1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <linux/stackprotector.h> 16 #include <linux/tick.h> 17 #include <linux/cpuidle.h> 18 #include <trace/events/power.h> 19 #include <linux/hw_breakpoint.h> 20 #include <asm/cpu.h> 21 #include <asm/apic.h> 22 #include <asm/syscalls.h> 23 #include <asm/idle.h> 24 #include <asm/uaccess.h> 25 #include <asm/i387.h> 26 #include <asm/fpu-internal.h> 27 #include <asm/debugreg.h> 28 #include <asm/nmi.h> 29 30 #ifdef CONFIG_X86_64 31 static DEFINE_PER_CPU(unsigned char, is_idle); 32 static ATOMIC_NOTIFIER_HEAD(idle_notifier); 33 34 void idle_notifier_register(struct notifier_block *n) 35 { 36 atomic_notifier_chain_register(&idle_notifier, n); 37 } 38 EXPORT_SYMBOL_GPL(idle_notifier_register); 39 40 void idle_notifier_unregister(struct notifier_block *n) 41 { 42 atomic_notifier_chain_unregister(&idle_notifier, n); 43 } 44 EXPORT_SYMBOL_GPL(idle_notifier_unregister); 45 #endif 46 47 struct kmem_cache *task_xstate_cachep; 48 EXPORT_SYMBOL_GPL(task_xstate_cachep); 49 50 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 51 { 52 int ret; 53 54 *dst = *src; 55 if (fpu_allocated(&src->thread.fpu)) { 56 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 57 ret = fpu_alloc(&dst->thread.fpu); 58 if (ret) 59 return ret; 60 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 61 } 62 return 0; 63 } 64 65 void free_thread_xstate(struct task_struct *tsk) 66 { 67 fpu_free(&tsk->thread.fpu); 68 } 69 70 void free_thread_info(struct thread_info *ti) 71 { 72 free_thread_xstate(ti->task); 73 free_pages((unsigned long)ti, THREAD_ORDER); 74 } 75 76 void arch_task_cache_init(void) 77 { 78 task_xstate_cachep = 79 kmem_cache_create("task_xstate", xstate_size, 80 __alignof__(union thread_xstate), 81 SLAB_PANIC | SLAB_NOTRACK, NULL); 82 } 83 84 /* 85 * Free current thread data structures etc.. 86 */ 87 void exit_thread(void) 88 { 89 struct task_struct *me = current; 90 struct thread_struct *t = &me->thread; 91 unsigned long *bp = t->io_bitmap_ptr; 92 93 if (bp) { 94 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 95 96 t->io_bitmap_ptr = NULL; 97 clear_thread_flag(TIF_IO_BITMAP); 98 /* 99 * Careful, clear this in the TSS too: 100 */ 101 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 102 t->io_bitmap_max = 0; 103 put_cpu(); 104 kfree(bp); 105 } 106 } 107 108 void show_regs(struct pt_regs *regs) 109 { 110 show_registers(regs); 111 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0); 112 } 113 114 void show_regs_common(void) 115 { 116 const char *vendor, *product, *board; 117 118 vendor = dmi_get_system_info(DMI_SYS_VENDOR); 119 if (!vendor) 120 vendor = ""; 121 product = dmi_get_system_info(DMI_PRODUCT_NAME); 122 if (!product) 123 product = ""; 124 125 /* Board Name is optional */ 126 board = dmi_get_system_info(DMI_BOARD_NAME); 127 128 printk(KERN_CONT "\n"); 129 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s", 130 current->pid, current->comm, print_tainted(), 131 init_utsname()->release, 132 (int)strcspn(init_utsname()->version, " "), 133 init_utsname()->version); 134 printk(KERN_CONT " %s %s", vendor, product); 135 if (board) 136 printk(KERN_CONT "/%s", board); 137 printk(KERN_CONT "\n"); 138 } 139 140 void flush_thread(void) 141 { 142 struct task_struct *tsk = current; 143 144 flush_ptrace_hw_breakpoint(tsk); 145 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 146 /* 147 * Forget coprocessor state.. 148 */ 149 tsk->fpu_counter = 0; 150 clear_fpu(tsk); 151 clear_used_math(); 152 } 153 154 static void hard_disable_TSC(void) 155 { 156 write_cr4(read_cr4() | X86_CR4_TSD); 157 } 158 159 void disable_TSC(void) 160 { 161 preempt_disable(); 162 if (!test_and_set_thread_flag(TIF_NOTSC)) 163 /* 164 * Must flip the CPU state synchronously with 165 * TIF_NOTSC in the current running context. 