1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/errno.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/smp.h> 7 #include <linux/prctl.h> 8 #include <linux/slab.h> 9 #include <linux/sched.h> 10 #include <linux/module.h> 11 #include <linux/pm.h> 12 #include <linux/tick.h> 13 #include <linux/random.h> 14 #include <linux/user-return-notifier.h> 15 #include <linux/dmi.h> 16 #include <linux/utsname.h> 17 #include <linux/stackprotector.h> 18 #include <linux/tick.h> 19 #include <linux/cpuidle.h> 20 #include <trace/events/power.h> 21 #include <linux/hw_breakpoint.h> 22 #include <asm/cpu.h> 23 #include <asm/apic.h> 24 #include <asm/syscalls.h> 25 #include <asm/idle.h> 26 #include <asm/uaccess.h> 27 #include <asm/mwait.h> 28 #include <asm/i387.h> 29 #include <asm/fpu-internal.h> 30 #include <asm/debugreg.h> 31 #include <asm/nmi.h> 32 #include <asm/tlbflush.h> 33 34 /* 35 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 36 * no more per-task TSS's. The TSS size is kept cacheline-aligned 37 * so they are allowed to end up in the .data..cacheline_aligned 38 * section. Since TSS's are completely CPU-local, we want them 39 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 40 */ 41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = { 42 .x86_tss = { 43 .sp0 = TOP_OF_INIT_STACK, 44 #ifdef CONFIG_X86_32 45 .ss0 = __KERNEL_DS, 46 .ss1 = __KERNEL_CS, 47 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 48 #endif 49 }, 50 #ifdef CONFIG_X86_32 51 /* 52 * Note that the .io_bitmap member must be extra-big. This is because 53 * the CPU will access an additional byte beyond the end of the IO 54 * permission bitmap. The extra byte must be all 1 bits, and must 55 * be within the limit. 56 */ 57 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 58 #endif 59 }; 60 EXPORT_PER_CPU_SYMBOL(cpu_tss); 61 62 #ifdef CONFIG_X86_64 63 static DEFINE_PER_CPU(unsigned char, is_idle); 64 static ATOMIC_NOTIFIER_HEAD(idle_notifier); 65 66 void idle_notifier_register(struct notifier_block *n) 67 { 68 atomic_notifier_chain_register(&idle_notifier, n); 69 } 70 EXPORT_SYMBOL_GPL(idle_notifier_register); 71 72 void idle_notifier_unregister(struct notifier_block *n) 73 { 74 atomic_notifier_chain_unregister(&idle_notifier, n); 75 } 76 EXPORT_SYMBOL_GPL(idle_notifier_unregister); 77 #endif 78 79 struct kmem_cache *task_xstate_cachep; 80 EXPORT_SYMBOL_GPL(task_xstate_cachep); 81 82 /* 83 * this gets called so that we can store lazy state into memory and copy the 84 * current task into the new thread. 85 */ 86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 87 { 88 *dst = *src; 89 90 dst->thread.fpu_counter = 0; 91 dst->thread.fpu.has_fpu = 0; 92 dst->thread.fpu.state = NULL; 93 task_disable_lazy_fpu_restore(dst); 94 if (tsk_used_math(src)) { 95 int err = fpu_alloc(&dst->thread.fpu); 96 if (err) 97 return err; 98 fpu_copy(dst, src); 99 } 100 return 0; 101 } 102 103 void free_thread_xstate(struct task_struct *tsk) 104 { 105 fpu_free(&tsk->thread.fpu); 106 } 107 108 void arch_release_task_struct(struct task_struct *tsk) 109 { 110 free_thread_xstate(tsk); 111 } 112 113 void arch_task_cache_init(void) 114 { 115 task_xstate_cachep = 116 kmem_cache_create("task_xstate", xstate_size, 117 __alignof__(union thread_xstate), 118 SLAB_PANIC | SLAB_NOTRACK, NULL); 119 setup_xstate_comp(); 120 } 121 122 /* 123 * Free current thread data structures etc.. 124 */ 125 void exit_thread(void) 126 { 127 struct task_struct *me = current; 128 struct thread_struct *t = &me->thread; 129 unsigned long *bp = t->io_bitmap_ptr; 130 131 if (bp) { 132 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu()); 133 134 t->io_bitmap_ptr = NULL; 135 clear_thread_flag(TIF_IO_BITMAP); 136 /* 137 * Careful, clear this in the TSS too: 138 */ 139 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 140 t->io_bitmap_max = 0; 141 put_cpu(); 142 kfree(bp); 143 } 144 145 drop_fpu(me); 146 } 147 148 void flush_thread(void) 149 { 150 struct task_struct *tsk = current; 151 152 flush_ptrace_hw_breakpoint(tsk); 153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 154 155 if (!use_eager_fpu()) { 156 /* FPU state will be reallocated lazily at the first use. */ 157 drop_fpu(tsk); 158 free_thread_xstate(tsk); 159 } else { 160 if (!tsk_used_math(tsk)) { 161 /* kthread execs. TODO: cleanup this horror. */ 162 if (WARN_ON(init_fpu(tsk))) 163 force_sig(SIGKILL, tsk); 164 user_fpu_begin(); 165 } 166 restore_init_xstate(); 167 } 168 } 169 170 static void hard_disable_TSC(void) 171 { 172 cr4_set_bits(X86_CR4_TSD); 173 } 174 175 void disable_TSC(void) 176 { 177 preempt_disable(); 178 if (!test_and_set_thread_flag(TIF_NOTSC)) 179 /* 180 * Must flip the CPU state synchronously with 181 * TIF_NOTSC in the current running context. 