common(void)
94 {
95 	const char *vendor, *product, *board;
96 
97 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
98 	if (!vendor)
99 		vendor = "";
100 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101 	if (!product)
102 		product = "";
103 
104 	/* Board Name is optional */
105 	board = dmi_get_system_info(DMI_BOARD_NAME);
106 
107 	printk(KERN_CONT "\n");
108 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109 		current->pid, current->comm, print_tainted(),
110 		init_utsname()->release,
111 		(int)strcspn(init_utsname()->version, " "),
112 		init_utsname()->version);
113 	printk(KERN_CONT " ");
114 	printk(KERN_CONT "%s %s", vendor, product);
115 	if (board) {
116 		printk(KERN_CONT "/");
117 		printk(KERN_CONT "%s", board);
118 	}
119 	printk(KERN_CONT "\n");
120 }
121 
122 void flush_thread(void)
123 {
124 	struct task_struct *tsk = current;
125 
126 	flush_ptrace_hw_breakpoint(tsk);
127 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
128 	/*
129 	 * Forget coprocessor state..
130 	 */
131 	tsk->fpu_counter = 0;
132 	clear_fpu(tsk);
133 	clear_used_math();
134 }
135 
136 static void hard_disable_TSC(void)
137 {
138 	write_cr4(read_cr4() | X86_CR4_TSD);
139 }
140 
141 void disable_TSC(void)
142 {
143 	preempt_disable();
144 	if (!test_and_set_thread_flag(TIF_NOTSC))
145 		/*
146 		 * Must flip the CPU state synchronously with
147 		 * TIF_NOTSC in the current running context.
148 		 */
149 		hard_disable_TSC();
150 	preempt_enable();
151 }
152 
153 static void hard_enable_TSC(void)
154 {
155 	write_cr4(read_cr4() & ~X86_CR4_TSD);
156 }
157 
158 static void enable_TSC(void)
159 {
160 	preempt_disable();
161 	if (test_and_clear_thread_flag(TIF_NOTSC))
162 		/*
163 		 * Must flip the CPU state synchronously with
164 		 * TIF_NOTSC in the current running context.
165 		 */
166 		hard_enable_TSC();
167 	preempt_enable();
168 }
169 
170 int get_tsc_mode(unsigned long adr)
171 {
172 	unsigned int val;
173 
174 	if (test_thread_flag(TIF_NOTSC))
175 		val = PR_TSC_SIGSEGV;
176 	else
177 		val = PR_TSC_ENABLE;
178 
179 	return put_user(val, (unsigned int __user *)adr);
180 }
181 
182 int set_tsc_mode(unsigned int val)
183 {
184 	if (val == PR_TSC_SIGSEGV)
185 		disable_TSC();
186 	else if (val == PR_TSC_ENABLE)
187 		enable_TSC();
188 	else
189 		return -EINVAL;
190 
191 	return 0;
192 }
193 
194 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195 		      struct tss_struct *tss)
196 {
197 	struct thread_struct *prev, *next;
198 
199 	prev = &prev_p->thread;
200 	next = &next_p->thread;
201 
202 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204 		unsigned long debugctl = get_debugctlmsr();
205 
206 		debugctl &= ~DEBUGCTLMSR_BTF;
207 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208 			debugctl |= DEBUGCTLMSR_BTF;
209 
210 		update_debugctlmsr(debugctl);
211 	}
212 
213 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215 		/* prev and next are different */
216 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217 			hard_disable_TSC();
218 		else
219 			hard_enable_TSC();
220 	}
221 
222 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
223 		/*
224 		 * Copy the relevant range of the IO bitmap.
225 		 * Normally this is 128 bytes or less:
226 		 */
227 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228 		       max(prev->io_bitmap_max, next->io_bitmap_max));
229 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
230 		/*
231 		 * Clear any possible leftover bits:
232 		 */
233 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
234 	}
235 	propagate_user_return_notify(prev_p, next_p);
236 }
237 
238 int sys_fork(struct pt_regs *regs)
239 {
240 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
241 }
242 
243 /*
244  * This is trivial, and on the face of it looks like it
245  * could equally well be done in user mode.
246  *
247  * Not so, for quite unobvious reasons - register pressure.