166 */ 167 hard_disable_TSC(); 168 preempt_enable(); 169 } 170 171 static void hard_enable_TSC(void) 172 { 173 write_cr4(read_cr4() & ~X86_CR4_TSD); 174 } 175 176 static void enable_TSC(void) 177 { 178 preempt_disable(); 179 if (test_and_clear_thread_flag(TIF_NOTSC)) 180 /* 181 * Must flip the CPU state synchronously with 182 * TIF_NOTSC in the current running context. 183 */ 184 hard_enable_TSC(); 185 preempt_enable(); 186 } 187 188 int get_tsc_mode(unsigned long adr) 189 { 190 unsigned int val; 191 192 if (test_thread_flag(TIF_NOTSC)) 193 val = PR_TSC_SIGSEGV; 194 else 195 val = PR_TSC_ENABLE; 196 197 return put_user(val, (unsigned int __user *)adr); 198 } 199 200 int set_tsc_mode(unsigned int val) 201 { 202 if (val == PR_TSC_SIGSEGV) 203 disable_TSC(); 204 else if (val == PR_TSC_ENABLE) 205 enable_TSC(); 206 else 207 return -EINVAL; 208 209 return 0; 210 } 211 212 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 213 struct tss_struct *tss) 214 { 215 struct thread_struct *prev, *next; 216 217 prev = &prev_p->thread; 218 next = &next_p->thread; 219 220 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 221 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 222 unsigned long debugctl = get_debugctlmsr(); 223 224 debugctl &= ~DEBUGCTLMSR_BTF; 225 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 226 debugctl |= DEBUGCTLMSR_BTF; 227 228 update_debugctlmsr(debugctl); 229 } 230 231 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 232 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 233 /* prev and next are different */ 234 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 235 hard_disable_TSC(); 236 else 237 hard_enable_TSC(); 238 } 239 240 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 241 /* 242 * Copy the relevant range of the IO bitmap. 243 * Normally this is 128 bytes or less: 244 */ 245 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 246 max(prev->io_bitmap_max, next->io_bitmap_max)); 247 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 248 /* 249 * Clear any possible leftover bits: 250 */ 251 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 252 } 253 propagate_user_return_notify(prev_p, next_p); 254 } 255 256 int sys_fork(struct pt_regs *regs) 257 { 258 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 259 } 260 261 /* 262 * This is trivial, and on the face of it looks like it 263 * could equally well be done in user mode. 264 * 265 * Not so, for quite unobvious reasons - register pressure. 266 * In user mode vfork() cannot have a stack frame, and if 267 * done by calling the "clone()" system call directly, you 268 * do not have enough call-clobbered registers to hold all 269 * the information you need. 270 */ 271 int sys_vfork(struct pt_regs *regs) 272 { 273 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 274 NULL, NULL); 275 } 276 277 long 278 sys_clone(unsigned long clone_flags, unsigned long newsp, 279 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 280 { 281 if (!newsp) 282 newsp = regs->sp; 283 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 284 } 285 286 /* 287 * This gets run with %si containing the 288 * function to call, and %di containing 289 * the "args". 290 */ 291 extern void kernel_thread_helper(void); 292 293 /* 294 * Create a kernel thread 295 */ 296 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 297 { 298 struct pt_regs regs; 299 300 memset(®s, 0, sizeof(regs)); 301 302 regs.si = (unsigned long) fn; 303 regs.di = (unsigned long) arg; 304 305 #ifdef CONFIG_X86_32 306 regs.ds = __USER_DS; 307 regs.es = __USER_DS; 308 regs.fs = __KERNEL_PERCPU; 309 regs.gs = __KERNEL_STACK_CANARY; 310 #else 311 regs.ss = __KERNEL_DS; 312 #endif 313 314 regs.orig_ax = -1; 315 regs.ip = (unsigned long) kernel_thread_helper; 316 regs.cs = __KERNEL_CS | get_kernel_rpl(); 317 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1; 318 319 /* Ok, create the new process.. */ 320 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 321 } 322 EXPORT_SYMBOL(kernel_thread); 323 324 /* 325 * sys_execve() executes a new program. 