xref: /openbmc/linux/arch/x86/kernel/process.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/apic.h>
34 #include <linux/uaccess.h>
35 #include <asm/mwait.h>
36 #include <asm/fpu/api.h>
37 #include <asm/fpu/sched.h>
38 #include <asm/fpu/xstate.h>
39 #include <asm/debugreg.h>
40 #include <asm/nmi.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mce.h>
43 #include <asm/vm86.h>
44 #include <asm/switch_to.h>
45 #include <asm/desc.h>
46 #include <asm/prctl.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/io_bitmap.h>
49 #include <asm/proto.h>
50 #include <asm/frame.h>
51 #include <asm/unwind.h>
52 #include <asm/tdx.h>
53 #include <asm/mmu_context.h>
54 
55 #include "process.h"
56 
57 /*
58  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
59  * no more per-task TSS's. The TSS size is kept cacheline-aligned
60  * so they are allowed to end up in the .data..cacheline_aligned
61  * section. Since TSS's are completely CPU-local, we want them
62  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
63  */
64 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
65 	.x86_tss = {
66 		/*
67 		 * .sp0 is only used when entering ring 0 from a lower
68 		 * privilege level.  Since the init task never runs anything
69 		 * but ring 0 code, there is no need for a valid value here.
70 		 * Poison it.
71 		 */
72 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
73 
74 #ifdef CONFIG_X86_32
75 		.sp1 = TOP_OF_INIT_STACK,
76 
77 		.ss0 = __KERNEL_DS,
78 		.ss1 = __KERNEL_CS,
79 #endif
80 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
81 	 },
82 };
83 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
84 
85 DEFINE_PER_CPU(bool, __tss_limit_invalid);
86 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
87 
88 /*
89  * this gets called so that we can store lazy state into memory and copy the
90  * current task into the new thread.
91  */
92 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
93 {
94 	memcpy(dst, src, arch_task_struct_size);
95 #ifdef CONFIG_VM86
96 	dst->thread.vm86 = NULL;
97 #endif
98 	/* Drop the copied pointer to current's fpstate */
99 	dst->thread.fpu.fpstate = NULL;
100 
101 	return 0;
102 }
103 
104 #ifdef CONFIG_X86_64
105 void arch_release_task_struct(struct task_struct *tsk)
106 {
107 	if (fpu_state_size_dynamic())
108 		fpstate_free(&tsk->thread.fpu);
109 }
110 #endif
111 
112 /*
113  * Free thread data structures etc..
114  */
115 void exit_thread(struct task_struct *tsk)
116 {
117 	struct thread_struct *t = &tsk->thread;
118 	struct fpu *fpu = &t->fpu;
119 
120 	if (test_thread_flag(TIF_IO_BITMAP))
121 		io_bitmap_exit(tsk);
122 
123 	free_vm86(t);
124 
125 	fpu__drop(fpu);
126 }
127 
128 static int set_new_tls(struct task_struct *p, unsigned long tls)
129 {
130 	struct user_desc __user *utls = (struct user_desc __user *)tls;
131 
132 	if (in_ia32_syscall())
133 		return do_set_thread_area(p, -1, utls, 0);
134 	else
135 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
136 }
137 
138 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
139 				     int (*fn)(void *), void *fn_arg)
140 {
141 	schedule_tail(prev);
142 
143 	/* Is this a kernel thread? */
144 	if (unlikely(fn)) {
145 		fn(fn_arg);
146 		/*
147 		 * A kernel thread is allowed to return here after successfully
148 		 * calling kernel_execve().  Exit to userspace to complete the
149 		 * execve() syscall.