248  * In user mode vfork() cannot have a stack frame, and if
249  * done by calling the "clone()" system call directly, you
250  * do not have enough call-clobbered registers to hold all
251  * the information you need.
252  */
253 int sys_vfork(struct pt_regs *regs)
254 {
255 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
256 		       NULL, NULL);
257 }
258 
259 long
260 sys_clone(unsigned long clone_flags, unsigned long newsp,
261 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
262 {
263 	if (!newsp)
264 		newsp = regs->sp;
265 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
266 }
267 
268 /*
269  * This gets run with %si containing the
270  * function to call, and %di containing
271  * the "args".
272  */
273 extern void kernel_thread_helper(void);
274 
275 /*
276  * Create a kernel thread
277  */
278 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
279 {
280 	struct pt_regs regs;
281 
282 	memset(&regs, 0, sizeof(regs));
283 
284 	regs.si = (unsigned long) fn;
285 	regs.di = (unsigned long) arg;
286 
287 #ifdef CONFIG_X86_32
288 	regs.ds = __USER_DS;
289 	regs.es = __USER_DS;
290 	regs.fs = __KERNEL_PERCPU;
291 	regs.gs = __KERNEL_STACK_CANARY;
292 #else
293 	regs.ss = __KERNEL_DS;
294 #endif
295 
296 	regs.orig_ax = -1;
297 	regs.ip = (unsigned long) kernel_thread_helper;
298 	regs.cs = __KERNEL_CS | get_kernel_rpl();
299 	regs.flags = X86_EFLAGS_IF | 0x2;
300 
301 	/* Ok, create the new process.. */
302 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
303 }
304 EXPORT_SYMBOL(kernel_thread);
305 
306 /*
307  * sys_execve() executes a new program.
308  */
309 long sys_execve(const char __user *name,
310 		const char __user *const __user *argv,
311 		const char __user *const __user *envp, struct pt_regs *regs)
312 {
313 	long error;
314 	char *filename;
315 
316 	filename = getname(name);
317 	error = PTR_ERR(filename);
318 	if (IS_ERR(filename))
319 		return error;
320 	error = do_execve(filename, argv, envp, regs);
321 
322 #ifdef CONFIG_X86_32
323 	if (error == 0) {
324 		/* Make sure we don't return using sysenter.. */
325                 set_thread_flag(TIF_IRET);
326         }
327 #endif
328 
329 	putname(filename);
330 	return error;
331 }
332 
333 /*
334  * Idle related variables and functions
335  */
336 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
337 EXPORT_SYMBOL(boot_option_idle_override);
338 
339 /*
340  * Powermanagement idle function, if any..
341  */
342 void (*pm_idle)(void);
343 EXPORT_SYMBOL(pm_idle);
344 
345 #ifdef CONFIG_X86_32
346 /*
347  * This halt magic was a workaround for ancient floppy DMA
348  * wreckage. It should be safe to remove.
349  */
350 static int hlt_counter;
351 void disable_hlt(void)
352 {
353 	hlt_counter++;
354 }
355 EXPORT_SYMBOL(disable_hlt);
356 
357 void enable_hlt(void)
358 {
359 	hlt_counter--;
360 }
361 EXPORT_SYMBOL(enable_hlt);
362 
363 static inline int hlt_use_halt(void)
364 {
365 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
366 }
367 #else
368 static inline int hlt_use_halt(void)
369 {
370 	return 1;
371 }
372 #endif
373 
374 /*
375  * We use this if we don't have any better
376  * idle routine..