182 */ 183 hard_disable_TSC(); 184 preempt_enable(); 185 } 186 187 static void hard_enable_TSC(void) 188 { 189 cr4_clear_bits(X86_CR4_TSD); 190 } 191 192 static void enable_TSC(void) 193 { 194 preempt_disable(); 195 if (test_and_clear_thread_flag(TIF_NOTSC)) 196 /* 197 * Must flip the CPU state synchronously with 198 * TIF_NOTSC in the current running context. 199 */ 200 hard_enable_TSC(); 201 preempt_enable(); 202 } 203 204 int get_tsc_mode(unsigned long adr) 205 { 206 unsigned int val; 207 208 if (test_thread_flag(TIF_NOTSC)) 209 val = PR_TSC_SIGSEGV; 210 else 211 val = PR_TSC_ENABLE; 212 213 return put_user(val, (unsigned int __user *)adr); 214 } 215 216 int set_tsc_mode(unsigned int val) 217 { 218 if (val == PR_TSC_SIGSEGV) 219 disable_TSC(); 220 else if (val == PR_TSC_ENABLE) 221 enable_TSC(); 222 else 223 return -EINVAL; 224 225 return 0; 226 } 227 228 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 229 struct tss_struct *tss) 230 { 231 struct thread_struct *prev, *next; 232 233 prev = &prev_p->thread; 234 next = &next_p->thread; 235 236 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 237 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 238 unsigned long debugctl = get_debugctlmsr(); 239 240 debugctl &= ~DEBUGCTLMSR_BTF; 241 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 242 debugctl |= DEBUGCTLMSR_BTF; 243 244 update_debugctlmsr(debugctl); 245 } 246 247 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 248 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 249 /* prev and next are different */ 250 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 251 hard_disable_TSC(); 252 else 253 hard_enable_TSC(); 254 } 255 256 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 257 /* 258 * Copy the relevant range of the IO bitmap. 259 * Normally this is 128 bytes or less: 260 */ 261 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 262 max(prev->io_bitmap_max, next->io_bitmap_max)); 263 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 264 /* 265 * Clear any possible leftover bits: 266 */ 267 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 268 } 269 propagate_user_return_notify(prev_p, next_p); 270 } 271 272 /* 273 * Idle related variables and functions 274 */ 275 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 276 EXPORT_SYMBOL(boot_option_idle_override); 277 278 static void (*x86_idle)(void); 279 280 #ifndef CONFIG_SMP 281 static inline void play_dead(void) 282 { 283 BUG(); 284 } 285 #endif 286 287 #ifdef CONFIG_X86_64 288 void enter_idle(void) 289 { 290 this_cpu_write(is_idle, 1); 291 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); 292 } 293 294 static void __exit_idle(void) 295 { 296 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) 297 return; 298 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); 299 } 300 301 /* Called from interrupts to signify idle end */ 302 void exit_idle(void) 303 { 304 /* idle loop has pid 0 */ 305 if (current->pid) 306 return; 307 __exit_idle(); 308 } 309 #endif 310 311 void arch_cpu_idle_enter(void) 312 { 313 local_touch_nmi(); 314 enter_idle(); 315 } 316 317 void arch_cpu_idle_exit(void) 318 { 319 __exit_idle(); 320 } 321 322 void arch_cpu_idle_dead(void) 323 { 324 play_dead(); 325 } 326 327 /* 328 * Called from the generic idle code. 329 */ 330 void arch_cpu_idle(void) 331 { 332 x86_idle(); 333 } 334 335 /* 336 * We use this if we don't have any better idle routine.. 337 */ 338 void default_idle(void) 339 { 340 trace_cpu_idle_rcuidle(1, smp_processor_id()); 341 safe_halt(); 342 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 343 } 344 #ifdef CONFIG_APM_MODULE 345 EXPORT_SYMBOL(default_idle); 346 #endif 347 348 #ifdef CONFIG_XEN 349 bool xen_set_default_idle(void) 350 { 351 bool ret = !!x86_idle; 352 353 x86_idle = default_idle; 354 355 return ret; 356 } 357 #endif 358 void stop_this_cpu(void *dummy) 359 { 360 local_irq_disable(); 361 /* 362 * Remove this CPU: 363 */ 364 set_cpu_online(smp_processor_id(), false); 365 disable_local_APIC(); 366 367 for (;;) 368 halt(); 369 } 370 371 bool amd_e400_c1e_detected; 372 EXPORT_SYMBOL(amd_e400_c1e_detected); 373 374 static cpumask_var_t amd_e400_c1e_mask; 375 376 void amd_e400_remove_cpu(int cpu) 377 { 378 if (amd_e400_c1e_mask != NULL) 379 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 380 } 381 382 /* 383 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 384 * pending message MSR. If we detect C1E, then we handle it the same 385 * way as C3 power states (local apic