150 		 */
151 		regs->ax = 0;
152 	}
153 
154 	syscall_exit_to_user_mode(regs);
155 }
156 
157 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
158 {
159 	unsigned long clone_flags = args->flags;
160 	unsigned long sp = args->stack;
161 	unsigned long tls = args->tls;
162 	struct inactive_task_frame *frame;
163 	struct fork_frame *fork_frame;
164 	struct pt_regs *childregs;
165 	int ret = 0;
166 
167 	childregs = task_pt_regs(p);
168 	fork_frame = container_of(childregs, struct fork_frame, regs);
169 	frame = &fork_frame->frame;
170 
171 	frame->bp = encode_frame_pointer(childregs);
172 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
173 	p->thread.sp = (unsigned long) fork_frame;
174 	p->thread.io_bitmap = NULL;
175 	p->thread.iopl_warn = 0;
176 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
177 
178 #ifdef CONFIG_X86_64
179 	current_save_fsgs();
180 	p->thread.fsindex = current->thread.fsindex;
181 	p->thread.fsbase = current->thread.fsbase;
182 	p->thread.gsindex = current->thread.gsindex;
183 	p->thread.gsbase = current->thread.gsbase;
184 
185 	savesegment(es, p->thread.es);
186 	savesegment(ds, p->thread.ds);
187 
188 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
189 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
190 #else
191 	p->thread.sp0 = (unsigned long) (childregs + 1);
192 	savesegment(gs, p->thread.gs);
193 	/*
194 	 * Clear all status flags including IF and set fixed bit. 64bit
195 	 * does not have this initialization as the frame does not contain
196 	 * flags. The flags consistency (especially vs. AC) is there
197 	 * ensured via objtool, which lacks 32bit support.
198 	 */
199 	frame->flags = X86_EFLAGS_FIXED;
200 #endif
201 
202 	fpu_clone(p, clone_flags, args->fn);
203 
204 	/* Kernel thread ? */
205 	if (unlikely(p->flags & PF_KTHREAD)) {
206 		p->thread.pkru = pkru_get_init_value();
207 		memset(childregs, 0, sizeof(struct pt_regs));
208 		kthread_frame_init(frame, args->fn, args->fn_arg);
209 		return 0;
210 	}
211 
212 	/*
213 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
214 	 * is only valid when scheduled out.
215 	 */
216 	p->thread.pkru = read_pkru();
217 
218 	frame->bx = 0;
219 	*childregs = *current_pt_regs();
220 	childregs->ax = 0;
221 	if (sp)
222 		childregs->sp = sp;
223 
224 	if (unlikely(args->fn)) {
225 		/*
226 		 * A user space thread, but it doesn't return to
227 		 * ret_after_fork().
228 		 *
229 		 * In order to indicate that to tools like gdb,
230 		 * we reset the stack and instruction pointers.
231 		 *
232 		 * It does the same kernel frame setup to return to a kernel
233 		 * function that a kernel thread does.
234 		 */
235 		childregs->sp = 0;
236 		childregs->ip = 0;
237 		kthread_frame_init(frame, args->fn, args->fn_arg);
238 		return 0;
239 	}
240 
241 	/* Set a new TLS for the child thread? */
242 	if (clone_flags & CLONE_SETTLS)
243 		ret = set_new_tls(p, tls);
244 
245 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
246 		io_bitmap_share(p);
247 
248 	return ret;
249 }
250 
251 static void pkru_flush_thread(void)
252 {
253 	/*
254 	 * If PKRU is enabled the default PKRU value has to be loaded into
255 	 * the hardware right here (similar to context switch).
256 	 */
257 	pkru_write_default();
258 }
259 
260 void flush_thread(void)
261 {
262 	struct task_struct *tsk = current;
263 
264 	flush_ptrace_hw_breakpoint(tsk);
265 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
266 
267 	fpu_flush_thread();
268 	pkru_flush_thread();
269 }
270 
271 void disable_TSC(void)
272 {
273 	preempt_disable();
274 	if (!test_and_set_thread_flag(TIF_NOTSC))
275 		/*
276 		 * Must flip the CPU state synchronously with
277 		 * TIF_NOTSC in the current running context.
