xref: /openbmc/linux/arch/x86/kernel/process.c (revision ccb01374)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <asm/syscalls.h>
32 #include <linux/uaccess.h>
33 #include <asm/mwait.h>
34 #include <asm/fpu/internal.h>
35 #include <asm/debugreg.h>
36 #include <asm/nmi.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mce.h>
39 #include <asm/vm86.h>
40 #include <asm/switch_to.h>
41 #include <asm/desc.h>
42 #include <asm/prctl.h>
43 #include <asm/spec-ctrl.h>
44 #include <asm/proto.h>
45 
46 #include "process.h"
47 
48 /*
49  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
50  * no more per-task TSS's. The TSS size is kept cacheline-aligned
51  * so they are allowed to end up in the .data..cacheline_aligned
52  * section. Since TSS's are completely CPU-local, we want them
53  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
54  */
55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
56 	.x86_tss = {
57 		/*
58 		 * .sp0 is only used when entering ring 0 from a lower
59 		 * privilege level.  Since the init task never runs anything
60 		 * but ring 0 code, there is no need for a valid value here.
61 		 * Poison it.
62 		 */
63 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
64 
65 		/*
66 		 * .sp1 is cpu_current_top_of_stack.  The init task never
67 		 * runs user code, but cpu_current_top_of_stack should still
68 		 * be well defined before the first context switch.
69 		 */
70 		.sp1 = TOP_OF_INIT_STACK,
71 
72 #ifdef CONFIG_X86_32
73 		.ss0 = __KERNEL_DS,
74 		.ss1 = __KERNEL_CS,
75 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
76 #endif
77 	 },
78 #ifdef CONFIG_X86_32
79 	 /*
80 	  * Note that the .io_bitmap member must be extra-big. This is because
81 	  * the CPU will access an additional byte beyond the end of the IO
82 	  * permission bitmap. The extra byte must be all 1 bits, and must
83 	  * be within the limit.
84 	  */
85 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
86 #endif
87 };
88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
89 
90 DEFINE_PER_CPU(bool, __tss_limit_invalid);
91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
92 
93 /*
94  * this gets called so that we can store lazy state into memory and copy the
95  * current task into the new thread.
96  */
97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
98 {
99 	memcpy(dst, src, arch_task_struct_size);
100 #ifdef CONFIG_VM86
101 	dst->thread.vm86 = NULL;
102 #endif
103 
104 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
105 }
106 
107 /*
108  * Free current thread data structures etc..
109  */
110 void exit_thread(struct task_struct *tsk)
111 {
112 	struct thread_struct *t = &tsk->thread;
113 	unsigned long *bp = t->io_bitmap_ptr;
114 	struct fpu *fpu = &t->fpu;
115 
116 	if (bp) {
117 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
118 
119 		t->io_bitmap_ptr = NULL;
120 		clear_thread_flag(TIF_IO_BITMAP);
121 		/*
122 		 * Careful, clear this in the TSS too:
123 		 */
124 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125 		t->io_bitmap_max = 0;
126 		put_cpu();
127 		kfree(bp);
128 	}
129 
130 	free_vm86(t);
131 
132 	fpu__drop(fpu);
133 }
134 
135 void flush_thread(void)
136 {
137 	struct task_struct *tsk = current;
138 
139 	flush_ptrace_hw_breakpoint(tsk);
140 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
141 
142 	fpu__clear(&tsk->thread.fpu);
143 }
144 
145 void disable_TSC(void)
146 {
147 	preempt_disable();
148 	if (!test_and_set_thread_flag(TIF_NOTSC))
149 		/*
150 		 * Must flip the CPU state synchronously with
151 		 * TIF_NOTSC in the current running context.
152 		 */
153 		cr4_set_bits(X86_CR4_TSD);
154 	preempt_enable();
155 }
156 
157 static void enable_TSC(void)
158 {
159 	preempt_disable();
160 	if (test_and_clear_thread_flag(TIF_NOTSC))
161 		/*
162 		 * Must flip the CPU state synchronously with
163 		 * TIF_NOTSC in the current running context.