377  */
378 void default_idle(void)
379 {
380 	if (hlt_use_halt()) {
381 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
382 		trace_cpu_idle(1, smp_processor_id());
383 		current_thread_info()->status &= ~TS_POLLING;
384 		/*
385 		 * TS_POLLING-cleared state must be visible before we
386 		 * test NEED_RESCHED:
387 		 */
388 		smp_mb();
389 
390 		if (!need_resched())
391 			safe_halt();	/* enables interrupts racelessly */
392 		else
393 			local_irq_enable();
394 		current_thread_info()->status |= TS_POLLING;
395 		trace_power_end(smp_processor_id());
396 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
397 	} else {
398 		local_irq_enable();
399 		/* loop is done by the caller */
400 		cpu_relax();
401 	}
402 }
403 #ifdef CONFIG_APM_MODULE
404 EXPORT_SYMBOL(default_idle);
405 #endif
406 
407 void stop_this_cpu(void *dummy)
408 {
409 	local_irq_disable();
410 	/*
411 	 * Remove this CPU:
412 	 */
413 	set_cpu_online(smp_processor_id(), false);
414 	disable_local_APIC();
415 
416 	for (;;) {
417 		if (hlt_works(smp_processor_id()))
418 			halt();
419 	}
420 }
421 
422 static void do_nothing(void *unused)
423 {
424 }
425 
426 /*
427  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
428  * pm_idle and update to new pm_idle value. Required while changing pm_idle
429  * handler on SMP systems.
430  *
431  * Caller must have changed pm_idle to the new value before the call. Old
432  * pm_idle value will not be used by any CPU after the return of this function.
433  */
434 void cpu_idle_wait(void)
435 {
436 	smp_mb();
437 	/* kick all the CPUs so that they exit out of pm_idle */
438 	smp_call_function(do_nothing, NULL, 1);
439 }
440 EXPORT_SYMBOL_GPL(cpu_idle_wait);
441 
442 /*
443  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
444  * which can obviate IPI to trigger checking of need_resched.
445  * We execute MONITOR against need_resched and enter optimized wait state
446  * through MWAIT. Whenever someone changes need_resched, we would be woken
447  * up from MWAIT (without an IPI).
448  *
449  * New with Core Duo processors, MWAIT can take some hints based on CPU
450  * capability.
451  */
452 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
453 {
454 	if (!need_resched()) {
455 		if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
456 			clflush((void *)&current_thread_info()->flags);
457 
458 		__monitor((void *)&current_thread_info()->flags, 0, 0);
459 		smp_mb();
460 		if (!need_resched())
461 			__mwait(ax, cx);
462 	}
463 }
464 
465 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
466 static void mwait_idle(void)
467 {
468 	if (!need_resched()) {
469 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
470 		trace_cpu_idle(1, smp_processor_id());
471 		if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
472 			clflush((void *)&current_thread_info()->flags);
473 
474 		__monitor((void *)&current_thread_info()->flags, 0, 0);
475 		smp_mb();
476 		if (!need_resched())
477 			__sti_mwait(0, 0);
478 		else
479 			local_irq_enable();
480 		trace_power_end(smp_processor_id());
481 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
482 	} else
483 		local_irq_enable();
484 }
485 
486 /*
487  * On SMP it's slightly faster (but much more power-consuming!)
488  * to poll the ->work.need_resched flag instead of waiting for the
489  * cross-CPU IPI to arrive. Use this option with caution.
490  */
491 static void poll_idle(void)
492 {
493 	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
494 	trace_cpu_idle(0, smp_processor_id());
495 	local_irq_enable();
496 	while (!need_resched())
497 		cpu_relax();
498 	trace_power_end(smp_processor_id());
499 	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
500 }
501 
502 /*
503  * mwait selection logic:
504  *
505  * It depends on the CPU. For AMD CPUs that support MWAIT this is
506  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
507  * then depend on a clock divisor and current Pstate of the core. If
508  * all cores of a processor are in halt state (C1) the processor can
509  * enter the C1E (C1 enhanced) state. If mwait is used this will never
510  * happen.
511  *
512  * idle=mwait overrides this decision and forces the usage of mwait.