278 		 */
279 		cr4_set_bits(X86_CR4_TSD);
280 	preempt_enable();
281 }
282 
283 static void enable_TSC(void)
284 {
285 	preempt_disable();
286 	if (test_and_clear_thread_flag(TIF_NOTSC))
287 		/*
288 		 * Must flip the CPU state synchronously with
289 		 * TIF_NOTSC in the current running context.
290 		 */
291 		cr4_clear_bits(X86_CR4_TSD);
292 	preempt_enable();
293 }
294 
295 int get_tsc_mode(unsigned long adr)
296 {
297 	unsigned int val;
298 
299 	if (test_thread_flag(TIF_NOTSC))
300 		val = PR_TSC_SIGSEGV;
301 	else
302 		val = PR_TSC_ENABLE;
303 
304 	return put_user(val, (unsigned int __user *)adr);
305 }
306 
307 int set_tsc_mode(unsigned int val)
308 {
309 	if (val == PR_TSC_SIGSEGV)
310 		disable_TSC();
311 	else if (val == PR_TSC_ENABLE)
312 		enable_TSC();
313 	else
314 		return -EINVAL;
315 
316 	return 0;
317 }
318 
319 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
320 
321 static void set_cpuid_faulting(bool on)
322 {
323 	u64 msrval;
324 
325 	msrval = this_cpu_read(msr_misc_features_shadow);
326 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
327 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
328 	this_cpu_write(msr_misc_features_shadow, msrval);
329 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
330 }
331 
332 static void disable_cpuid(void)
333 {
334 	preempt_disable();
335 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
336 		/*
337 		 * Must flip the CPU state synchronously with
338 		 * TIF_NOCPUID in the current running context.
339 		 */
340 		set_cpuid_faulting(true);
341 	}
342 	preempt_enable();
343 }
344 
345 static void enable_cpuid(void)
346 {
347 	preempt_disable();
348 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
349 		/*
350 		 * Must flip the CPU state synchronously with
351 		 * TIF_NOCPUID in the current running context.
352 		 */
353 		set_cpuid_faulting(false);
354 	}
355 	preempt_enable();
356 }
357 
358 static int get_cpuid_mode(void)
359 {
360 	return !test_thread_flag(TIF_NOCPUID);
361 }
362 
363 static int set_cpuid_mode(unsigned long cpuid_enabled)
364 {
365 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
366 		return -ENODEV;
367 
368 	if (cpuid_enabled)
369 		enable_cpuid();
370 	else
371 		disable_cpuid();
372 
373 	return 0;
374 }
375 
376 /*
377  * Called immediately after a successful exec.
378  */
379 void arch_setup_new_exec(void)
380 {
381 	/* If cpuid was previously disabled for this task, re-enable it. */
382 	if (test_thread_flag(TIF_NOCPUID))
383 		enable_cpuid();
384 
385 	/*
386 	 * Don't inherit TIF_SSBD across exec boundary when
387 	 * PR_SPEC_DISABLE_NOEXEC is used.
388 	 */
389 	if (test_thread_flag(TIF_SSBD) &&
390 	    task_spec_ssb_noexec(current)) {
391 		clear_thread_flag(TIF_SSBD);
392 		task_clear_spec_ssb_disable(current);
393 		task_clear_spec_ssb_noexec(current);
394 		speculation_ctrl_update(read_thread_flags());
395 	}
396 
397 	mm_reset_untag_mask(current->mm);
398 }
399 
400 #ifdef CONFIG_X86_IOPL_IOPERM
401 static inline void switch_to_bitmap(unsigned long tifp)
402 {
403 	/*
404 	 * Invalidate I/O bitmap if the previous task used it. This prevents
405 	 * any possible leakage of an active I/O bitmap.
406 	 *
407 	 * If the next task has an I/O bitmap it will handle it on exit to
408 	 * user mode.