164 		 */
165 		cr4_clear_bits(X86_CR4_TSD);
166 	preempt_enable();
167 }
168 
169 int get_tsc_mode(unsigned long adr)
170 {
171 	unsigned int val;
172 
173 	if (test_thread_flag(TIF_NOTSC))
174 		val = PR_TSC_SIGSEGV;
175 	else
176 		val = PR_TSC_ENABLE;
177 
178 	return put_user(val, (unsigned int __user *)adr);
179 }
180 
181 int set_tsc_mode(unsigned int val)
182 {
183 	if (val == PR_TSC_SIGSEGV)
184 		disable_TSC();
185 	else if (val == PR_TSC_ENABLE)
186 		enable_TSC();
187 	else
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194 
195 static void set_cpuid_faulting(bool on)
196 {
197 	u64 msrval;
198 
199 	msrval = this_cpu_read(msr_misc_features_shadow);
200 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202 	this_cpu_write(msr_misc_features_shadow, msrval);
203 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204 }
205 
206 static void disable_cpuid(void)
207 {
208 	preempt_disable();
209 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210 		/*
211 		 * Must flip the CPU state synchronously with
212 		 * TIF_NOCPUID in the current running context.
213 		 */
214 		set_cpuid_faulting(true);
215 	}
216 	preempt_enable();
217 }
218 
219 static void enable_cpuid(void)
220 {
221 	preempt_disable();
222 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223 		/*
224 		 * Must flip the CPU state synchronously with
225 		 * TIF_NOCPUID in the current running context.
226 		 */
227 		set_cpuid_faulting(false);
228 	}
229 	preempt_enable();
230 }
231 
232 static int get_cpuid_mode(void)
233 {
234 	return !test_thread_flag(TIF_NOCPUID);
235 }
236 
237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238 {
239 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
240 		return -ENODEV;
241 
242 	if (cpuid_enabled)
243 		enable_cpuid();
244 	else
245 		disable_cpuid();
246 
247 	return 0;
248 }
249 
250 /*
251  * Called immediately after a successful exec.
252  */
253 void arch_setup_new_exec(void)
254 {
255 	/* If cpuid was previously disabled for this task, re-enable it. */
256 	if (test_thread_flag(TIF_NOCPUID))
257 		enable_cpuid();
258 }
259 
260 static inline void switch_to_bitmap(struct thread_struct *prev,
261 				    struct thread_struct *next,
262 				    unsigned long tifp, unsigned long tifn)
263 {
264 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
265 
266 	if (tifn & _TIF_IO_BITMAP) {
267 		/*
268 		 * Copy the relevant range of the IO bitmap.
269 		 * Normally this is 128 bytes or less:
270 		 */
271 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
272 		       max(prev->io_bitmap_max, next->io_bitmap_max));
273 		/*
274 		 * Make sure that the TSS limit is correct for the CPU
275 		 * to notice the IO bitmap.
276 		 */
277 		refresh_tss_limit();
278 	} else if (tifp & _TIF_IO_BITMAP) {
279 		/*
280 		 * Clear any possible leftover bits:
281 		 */
282 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
283 	}
284 }
285 
286 #ifdef CONFIG_SMP
287 
288 struct ssb_state {
289 	struct ssb_state	*shared_state;
290 	raw_spinlock_t		lock;
291 	unsigned int		disable_state;
292 	unsigned long		local_state;
293 };
294 
295 #define LSTATE_SSB	0
296 
297 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
298 
299 void speculative_store_bypass_ht_init(void)
300 {
301 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
302 	unsigned int this_cpu = smp_processor_id();
303 	unsigned int cpu;
304 
305 	st->local_state = 0;
306 
307 	/*
308 	 * Shared state setup happens once on the first bringup
309 	 * of the CPU. It's not destroyed on CPU hotunplug.
