1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/errno.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/smp.h> 7 #include <linux/prctl.h> 8 #include <linux/slab.h> 9 #include <linux/sched.h> 10 #include <linux/init.h> 11 #include <linux/export.h> 12 #include <linux/pm.h> 13 #include <linux/tick.h> 14 #include <linux/random.h> 15 #include <linux/user-return-notifier.h> 16 #include <linux/dmi.h> 17 #include <linux/utsname.h> 18 #include <linux/stackprotector.h> 19 #include <linux/tick.h> 20 #include <linux/cpuidle.h> 21 #include <trace/events/power.h> 22 #include <linux/hw_breakpoint.h> 23 #include <asm/cpu.h> 24 #include <asm/apic.h> 25 #include <asm/syscalls.h> 26 #include <asm/idle.h> 27 #include <asm/uaccess.h> 28 #include <asm/mwait.h> 29 #include <asm/fpu/internal.h> 30 #include <asm/debugreg.h> 31 #include <asm/nmi.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mce.h> 34 #include <asm/vm86.h> 35 36 /* 37 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 38 * no more per-task TSS's. The TSS size is kept cacheline-aligned 39 * so they are allowed to end up in the .data..cacheline_aligned 40 * section. Since TSS's are completely CPU-local, we want them 41 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 42 */ 43 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = { 44 .x86_tss = { 45 .sp0 = TOP_OF_INIT_STACK, 46 #ifdef CONFIG_X86_32 47 .ss0 = __KERNEL_DS, 48 .ss1 = __KERNEL_CS, 49 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 50 #endif 51 }, 52 #ifdef CONFIG_X86_32 53 /* 54 * Note that the .io_bitmap member must be extra-big. This is because 55 * the CPU will access an additional byte beyond the end of the IO 56 * permission bitmap. The extra byte must be all 1 bits, and must 57 * be within the limit. 58 */ 59 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 60 #endif 61 #ifdef CONFIG_X86_32 62 .SYSENTER_stack_canary = STACK_END_MAGIC, 63 #endif 64 }; 65 EXPORT_PER_CPU_SYMBOL(cpu_tss); 66 67 #ifdef CONFIG_X86_64 68 static DEFINE_PER_CPU(unsigned char, is_idle); 69 static ATOMIC_NOTIFIER_HEAD(idle_notifier); 70 71 void idle_notifier_register(struct notifier_block *n) 72 { 73 atomic_notifier_chain_register(&idle_notifier, n); 74 } 75 EXPORT_SYMBOL_GPL(idle_notifier_register); 76 77 void idle_notifier_unregister(struct notifier_block *n) 78 { 79 atomic_notifier_chain_unregister(&idle_notifier, n); 80 } 81 EXPORT_SYMBOL_GPL(idle_notifier_unregister); 82 #endif 83 84 /* 85 * this gets called so that we can store lazy state into memory and copy the 86 * current task into the new thread. 87 */ 88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 89 { 90 memcpy(dst, src, arch_task_struct_size); 91 #ifdef CONFIG_VM86 92 dst->thread.vm86 = NULL; 93 #endif 94 95 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 96 } 97 98 /* 99 * Free current thread data structures etc.. 100 */ 101 void exit_thread(struct task_struct *tsk) 102 { 103 struct thread_struct *t = &tsk->thread; 104 unsigned long *bp = t->io_bitmap_ptr; 105 struct fpu *fpu = &t->fpu; 106 107 if (bp) { 108 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu()); 109 110 t->io_bitmap_ptr = NULL; 111 clear_thread_flag(TIF_IO_BITMAP); 112 /* 113 * Careful, clear this in the TSS too: 114 */ 115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 116 t->io_bitmap_max = 0; 117 put_cpu(); 118 kfree(bp); 119 } 120 121 free_vm86(t); 122 123 fpu__drop(fpu); 124 } 125 126 void flush_thread(void) 127 { 128 struct task_struct *tsk = current; 129 130 flush_ptrace_hw_breakpoint(tsk); 131 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 132 133 fpu__clear(&tsk->thread.fpu); 134 } 135 136 static void hard_disable_TSC(void) 137 { 138 cr4_set_bits(X86_CR4_TSD); 139 } 140 141 void disable_TSC(void) 142 { 143 preempt_disable(); 144 if (!test_and_set_thread_flag(TIF_NOTSC)) 145 /* 146 * Must flip the CPU state synchronously with 147 * TIF_NOTSC in the current running context. 