409 	 */
410 	if (tifp & _TIF_IO_BITMAP)
411 		tss_invalidate_io_bitmap();
412 }
413 
414 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
415 {
416 	/*
417 	 * Copy at least the byte range of the incoming tasks bitmap which
418 	 * covers the permitted I/O ports.
419 	 *
420 	 * If the previous task which used an I/O bitmap had more bits
421 	 * permitted, then the copy needs to cover those as well so they
422 	 * get turned off.
423 	 */
424 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
425 	       max(tss->io_bitmap.prev_max, iobm->max));
426 
427 	/*
428 	 * Store the new max and the sequence number of this bitmap
429 	 * and a pointer to the bitmap itself.
430 	 */
431 	tss->io_bitmap.prev_max = iobm->max;
432 	tss->io_bitmap.prev_sequence = iobm->sequence;
433 }
434 
435 /**
436  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
437  */
438 void native_tss_update_io_bitmap(void)
439 {
440 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
441 	struct thread_struct *t = &current->thread;
442 	u16 *base = &tss->x86_tss.io_bitmap_base;
443 
444 	if (!test_thread_flag(TIF_IO_BITMAP)) {
445 		native_tss_invalidate_io_bitmap();
446 		return;
447 	}
448 
449 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
450 		*base = IO_BITMAP_OFFSET_VALID_ALL;
451 	} else {
452 		struct io_bitmap *iobm = t->io_bitmap;
453 
454 		/*
455 		 * Only copy bitmap data when the sequence number differs. The
456 		 * update time is accounted to the incoming task.
457 		 */
458 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
459 			tss_copy_io_bitmap(tss, iobm);
460 
461 		/* Enable the bitmap */
462 		*base = IO_BITMAP_OFFSET_VALID_MAP;
463 	}
464 
465 	/*
466 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
467 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
468 	 * access from user space to trigger a #GP because tbe bitmap is outside
469 	 * the TSS limit.
470 	 */
471 	refresh_tss_limit();
472 }
473 #else /* CONFIG_X86_IOPL_IOPERM */
474 static inline void switch_to_bitmap(unsigned long tifp) { }
475 #endif
476 
477 #ifdef CONFIG_SMP
478 
479 struct ssb_state {
480 	struct ssb_state	*shared_state;
481 	raw_spinlock_t		lock;
482 	unsigned int		disable_state;
483 	unsigned long		local_state;
484 };
485 
486 #define LSTATE_SSB	0
487 
488 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
489 
490 void speculative_store_bypass_ht_init(void)
491 {
492 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
493 	unsigned int this_cpu = smp_processor_id();
494 	unsigned int cpu;
495 
496 	st->local_state = 0;
497 
498 	/*
499 	 * Shared state setup happens once on the first bringup
500 	 * of the CPU. It's not destroyed on CPU hotunplug.
501 	 */
502 	if (st->shared_state)
503 		return;
504 
505 	raw_spin_lock_init(&st->lock);
506 
507 	/*
508 	 * Go over HT siblings and check whether one of them has set up the
509 	 * shared state pointer already.
510 	 */
511 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
512 		if (cpu == this_cpu)
513 			continue;
514 
515 		if (!per_cpu(ssb_state, cpu).shared_state)
516 			continue;
517 
518 		/* Link it to the state of the sibling: */
519 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
520 		return;
521 	}
522 
523 	/*
524 	 * First HT sibling to come up on the core.  Link shared state of
525 	 * the first HT sibling to itself. The siblings on the same core
526 	 * which come up later will see the shared state pointer and link
527 	 * themselves to the state of this CPU.