310 	 */
311 	if (st->shared_state)
312 		return;
313 
314 	raw_spin_lock_init(&st->lock);
315 
316 	/*
317 	 * Go over HT siblings and check whether one of them has set up the
318 	 * shared state pointer already.
319 	 */
320 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
321 		if (cpu == this_cpu)
322 			continue;
323 
324 		if (!per_cpu(ssb_state, cpu).shared_state)
325 			continue;
326 
327 		/* Link it to the state of the sibling: */
328 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
329 		return;
330 	}
331 
332 	/*
333 	 * First HT sibling to come up on the core.  Link shared state of
334 	 * the first HT sibling to itself. The siblings on the same core
335 	 * which come up later will see the shared state pointer and link
336 	 * themself to the state of this CPU.
337 	 */
338 	st->shared_state = st;
339 }
340 
341 /*
342  * Logic is: First HT sibling enables SSBD for both siblings in the core
343  * and last sibling to disable it, disables it for the whole core. This how
344  * MSR_SPEC_CTRL works in "hardware":
345  *
346  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
347  */
348 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
349 {
350 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
351 	u64 msr = x86_amd_ls_cfg_base;
352 
353 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
354 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
355 		wrmsrl(MSR_AMD64_LS_CFG, msr);
356 		return;
357 	}
358 
359 	if (tifn & _TIF_SSBD) {
360 		/*
361 		 * Since this can race with prctl(), block reentry on the
362 		 * same CPU.
363 		 */
364 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
365 			return;
366 
367 		msr |= x86_amd_ls_cfg_ssbd_mask;
368 
369 		raw_spin_lock(&st->shared_state->lock);
370 		/* First sibling enables SSBD: */
371 		if (!st->shared_state->disable_state)
372 			wrmsrl(MSR_AMD64_LS_CFG, msr);
373 		st->shared_state->disable_state++;
374 		raw_spin_unlock(&st->shared_state->lock);
375 	} else {
376 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
377 			return;
378 
379 		raw_spin_lock(&st->shared_state->lock);
380 		st->shared_state->disable_state--;
381 		if (!st->shared_state->disable_state)
382 			wrmsrl(MSR_AMD64_LS_CFG, msr);
383 		raw_spin_unlock(&st->shared_state->lock);
384 	}
385 }
386 #else
387 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
388 {
389 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
390 
391 	wrmsrl(MSR_AMD64_LS_CFG, msr);
392 }
393 #endif
394 
395 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
396 {
397 	/*
398 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
399 	 * so ssbd_tif_to_spec_ctrl() just works.
400 	 */
401 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
402 }
403 
404 /*
405  * Update the MSRs managing speculation control, during context switch.
406  *
407  * tifp: Previous task's thread flags
408  * tifn: Next task's thread flags
409  */
410 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
411 						      unsigned long tifn)
412 {
413 	unsigned long tif_diff = tifp ^ tifn;
414 	u64 msr = x86_spec_ctrl_base;
415 	bool updmsr = false;
416 
417 	/*
418 	 * If TIF_SSBD is different, select the proper mitigation
419 	 * method. Note that if SSBD mitigation is disabled or permanentely
420 	 * enabled this branch can't be taken because nothing can set
421 	 * TIF_SSBD.
422 	 */
423 	if (tif_diff & _TIF_SSBD) {
424 		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
425 			amd_set_ssb_virt_state(tifn);
426 		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
427 			amd_set_core_ssb_state(tifn);
428 		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
429 			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
430 			msr |= ssbd_tif_to_spec_ctrl(tifn);
431 			updmsr  = true;
432 		}
433 	}
434 
435 	/*
436 	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
437 	 * otherwise avoid the MSR write.