513  */
514 
515 #define MWAIT_INFO			0x05
516 #define MWAIT_ECX_EXTENDED_INFO		0x01
517 #define MWAIT_EDX_C1			0xf0
518 
519 int mwait_usable(const struct cpuinfo_x86 *c)
520 {
521 	u32 eax, ebx, ecx, edx;
522 
523 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
524 		return 1;
525 
526 	if (c->cpuid_level < MWAIT_INFO)
527 		return 0;
528 
529 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
530 	/* Check, whether EDX has extended info about MWAIT */
531 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
532 		return 1;
533 
534 	/*
535 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
536 	 * C1  supports MWAIT
537 	 */
538 	return (edx & MWAIT_EDX_C1);
539 }
540 
541 bool c1e_detected;
542 EXPORT_SYMBOL(c1e_detected);
543 
544 static cpumask_var_t c1e_mask;
545 
546 void c1e_remove_cpu(int cpu)
547 {
548 	if (c1e_mask != NULL)
549 		cpumask_clear_cpu(cpu, c1e_mask);
550 }
551 
552 /*
553  * C1E aware idle routine. We check for C1E active in the interrupt
554  * pending message MSR. If we detect C1E, then we handle it the same
555  * way as C3 power states (local apic timer and TSC stop)
556  */
557 static void c1e_idle(void)
558 {
559 	if (need_resched())
560 		return;
561 
562 	if (!c1e_detected) {
563 		u32 lo, hi;
564 
565 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
566 
567 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
568 			c1e_detected = true;
569 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
570 				mark_tsc_unstable("TSC halt in AMD C1E");
571 			printk(KERN_INFO "System has AMD C1E enabled\n");
572 		}
573 	}
574 
575 	if (c1e_detected) {
576 		int cpu = smp_processor_id();
577 
578 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
579 			cpumask_set_cpu(cpu, c1e_mask);
580 			/*
581 			 * Force broadcast so ACPI can not interfere.
582 			 */
583 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
584 					   &cpu);
585 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
586 			       cpu);
587 		}
588 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
589 
590 		default_idle();
591 
592 		/*
593 		 * The switch back from broadcast mode needs to be
594 		 * called with interrupts disabled.
595 		 */
596 		 local_irq_disable();
597 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
598 		 local_irq_enable();
599 	} else
600 		default_idle();
601 }
602 
603 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
604 {
605 #ifdef CONFIG_SMP
606 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
607 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
608 			" performance may degrade.\n");
609 	}
610 #endif
611 	if (pm_idle)
612 		return;
613 
614 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
615 		/*
616 		 * One CPU supports mwait => All CPUs supports mwait
617 		 */
618 		printk(KERN_INFO "using mwait in idle threads.\n");
619 		pm_idle = mwait_idle;
620 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
621 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
622 		printk(KERN_INFO "using C1E aware idle routine\n");
623 		pm_idle = c1e_idle;
624 	} else
625 		pm_idle = default_idle;
626 }
627 
628 void __init init_c1e_mask(void)
629 {
630 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
631 	if (pm_idle == c1e_idle)
632 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
633 }
634 
635 static int __init idle_setup(char *str)
636 {
637 	if (!str)
638 		return -EINVAL;
639 
640 	if (!strcmp(str, "poll")) {
641 		printk("using polling idle threads.\n");
642 		pm_idle = poll_idle;
643 		boot_option_idle_override = IDLE_POLL;
644 	} else if (!strcmp(str, "mwait")) {
645 		boot_option_idle_override = IDLE_FORCE_MWAIT;
646 	} else if (!strcmp(str, "halt")) {
647 		/*
648 		 * When the boot option of idle=halt is added, halt is
649 		 * forced to be used for CPU idle. In such case CPU C2/C3
650 		 * won't be used again.
651 		 * To continue to load the CPU idle driver, don't touch
652 		 * the boot_option_idle_override.
653 		 */
654 		pm_idle = default_idle;
655 		boot_option_idle_override = IDLE_HALT;
656 	} else if (!strcmp(str, "nomwait")) {
657 		/*
658 		 * If the boot option of "idle=nomwait" is added,
659 		 * it means that mwait will be disabled for CPU C2/C3
660 		 * states. In such case it won't touch the variable
661 		 * of boot_option_idle_override.
662 		 */
663 		boot_option_idle_override = IDLE_NOMWAIT;
664 	} else
665 		return -1;
666 
667 	return 0;
668 }
669 early_param("idle", idle_setup);
670 
671 unsigned long arch_align_stack(unsigned long sp)
672 {
673 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
674 		sp -= get_random_int() % 8192;
675 	return sp & ~0xf;
676 }
677 
678 unsigned long arch_randomize_brk(struct mm_struct *mm)
679 {
680 	unsigned long range_end = mm->brk + 0x02000000;
681 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
682 }
683 
684