528 	 */
529 	st->shared_state = st;
530 }
531 
532 /*
533  * Logic is: First HT sibling enables SSBD for both siblings in the core
534  * and last sibling to disable it, disables it for the whole core. This how
535  * MSR_SPEC_CTRL works in "hardware":
536  *
537  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
538  */
539 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
540 {
541 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
542 	u64 msr = x86_amd_ls_cfg_base;
543 
544 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
545 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
546 		wrmsrl(MSR_AMD64_LS_CFG, msr);
547 		return;
548 	}
549 
550 	if (tifn & _TIF_SSBD) {
551 		/*
552 		 * Since this can race with prctl(), block reentry on the
553 		 * same CPU.
554 		 */
555 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
556 			return;
557 
558 		msr |= x86_amd_ls_cfg_ssbd_mask;
559 
560 		raw_spin_lock(&st->shared_state->lock);
561 		/* First sibling enables SSBD: */
562 		if (!st->shared_state->disable_state)
563 			wrmsrl(MSR_AMD64_LS_CFG, msr);
564 		st->shared_state->disable_state++;
565 		raw_spin_unlock(&st->shared_state->lock);
566 	} else {
567 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
568 			return;
569 
570 		raw_spin_lock(&st->shared_state->lock);
571 		st->shared_state->disable_state--;
572 		if (!st->shared_state->disable_state)
573 			wrmsrl(MSR_AMD64_LS_CFG, msr);
574 		raw_spin_unlock(&st->shared_state->lock);
575 	}
576 }
577 #else
578 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
579 {
580 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
581 
582 	wrmsrl(MSR_AMD64_LS_CFG, msr);
583 }
584 #endif
585 
586 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
587 {
588 	/*
589 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
590 	 * so ssbd_tif_to_spec_ctrl() just works.
591 	 */
592 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
593 }
594 
595 /*
596  * Update the MSRs managing speculation control, during context switch.
597  *
598  * tifp: Previous task's thread flags
599  * tifn: Next task's thread flags
600  */
601 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
602 						      unsigned long tifn)
603 {
604 	unsigned long tif_diff = tifp ^ tifn;
605 	u64 msr = x86_spec_ctrl_base;
606 	bool updmsr = false;
607 
608 	lockdep_assert_irqs_disabled();
609 
610 	/* Handle change of TIF_SSBD depending on the mitigation method. */
611 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
612 		if (tif_diff & _TIF_SSBD)
613 			amd_set_ssb_virt_state(tifn);
614 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
615 		if (tif_diff & _TIF_SSBD)
616 			amd_set_core_ssb_state(tifn);
617 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
618 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
619 		updmsr |= !!(tif_diff & _TIF_SSBD);
620 		msr |= ssbd_tif_to_spec_ctrl(tifn);
621 	}
622 
623 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
624 	if (IS_ENABLED(CONFIG_SMP) &&
625 	    static_branch_unlikely(&switch_to_cond_stibp)) {
626 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
627 		msr |= stibp_tif_to_spec_ctrl(tifn);
628 	}
629 
630 	if (updmsr)
631 		update_spec_ctrl_cond(msr);
632 }
633 
634 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
635 {
636 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
637 		if (task_spec_ssb_disable(tsk))
638 			set_tsk_thread_flag(tsk, TIF_SSBD);
639 		else
640 			clear_tsk_thread_flag(tsk, TIF_SSBD);
641 
642 		if (task_spec_ib_disable(tsk))
643 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
644 		else
645 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
646 	}
647 	/* Return the updated threadinfo flags*/
648 	return read_task_thread_flags(tsk);
649 }
650 
651 void speculation_ctrl_update(unsigned long tif)
652 {
653 	unsigned long flags;
654 
655 	/* Forced update. Make sure all relevant TIF flags are different */
656 	local_irq_save(flags);
657 	__speculation_ctrl_update(~tif, tif);
658 	local_irq_restore(flags);
659 }
660 
661 /* Called from seccomp/prctl update */