438 	 */
439 	if (IS_ENABLED(CONFIG_SMP) &&
440 	    static_branch_unlikely(&switch_to_cond_stibp)) {
441 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
442 		msr |= stibp_tif_to_spec_ctrl(tifn);
443 	}
444 
445 	if (updmsr)
446 		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
447 }
448 
449 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
450 {
451 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
452 		if (task_spec_ssb_disable(tsk))
453 			set_tsk_thread_flag(tsk, TIF_SSBD);
454 		else
455 			clear_tsk_thread_flag(tsk, TIF_SSBD);
456 
457 		if (task_spec_ib_disable(tsk))
458 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
459 		else
460 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
461 	}
462 	/* Return the updated threadinfo flags*/
463 	return task_thread_info(tsk)->flags;
464 }
465 
466 void speculation_ctrl_update(unsigned long tif)
467 {
468 	/* Forced update. Make sure all relevant TIF flags are different */
469 	preempt_disable();
470 	__speculation_ctrl_update(~tif, tif);
471 	preempt_enable();
472 }
473 
474 /* Called from seccomp/prctl update */
475 void speculation_ctrl_update_current(void)
476 {
477 	preempt_disable();
478 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
479 	preempt_enable();
480 }
481 
482 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
483 {
484 	struct thread_struct *prev, *next;
485 	unsigned long tifp, tifn;
486 
487 	prev = &prev_p->thread;
488 	next = &next_p->thread;
489 
490 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
491 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
492 	switch_to_bitmap(prev, next, tifp, tifn);
493 
494 	propagate_user_return_notify(prev_p, next_p);
495 
496 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
497 	    arch_has_block_step()) {
498 		unsigned long debugctl, msk;
499 
500 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
501 		debugctl &= ~DEBUGCTLMSR_BTF;
502 		msk = tifn & _TIF_BLOCKSTEP;
503 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
504 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
505 	}
506 
507 	if ((tifp ^ tifn) & _TIF_NOTSC)
508 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
509 
510 	if ((tifp ^ tifn) & _TIF_NOCPUID)
511 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
512 
513 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
514 		__speculation_ctrl_update(tifp, tifn);
515 	} else {
516 		speculation_ctrl_update_tif(prev_p);
517 		tifn = speculation_ctrl_update_tif(next_p);
518 
519 		/* Enforce MSR update to ensure consistent state */
520 		__speculation_ctrl_update(~tifn, tifn);
521 	}
522 }
523 
524 /*
525  * Idle related variables and functions
526  */
527 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
528 EXPORT_SYMBOL(boot_option_idle_override);
529 
530 static void (*x86_idle)(void);
531 
532 #ifndef CONFIG_SMP
533 static inline void play_dead(void)
534 {
535 	BUG();
536 }
537 #endif
538 
539 void arch_cpu_idle_enter(void)
540 {
541 	tsc_verify_tsc_adjust(false);
542 	local_touch_nmi();
543 }
544 
545 void arch_cpu_idle_dead(void)
546 {
547 	play_dead();
548 }
549 
550 /*
551  * Called from the generic idle code.
552  */
553 void arch_cpu_idle(void)
554 {
555 	x86_idle();
556 }
557 
558 /*
559  * We use this if we don't have any better idle routine..
560  */
561 void __cpuidle default_idle(void)
562 {
563 	trace_cpu_idle_rcuidle(1, smp_processor_id());
564 	safe_halt();
565 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
566 }
567 #ifdef CONFIG_APM_MODULE
568 EXPORT_SYMBOL(default_idle);
569 #endif
570 
571 #ifdef CONFIG_XEN
572 bool xen_set_default_idle(void)
573 {
574 	bool ret = !!x86_idle;
575 
576 	x86_idle = default_idle;
577 
578 	return ret;
579 }
580 #endif
581 
582 void stop_this_cpu(void *dummy)
583 {
584 	local_irq_disable();
585 	/*
586 	 * Remove this CPU:
587 	 */
588 	set_cpu_online(smp_processor_id(), false);
589 	disable_local_APIC();
590 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
591 
592 	/*
593 	 * Use wbinvd on processors that support SME. This provides support
594 	 * for performing a successful kexec when going from SME inactive
595 	 * to SME active (or vice-versa). The cache must be cleared so that
596 	 * if there are entries with the same physical address, both with and
597 	 * without the encryption bit, they don't race each other when flushed
598 	 * and potentially end up with the wrong entry being committed to
599 	 * memory.