326 */ 327 long sys_execve(const char __user *name, 328 const char __user *const __user *argv, 329 const char __user *const __user *envp, struct pt_regs *regs) 330 { 331 long error; 332 char *filename; 333 334 filename = getname(name); 335 error = PTR_ERR(filename); 336 if (IS_ERR(filename)) 337 return error; 338 error = do_execve(filename, argv, envp, regs); 339 340 #ifdef CONFIG_X86_32 341 if (error == 0) { 342 /* Make sure we don't return using sysenter.. */ 343 set_thread_flag(TIF_IRET); 344 } 345 #endif 346 347 putname(filename); 348 return error; 349 } 350 351 /* 352 * Idle related variables and functions 353 */ 354 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 355 EXPORT_SYMBOL(boot_option_idle_override); 356 357 /* 358 * Powermanagement idle function, if any.. 359 */ 360 void (*pm_idle)(void); 361 #ifdef CONFIG_APM_MODULE 362 EXPORT_SYMBOL(pm_idle); 363 #endif 364 365 static inline int hlt_use_halt(void) 366 { 367 return 1; 368 } 369 370 #ifndef CONFIG_SMP 371 static inline void play_dead(void) 372 { 373 BUG(); 374 } 375 #endif 376 377 #ifdef CONFIG_X86_64 378 void enter_idle(void) 379 { 380 percpu_write(is_idle, 1); 381 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); 382 } 383 384 static void __exit_idle(void) 385 { 386 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) 387 return; 388 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); 389 } 390 391 /* Called from interrupts to signify idle end */ 392 void exit_idle(void) 393 { 394 /* idle loop has pid 0 */ 395 if (current->pid) 396 return; 397 __exit_idle(); 398 } 399 #endif 400 401 /* 402 * The idle thread. There's no useful work to be 403 * done, so just try to conserve power and have a 404 * low exit latency (ie sit in a loop waiting for 405 * somebody to say that they'd like to reschedule) 406 */ 407 void cpu_idle(void) 408 { 409 /* 410 * If we're the non-boot CPU, nothing set the stack canary up 411 * for us. CPU0 already has it initialized but no harm in 412 * doing it again. This is a good place for updating it, as 413 * we wont ever return from this function (so the invalid 414 * canaries already on the stack wont ever trigger). 415 */ 416 boot_init_stack_canary(); 417 current_thread_info()->status |= TS_POLLING; 418 419 while (1) { 420 tick_nohz_idle_enter(); 421 422 while (!need_resched()) { 423 rmb(); 424 425 if (cpu_is_offline(smp_processor_id())) 426 play_dead(); 427 428 /* 429 * Idle routines should keep interrupts disabled 430 * from here on, until they go to idle. 431 * Otherwise, idle callbacks can misfire. 432 */ 433 local_touch_nmi(); 434 local_irq_disable(); 435 436 enter_idle(); 437 438 /* Don't trace irqs off for idle */ 439 stop_critical_timings(); 440 441 /* enter_idle() needs rcu for notifiers */ 442 rcu_idle_enter(); 443 444 if (cpuidle_idle_call()) 445 pm_idle(); 446 447 rcu_idle_exit(); 448 start_critical_timings(); 449 450 /* In many cases the interrupt that ended idle 451 has already called exit_idle. But some idle 452 loops can be woken up without interrupt. */ 453 __exit_idle(); 454 } 455 456 tick_nohz_idle_exit(); 457 preempt_enable_no_resched(); 458 schedule(); 459 preempt_disable(); 460 } 461 } 462 463 /* 464 * We use this if we don't have any better 465 * idle routine.. 