662 void speculation_ctrl_update_current(void)
663 {
664 	preempt_disable();
665 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
666 	preempt_enable();
667 }
668 
669 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
670 {
671 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
672 
673 	newval = cr4 ^ mask;
674 	if (newval != cr4) {
675 		this_cpu_write(cpu_tlbstate.cr4, newval);
676 		__write_cr4(newval);
677 	}
678 }
679 
680 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
681 {
682 	unsigned long tifp, tifn;
683 
684 	tifn = read_task_thread_flags(next_p);
685 	tifp = read_task_thread_flags(prev_p);
686 
687 	switch_to_bitmap(tifp);
688 
689 	propagate_user_return_notify(prev_p, next_p);
690 
691 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
692 	    arch_has_block_step()) {
693 		unsigned long debugctl, msk;
694 
695 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
696 		debugctl &= ~DEBUGCTLMSR_BTF;
697 		msk = tifn & _TIF_BLOCKSTEP;
698 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
699 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
700 	}
701 
702 	if ((tifp ^ tifn) & _TIF_NOTSC)
703 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
704 
705 	if ((tifp ^ tifn) & _TIF_NOCPUID)
706 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
707 
708 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
709 		__speculation_ctrl_update(tifp, tifn);
710 	} else {
711 		speculation_ctrl_update_tif(prev_p);
712 		tifn = speculation_ctrl_update_tif(next_p);
713 
714 		/* Enforce MSR update to ensure consistent state */
715 		__speculation_ctrl_update(~tifn, tifn);
716 	}
717 }
718 
719 /*
720  * Idle related variables and functions
721  */
722 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
723 EXPORT_SYMBOL(boot_option_idle_override);
724 
725 /*
726  * We use this if we don't have any better idle routine..
727  */
728 void __cpuidle default_idle(void)
729 {
730 	raw_safe_halt();
731 	raw_local_irq_disable();
732 }
733 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
734 EXPORT_SYMBOL(default_idle);
735 #endif
736 
737 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
738 
739 static bool x86_idle_set(void)
740 {
741 	return !!static_call_query(x86_idle);
742 }
743 
744 #ifndef CONFIG_SMP
745 static inline void __noreturn play_dead(void)
746 {
747 	BUG();
748 }
749 #endif
750 
751 void arch_cpu_idle_enter(void)
752 {
753 	tsc_verify_tsc_adjust(false);
754 	local_touch_nmi();
755 }
756 
757 void __noreturn arch_cpu_idle_dead(void)
758 {
759 	play_dead();
760 }
761 
762 /*
763  * Called from the generic idle code.
764  */
765 void __cpuidle arch_cpu_idle(void)
766 {
767 	static_call(x86_idle)();
768 }
769 EXPORT_SYMBOL_GPL(arch_cpu_idle);
770 
771 #ifdef CONFIG_XEN
772 bool xen_set_default_idle(void)
773 {
774 	bool ret = x86_idle_set();
775 
776 	static_call_update(x86_idle, default_idle);
777 
778 	return ret;
779 }
780 #endif
781 
782 struct cpumask cpus_stop_mask;
783 
784 void __noreturn stop_this_cpu(void *dummy)
785 {
786 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
787 	unsigned int cpu = smp_processor_id();
788 
789 	local_irq_disable();
790 
791 	/*
792 	 * Remove this CPU from the online mask and disable it
793 	 * unconditionally. This might be redundant in case that the reboot
794 	 * vector was handled late and stop_other_cpus() sent an NMI.
795 	 *
796 	 * According to SDM and APM NMIs can be accepted even after soft
797 	 * disabling the local APIC.
798 	 */
799 	set_cpu_online(cpu, false);
800 	disable_local_APIC();
801 	mcheck_cpu_clear(c);
802 
803 	/*
804 	 * Use wbinvd on processors that support SME. This provides support
805 	 * for performing a successful kexec when going from SME inactive
806 	 * to SME active (or vice-versa). The cache must be cleared so that
807 	 * if there are entries with the same physical address, both with and
808 	 * without the encryption bit, they don't race each other when flushed
809 	 * and potentially end up with the wrong entry being committed to
810 	 * memory.