timer and TSC stop) 386 */ 387 static void amd_e400_idle(void) 388 { 389 if (!amd_e400_c1e_detected) { 390 u32 lo, hi; 391 392 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 393 394 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 395 amd_e400_c1e_detected = true; 396 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 397 mark_tsc_unstable("TSC halt in AMD C1E"); 398 pr_info("System has AMD C1E enabled\n"); 399 } 400 } 401 402 if (amd_e400_c1e_detected) { 403 int cpu = smp_processor_id(); 404 405 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 406 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 407 /* Force broadcast so ACPI can not interfere. */ 408 tick_broadcast_force(); 409 pr_info("Switch to broadcast mode on CPU%d\n", cpu); 410 } 411 tick_broadcast_enter(); 412 413 default_idle(); 414 415 /* 416 * The switch back from broadcast mode needs to be 417 * called with interrupts disabled. 418 */ 419 local_irq_disable(); 420 tick_broadcast_exit(); 421 local_irq_enable(); 422 } else 423 default_idle(); 424 } 425 426 /* 427 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 428 * We can't rely on cpuidle installing MWAIT, because it will not load 429 * on systems that support only C1 -- so the boot default must be MWAIT. 430 * 431 * Some AMD machines are the opposite, they depend on using HALT. 432 * 433 * So for default C1, which is used during boot until cpuidle loads, 434 * use MWAIT-C1 on Intel HW that has it, else use HALT. 435 */ 436 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 437 { 438 if (c->x86_vendor != X86_VENDOR_INTEL) 439 return 0; 440 441 if (!cpu_has(c, X86_FEATURE_MWAIT)) 442 return 0; 443 444 return 1; 445 } 446 447 /* 448 * MONITOR/MWAIT with no hints, used for default default C1 state. 449 * This invokes MWAIT with interrutps enabled and no flags, 450 * which is backwards compatible with the original MWAIT implementation. 451 */ 452 453 static void mwait_idle(void) 454 { 455 if (!current_set_polling_and_test()) { 456 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 457 smp_mb(); /* quirk */ 458 clflush((void *)¤t_thread_info()->flags); 459 smp_mb(); /* quirk */ 460 } 461 462 __monitor((void *)¤t_thread_info()->flags, 0, 0); 463 if (!need_resched()) 464 __sti_mwait(0, 0); 465 else 466 local_irq_enable(); 467 } else { 468 local_irq_enable(); 469 } 470 __current_clr_polling(); 471 } 472 473 void select_idle_routine(const struct cpuinfo_x86 *c) 474 { 475 #ifdef CONFIG_SMP 476 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 477 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 478 #endif 479 if (x86_idle || boot_option_idle_override == IDLE_POLL) 480 return; 481 482 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) { 483 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 484 pr_info("using AMD E400 aware idle routine\n"); 485 x86_idle = amd_e400_idle; 486 } else if (prefer_mwait_c1_over_halt(c)) { 487 pr_info("using mwait in idle threads\n"); 488 x86_idle = mwait_idle; 489 } else 490 x86_idle = default_idle; 491 } 492 493 void __init init_amd_e400_c1e_mask(void) 494 { 495 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 496 if (x86_idle == amd_e400_idle) 497 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 498 } 499 500 static int __init idle_setup(char *str) 501 { 502 if (!str) 503 return -EINVAL; 504 505 if (!strcmp(str, "poll")) { 506 pr_info("using polling idle threads\n"); 507 boot_option_idle_override = IDLE_POLL; 508 cpu_idle_poll_ctrl(true); 509 } else if (!strcmp(str, "halt")) { 510 /* 511 * When the boot option of idle=halt is added, halt is 512 * forced to be used for CPU idle. In such case CPU C2/C3 513 * won't be used again. 514 * To continue to load the CPU idle driver, don't touch 515 * the boot_option_idle_override. 516 */ 517 x86_idle = default_idle; 518 boot_option_idle_override = IDLE_HALT; 519 } else if (!strcmp(str, "nomwait")) { 520 /* 521 * If the boot option of "idle=nomwait" is added, 522 * it means that mwait will be disabled for CPU C2/C3 523 * states. In such case it won't touch the variable 524 * of boot_option_idle_override. 525 */ 526 boot_option_idle_override = IDLE_NOMWAIT; 527 } else 528 return -1; 529 530 return 0; 531 } 532 early_param("idle", idle_setup); 533 534 unsigned long arch_align_stack(unsigned long sp) 535 { 536 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 537 sp -= get_random_int() % 8192; 538 return sp & ~0xf; 539 } 540 541 unsigned long arch_randomize_brk(struct mm_struct *mm) 542 { 543 unsigned long range_end = mm->brk + 0x02000000; 544 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 545 } 546 547