466 */ 467 void default_idle(void) 468 { 469 if (hlt_use_halt()) { 470 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); 471 trace_cpu_idle_rcuidle(1, smp_processor_id()); 472 current_thread_info()->status &= ~TS_POLLING; 473 /* 474 * TS_POLLING-cleared state must be visible before we 475 * test NEED_RESCHED: 476 */ 477 smp_mb(); 478 479 if (!need_resched()) 480 safe_halt(); /* enables interrupts racelessly */ 481 else 482 local_irq_enable(); 483 current_thread_info()->status |= TS_POLLING; 484 trace_power_end_rcuidle(smp_processor_id()); 485 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 486 } else { 487 local_irq_enable(); 488 /* loop is done by the caller */ 489 cpu_relax(); 490 } 491 } 492 #ifdef CONFIG_APM_MODULE 493 EXPORT_SYMBOL(default_idle); 494 #endif 495 496 bool set_pm_idle_to_default(void) 497 { 498 bool ret = !!pm_idle; 499 500 pm_idle = default_idle; 501 502 return ret; 503 } 504 void stop_this_cpu(void *dummy) 505 { 506 local_irq_disable(); 507 /* 508 * Remove this CPU: 509 */ 510 set_cpu_online(smp_processor_id(), false); 511 disable_local_APIC(); 512 513 for (;;) { 514 if (hlt_works(smp_processor_id())) 515 halt(); 516 } 517 } 518 519 static void do_nothing(void *unused) 520 { 521 } 522 523 /* 524 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 525 * pm_idle and update to new pm_idle value. Required while changing pm_idle 526 * handler on SMP systems. 527 * 528 * Caller must have changed pm_idle to the new value before the call. Old 529 * pm_idle value will not be used by any CPU after the return of this function. 530 */ 531 void cpu_idle_wait(void) 532 { 533 smp_mb(); 534 /* kick all the CPUs so that they exit out of pm_idle */ 535 smp_call_function(do_nothing, NULL, 1); 536 } 537 EXPORT_SYMBOL_GPL(cpu_idle_wait); 538 539 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 540 static void mwait_idle(void) 541 { 542 if (!need_resched()) { 543 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); 544 trace_cpu_idle_rcuidle(1, smp_processor_id()); 545 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) 546 clflush((void *)¤t_thread_info()->flags); 547 548 __monitor((void *)¤t_thread_info()->flags, 0, 0); 549 smp_mb(); 550 if (!need_resched()) 551 __sti_mwait(0, 0); 552 else 553 local_irq_enable(); 554 trace_power_end_rcuidle(smp_processor_id()); 555 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 556 } else 557 local_irq_enable(); 558 } 559 560 /* 561 * On SMP it's slightly faster (but much more power-consuming!) 562 * to poll the ->work.need_resched flag instead of waiting for the 563 * cross-CPU IPI to arrive. Use this option with caution. 564 */ 565 static void poll_idle(void) 566 { 567 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id()); 568 trace_cpu_idle_rcuidle(0, smp_processor_id()); 569 local_irq_enable(); 570 while (!need_resched()) 571 cpu_relax(); 572 trace_power_end_rcuidle(smp_processor_id()); 573 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 574 } 575 576 /* 577 * mwait selection logic: 578 * 579 * It depends on the CPU. For AMD CPUs that support MWAIT this is 580 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 581 * then depend on a clock divisor and current Pstate of the core. If 582 * all cores of a processor are in halt state (C1) the processor can 583 * enter the C1E (C1 enhanced) state. If mwait is used this will never 584 * happen. 585 * 586 * idle=mwait overrides this decision and forces the usage of mwait. 587 */ 588 589 #define MWAIT_INFO 0x05 590 #define MWAIT_ECX_EXTENDED_INFO 0x01 591 #define MWAIT_EDX_C1 0xf0 592 593 int mwait_usable(const struct cpuinfo_x86 *c) 594 { 595 u32 eax, ebx, ecx, edx; 596 597 if (boot_option_idle_override == IDLE_FORCE_MWAIT) 598 return 1; 599 600 if (c->cpuid_level < MWAIT_INFO) 601 return 0; 602 603 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 604 /* Check, whether EDX has extended info about MWAIT */ 605 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 606 return 1; 607 608 /* 609 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 610 * C1 supports MWAIT 611 */ 612 return (edx & MWAIT_EDX_C1); 613 } 614 615 bool amd_e400_c1e_detected; 616 EXPORT_SYMBOL(amd_e400_c1e_detected); 617 618 static cpumask_var_t amd_e400_c1e_mask; 619 620 void amd_e400_remove_cpu(int cpu) 621 { 622 if (amd_e400_c1e_mask != NULL) 623 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 624 } 625 