811 	 *
812 	 * Test the CPUID bit directly because the machine might've cleared
813 	 * X86_FEATURE_SME due to cmdline options.
814 	 */
815 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
816 		native_wbinvd();
817 
818 	/*
819 	 * This brings a cache line back and dirties it, but
820 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
821 	 * observed that all CPUs reported stop. This write will invalidate
822 	 * the related cache line on this CPU.
823 	 */
824 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
825 
826 	for (;;) {
827 		/*
828 		 * Use native_halt() so that memory contents don't change
829 		 * (stack usage and variables) after possibly issuing the
830 		 * native_wbinvd() above.
831 		 */
832 		native_halt();
833 	}
834 }
835 
836 /*
837  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
838  * states (local apic timer and TSC stop).
839  *
840  * XXX this function is completely buggered vs RCU and tracing.
841  */
842 static void amd_e400_idle(void)
843 {
844 	/*
845 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
846 	 * gets set after static_cpu_has() places have been converted via
847 	 * alternatives.
848 	 */
849 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
850 		default_idle();
851 		return;
852 	}
853 
854 	tick_broadcast_enter();
855 
856 	default_idle();
857 
858 	tick_broadcast_exit();
859 }
860 
861 /*
862  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
863  * exists and whenever MONITOR/MWAIT extensions are present there is at
864  * least one C1 substate.
865  *
866  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
867  * is passed to kernel commandline parameter.
868  */
869 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
870 {
871 	u32 eax, ebx, ecx, edx;
872 
873 	/* User has disallowed the use of MWAIT. Fallback to HALT */
874 	if (boot_option_idle_override == IDLE_NOMWAIT)
875 		return 0;
876 
877 	/* MWAIT is not supported on this platform. Fallback to HALT */
878 	if (!cpu_has(c, X86_FEATURE_MWAIT))
879 		return 0;
880 
881 	/* Monitor has a bug. Fallback to HALT */
882 	if (boot_cpu_has_bug(X86_BUG_MONITOR))
883 		return 0;
884 
885 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
886 
887 	/*
888 	 * If MWAIT extensions are not available, it is safe to use MWAIT
889 	 * with EAX=0, ECX=0.
890 	 */
891 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
892 		return 1;
893 
894 	/*
895 	 * If MWAIT extensions are available, there should be at least one
896 	 * MWAIT C1 substate present.
897 	 */
898 	return (edx & MWAIT_C1_SUBSTATE_MASK);
899 }
900 
901 /*
902  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
903  * with interrupts enabled and no flags, which is backwards compatible with the
904  * original MWAIT implementation.
905  */
906 static __cpuidle void mwait_idle(void)
907 {
908 	if (!current_set_polling_and_test()) {
909 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
910 			mb(); /* quirk */
911 			clflush((void *)&current_thread_info()->flags);
912 			mb(); /* quirk */
913 		}
914 
915 		__monitor((void *)&current_thread_info()->flags, 0, 0);
916 		if (!need_resched()) {
917 			__sti_mwait(0, 0);
918 			raw_local_irq_disable();
919 		}
920 	}
921 	__current_clr_polling();
922 }
923 
924 void select_idle_routine(const struct cpuinfo_x86 *c)
925 {
926 #ifdef CONFIG_SMP
927 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
928 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
929 #endif
930 	if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
931 		return;
932 
933 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
934 		pr_info("using AMD E400 aware idle routine\n");
935 		static_call_update(x86_idle, amd_e400_idle);
936 	} else if (prefer_mwait_c1_over_halt(c)) {
937 		pr_info("using mwait in idle threads\n");
938 		static_call_update(x86_idle, mwait_idle);
939 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
940 		pr_info("using TDX aware idle routine\n");
941 		static_call_update(x86_idle, tdx_safe_halt);
942 	} else
943 		static_call_update(x86_idle, default_idle);
944 }
945 
946 void amd_e400_c1e_apic_setup(void)
947 {
948 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
949 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
950 		local_irq_disable();
951 		tick_broadcast_force();
952 		local_irq_enable();
953 	}
954 }
955 
956 void __init arch_post_acpi_subsys_init(void)
957 {
958 	u32 lo, hi;
959 
960 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
961 		return;
962 
963 	/*
964 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
965 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
966 	 * MSR_K8_INT_PENDING_MSG.