600 	 */
601 	if (boot_cpu_has(X86_FEATURE_SME))
602 		native_wbinvd();
603 	for (;;) {
604 		/*
605 		 * Use native_halt() so that memory contents don't change
606 		 * (stack usage and variables) after possibly issuing the
607 		 * native_wbinvd() above.
608 		 */
609 		native_halt();
610 	}
611 }
612 
613 /*
614  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
615  * states (local apic timer and TSC stop).
616  */
617 static void amd_e400_idle(void)
618 {
619 	/*
620 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
621 	 * gets set after static_cpu_has() places have been converted via
622 	 * alternatives.
623 	 */
624 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
625 		default_idle();
626 		return;
627 	}
628 
629 	tick_broadcast_enter();
630 
631 	default_idle();
632 
633 	/*
634 	 * The switch back from broadcast mode needs to be called with
635 	 * interrupts disabled.
636 	 */
637 	local_irq_disable();
638 	tick_broadcast_exit();
639 	local_irq_enable();
640 }
641 
642 /*
643  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
644  * We can't rely on cpuidle installing MWAIT, because it will not load
645  * on systems that support only C1 -- so the boot default must be MWAIT.
646  *
647  * Some AMD machines are the opposite, they depend on using HALT.
648  *
649  * So for default C1, which is used during boot until cpuidle loads,
650  * use MWAIT-C1 on Intel HW that has it, else use HALT.
651  */
652 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
653 {
654 	if (c->x86_vendor != X86_VENDOR_INTEL)
655 		return 0;
656 
657 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
658 		return 0;
659 
660 	return 1;
661 }
662 
663 /*
664  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
665  * with interrupts enabled and no flags, which is backwards compatible with the
666  * original MWAIT implementation.
667  */
668 static __cpuidle void mwait_idle(void)
669 {
670 	if (!current_set_polling_and_test()) {
671 		trace_cpu_idle_rcuidle(1, smp_processor_id());
672 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
673 			mb(); /* quirk */
674 			clflush((void *)&current_thread_info()->flags);
675 			mb(); /* quirk */
676 		}
677 
678 		__monitor((void *)&current_thread_info()->flags, 0, 0);
679 		if (!need_resched())
680 			__sti_mwait(0, 0);
681 		else
682 			local_irq_enable();
683 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
684 	} else {
685 		local_irq_enable();
686 	}
687 	__current_clr_polling();
688 }
689 
690 void select_idle_routine(const struct cpuinfo_x86 *c)
691 {
692 #ifdef CONFIG_SMP
693 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
694 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
695 #endif
696 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
697 		return;
698 
699 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
700 		pr_info("using AMD E400 aware idle routine\n");
701 		x86_idle = amd_e400_idle;
702 	} else if (prefer_mwait_c1_over_halt(c)) {
703 		pr_info("using mwait in idle threads\n");
704 		x86_idle = mwait_idle;
705 	} else
706 		x86_idle = default_idle;
707 }
708 
709 void amd_e400_c1e_apic_setup(void)
710 {
711 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
712 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
713 		local_irq_disable();
714 		tick_broadcast_force();
715 		local_irq_enable();
716 	}
717 }
718 
719 void __init arch_post_acpi_subsys_init(void)
720 {
721 	u32 lo, hi;
722 
723 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
724 		return;
725 
726 	/*
727 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
728 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
729 	 * MSR_K8_INT_PENDING_MSG.