626 /* 627 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 628 * pending message MSR. If we detect C1E, then we handle it the same 629 * way as C3 power states (local apic timer and TSC stop) 630 */ 631 static void amd_e400_idle(void) 632 { 633 if (need_resched()) 634 return; 635 636 if (!amd_e400_c1e_detected) { 637 u32 lo, hi; 638 639 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 640 641 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 642 amd_e400_c1e_detected = true; 643 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 644 mark_tsc_unstable("TSC halt in AMD C1E"); 645 printk(KERN_INFO "System has AMD C1E enabled\n"); 646 } 647 } 648 649 if (amd_e400_c1e_detected) { 650 int cpu = smp_processor_id(); 651 652 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 653 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 654 /* 655 * Force broadcast so ACPI can not interfere. 656 */ 657 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 658 &cpu); 659 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 660 cpu); 661 } 662 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 663 664 default_idle(); 665 666 /* 667 * The switch back from broadcast mode needs to be 668 * called with interrupts disabled. 669 */ 670 local_irq_disable(); 671 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 672 local_irq_enable(); 673 } else 674 default_idle(); 675 } 676 677 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 678 { 679 #ifdef CONFIG_SMP 680 if (pm_idle == poll_idle && smp_num_siblings > 1) { 681 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 682 " performance may degrade.\n"); 683 } 684 #endif 685 if (pm_idle) 686 return; 687 688 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 689 /* 690 * One CPU supports mwait => All CPUs supports mwait 691 */ 692 printk(KERN_INFO "using mwait in idle threads.\n"); 693 pm_idle = mwait_idle; 694 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 695 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 696 printk(KERN_INFO "using AMD E400 aware idle routine\n"); 697 pm_idle = amd_e400_idle; 698 } else 699 pm_idle = default_idle; 700 } 701 702 void __init init_amd_e400_c1e_mask(void) 703 { 704 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 705 if (pm_idle == amd_e400_idle) 706 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 707 } 708 709 static int __init idle_setup(char *str) 710 { 711 if (!str) 712 return -EINVAL; 713 714 if (!strcmp(str, "poll")) { 715 printk("using polling idle threads.\n"); 716 pm_idle = poll_idle; 717 boot_option_idle_override = IDLE_POLL; 718 } else if (!strcmp(str, "mwait")) { 719 boot_option_idle_override = IDLE_FORCE_MWAIT; 720 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n"); 721 } else if (!strcmp(str, "halt")) { 722 /* 723 * When the boot option of idle=halt is added, halt is 724 * forced to be used for CPU idle. In such case CPU C2/C3 725 * won't be used again. 726 * To continue to load the CPU idle driver, don't touch 727 * the boot_option_idle_override. 728 */ 729 pm_idle = default_idle; 730 boot_option_idle_override = IDLE_HALT; 731 } else if (!strcmp(str, "nomwait")) { 732 /* 733 * If the boot option of "idle=nomwait" is added, 734 * it means that mwait will be disabled for CPU C2/C3 735 * states. In such case it won't touch the variable 736 * of boot_option_idle_override. 737 */ 738 boot_option_idle_override = IDLE_NOMWAIT; 739 } else 740 return -1; 741 742 return 0; 743 } 744 early_param("idle", idle_setup); 745 746 unsigned long arch_align_stack(unsigned long sp) 747 { 748 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 749 sp -= get_random_int() % 8192; 750 return sp & ~0xf; 751 } 752 753 unsigned long arch_randomize_brk(struct mm_struct *mm) 754 { 755 unsigned long range_end = mm->brk + 0x02000000; 756 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 757 } 758 759