967 	 */
968 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
969 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
970 		return;
971 
972 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
973 
974 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
975 		mark_tsc_unstable("TSC halt in AMD C1E");
976 	pr_info("System has AMD C1E enabled\n");
977 }
978 
979 static int __init idle_setup(char *str)
980 {
981 	if (!str)
982 		return -EINVAL;
983 
984 	if (!strcmp(str, "poll")) {
985 		pr_info("using polling idle threads\n");
986 		boot_option_idle_override = IDLE_POLL;
987 		cpu_idle_poll_ctrl(true);
988 	} else if (!strcmp(str, "halt")) {
989 		/*
990 		 * When the boot option of idle=halt is added, halt is
991 		 * forced to be used for CPU idle. In such case CPU C2/C3
992 		 * won't be used again.
993 		 * To continue to load the CPU idle driver, don't touch
994 		 * the boot_option_idle_override.
995 		 */
996 		static_call_update(x86_idle, default_idle);
997 		boot_option_idle_override = IDLE_HALT;
998 	} else if (!strcmp(str, "nomwait")) {
999 		/*
1000 		 * If the boot option of "idle=nomwait" is added,
1001 		 * it means that mwait will be disabled for CPU C1/C2/C3
1002 		 * states.
1003 		 */
1004 		boot_option_idle_override = IDLE_NOMWAIT;
1005 	} else
1006 		return -1;
1007 
1008 	return 0;
1009 }
1010 early_param("idle", idle_setup);
1011 
1012 unsigned long arch_align_stack(unsigned long sp)
1013 {
1014 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1015 		sp -= get_random_u32_below(8192);
1016 	return sp & ~0xf;
1017 }
1018 
1019 unsigned long arch_randomize_brk(struct mm_struct *mm)
1020 {
1021 	return randomize_page(mm->brk, 0x02000000);
1022 }
1023 
1024 /*
1025  * Called from fs/proc with a reference on @p to find the function
1026  * which called into schedule(). This needs to be done carefully
1027  * because the task might wake up and we might look at a stack
1028  * changing under us.
1029  */
1030 unsigned long __get_wchan(struct task_struct *p)
1031 {
1032 	struct unwind_state state;
1033 	unsigned long addr = 0;
1034 
1035 	if (!try_get_task_stack(p))
1036 		return 0;
1037 
1038 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1039 	     unwind_next_frame(&state)) {
1040 		addr = unwind_get_return_address(&state);
1041 		if (!addr)
1042 			break;
1043 		if (in_sched_functions(addr))
1044 			continue;
1045 		break;
1046 	}
1047 
1048 	put_task_stack(p);
1049 
1050 	return addr;
1051 }
1052 
1053 long do_arch_prctl_common(int option, unsigned long arg2)
1054 {
1055 	switch (option) {
1056 	case ARCH_GET_CPUID:
1057 		return get_cpuid_mode();
1058 	case ARCH_SET_CPUID:
1059 		return set_cpuid_mode(arg2);
1060 	case ARCH_GET_XCOMP_SUPP:
1061 	case ARCH_GET_XCOMP_PERM:
1062 	case ARCH_REQ_XCOMP_PERM:
1063 	case ARCH_GET_XCOMP_GUEST_PERM:
1064 	case ARCH_REQ_XCOMP_GUEST_PERM:
1065 		return fpu_xstate_prctl(option, arg2);
1066 	}
1067 
1068 	return -EINVAL;
1069 }
1070