730 	 */
731 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
732 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
733 		return;
734 
735 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
736 
737 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
738 		mark_tsc_unstable("TSC halt in AMD C1E");
739 	pr_info("System has AMD C1E enabled\n");
740 }
741 
742 static int __init idle_setup(char *str)
743 {
744 	if (!str)
745 		return -EINVAL;
746 
747 	if (!strcmp(str, "poll")) {
748 		pr_info("using polling idle threads\n");
749 		boot_option_idle_override = IDLE_POLL;
750 		cpu_idle_poll_ctrl(true);
751 	} else if (!strcmp(str, "halt")) {
752 		/*
753 		 * When the boot option of idle=halt is added, halt is
754 		 * forced to be used for CPU idle. In such case CPU C2/C3
755 		 * won't be used again.
756 		 * To continue to load the CPU idle driver, don't touch
757 		 * the boot_option_idle_override.
758 		 */
759 		x86_idle = default_idle;
760 		boot_option_idle_override = IDLE_HALT;
761 	} else if (!strcmp(str, "nomwait")) {
762 		/*
763 		 * If the boot option of "idle=nomwait" is added,
764 		 * it means that mwait will be disabled for CPU C2/C3
765 		 * states. In such case it won't touch the variable
766 		 * of boot_option_idle_override.
767 		 */
768 		boot_option_idle_override = IDLE_NOMWAIT;
769 	} else
770 		return -1;
771 
772 	return 0;
773 }
774 early_param("idle", idle_setup);
775 
776 unsigned long arch_align_stack(unsigned long sp)
777 {
778 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
779 		sp -= get_random_int() % 8192;
780 	return sp & ~0xf;
781 }
782 
783 unsigned long arch_randomize_brk(struct mm_struct *mm)
784 {
785 	return randomize_page(mm->brk, 0x02000000);
786 }
787 
788 /*
789  * Called from fs/proc with a reference on @p to find the function
790  * which called into schedule(). This needs to be done carefully
791  * because the task might wake up and we might look at a stack
792  * changing under us.
793  */
794 unsigned long get_wchan(struct task_struct *p)
795 {
796 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
797 	int count = 0;
798 
799 	if (p == current || p->state == TASK_RUNNING)
800 		return 0;
801 
802 	if (!try_get_task_stack(p))
803 		return 0;
804 
805 	start = (unsigned long)task_stack_page(p);
806 	if (!start)
807 		goto out;
808 
809 	/*
810 	 * Layout of the stack page:
811 	 *
812 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
813 	 * PADDING
814 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
815 	 * stack
816 	 * ----------- bottom = start
817 	 *
818 	 * The tasks stack pointer points at the location where the
819 	 * framepointer is stored. The data on the stack is:
820 	 * ... IP FP ... IP FP
821 	 *
822 	 * We need to read FP and IP, so we need to adjust the upper
823 	 * bound by another unsigned long.
824 	 */
825 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
826 	top -= 2 * sizeof(unsigned long);
827 	bottom = start;
828 
829 	sp = READ_ONCE(p->thread.sp);
830 	if (sp < bottom || sp > top)
831 		goto out;
832 
833 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
834 	do {
835 		if (fp < bottom || fp > top)
836 			goto out;
837 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
838 		if (!in_sched_functions(ip)) {
839 			ret = ip;
840 			goto out;
841 		}
842 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
843 	} while (count++ < 16 && p->state != TASK_RUNNING);
844 
845 out:
846 	put_task_stack(p);
847 	return ret;
848 }
849 
850 long do_arch_prctl_common(struct task_struct *task, int option,
851 			  unsigned long cpuid_enabled)
852 {
853 	switch (option) {
854 	case ARCH_GET_CPUID:
855 		return get_cpuid_mode();
856 	case ARCH_SET_CPUID:
857 		return set_cpuid_mode(task, cpuid_enabled);
858 	}
859 
860 	return -EINVAL;
861 }
862