148 */ 149 hard_disable_TSC(); 150 preempt_enable(); 151 } 152 153 static void hard_enable_TSC(void) 154 { 155 cr4_clear_bits(X86_CR4_TSD); 156 } 157 158 static void enable_TSC(void) 159 { 160 preempt_disable(); 161 if (test_and_clear_thread_flag(TIF_NOTSC)) 162 /* 163 * Must flip the CPU state synchronously with 164 * TIF_NOTSC in the current running context. 165 */ 166 hard_enable_TSC(); 167 preempt_enable(); 168 } 169 170 int get_tsc_mode(unsigned long adr) 171 { 172 unsigned int val; 173 174 if (test_thread_flag(TIF_NOTSC)) 175 val = PR_TSC_SIGSEGV; 176 else 177 val = PR_TSC_ENABLE; 178 179 return put_user(val, (unsigned int __user *)adr); 180 } 181 182 int set_tsc_mode(unsigned int val) 183 { 184 if (val == PR_TSC_SIGSEGV) 185 disable_TSC(); 186 else if (val == PR_TSC_ENABLE) 187 enable_TSC(); 188 else 189 return -EINVAL; 190 191 return 0; 192 } 193 194 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 195 struct tss_struct *tss) 196 { 197 struct thread_struct *prev, *next; 198 199 prev = &prev_p->thread; 200 next = &next_p->thread; 201 202 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 203 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 204 unsigned long debugctl = get_debugctlmsr(); 205 206 debugctl &= ~DEBUGCTLMSR_BTF; 207 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 208 debugctl |= DEBUGCTLMSR_BTF; 209 210 update_debugctlmsr(debugctl); 211 } 212 213 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 214 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 215 /* prev and next are different */ 216 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 217 hard_disable_TSC(); 218 else 219 hard_enable_TSC(); 220 } 221 222 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 223 /* 224 * Copy the relevant range of the IO bitmap. 225 * Normally this is 128 bytes or less: 226 */ 227 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 228 max(prev->io_bitmap_max, next->io_bitmap_max)); 229 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 230 /* 231 * Clear any possible leftover bits: 232 */ 233 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 234 } 235 propagate_user_return_notify(prev_p, next_p); 236 } 237 238 /* 239 * Idle related variables and functions 240 */ 241 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 242 EXPORT_SYMBOL(boot_option_idle_override); 243 244 static void (*x86_idle)(void); 245 246 #ifndef CONFIG_SMP 247 static inline void play_dead(void) 248 { 249 BUG(); 250 } 251 #endif 252 253 #ifdef CONFIG_X86_64 254 void enter_idle(void) 255 { 256 this_cpu_write(is_idle, 1); 257 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); 258 } 259 260 static void __exit_idle(void) 261 { 262 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) 263 return; 264 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); 265 } 266 267 /* Called from interrupts to signify idle end */ 268 void exit_idle(void) 269 { 270 /* idle loop has pid 0 */ 271 if (current->pid) 272 return; 273 __exit_idle(); 274 } 275 #endif 276 277 void arch_cpu_idle_enter(void) 278 { 279 local_touch_nmi(); 280 enter_idle(); 281 } 282 283 void arch_cpu_idle_exit(void) 284 { 285 __exit_idle(); 286 } 287 288 void arch_cpu_idle_dead(void) 289 { 290 play_dead(); 291 } 292 293 /* 294 * Called from the generic idle code. 295 */ 296 void arch_cpu_idle(void) 297 { 298 x86_idle(); 299 } 300 301 /* 302 * We use this if we don't have any better idle routine.. 303 */ 304 void default_idle(void) 305 { 306 trace_cpu_idle_rcuidle(1, smp_processor_id()); 307 safe_halt(); 308 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 309 } 310 #ifdef CONFIG_APM_MODULE 311 EXPORT_SYMBOL(default_idle); 312 #endif 313 314 #ifdef CONFIG_XEN 315 bool xen_set_default_idle(void) 316 { 317 bool ret = !!x86_idle; 318 319 x86_idle = default_idle; 320 321 return ret; 322 } 323 #endif 324 void stop_this_cpu(void *dummy) 325 { 326 local_irq_disable(); 327 /* 328 * Remove this CPU: 329 */ 330 set_cpu_online(smp_processor_id(), false); 331 disable_local_APIC(); 332 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 333 334 for (;;) 335 halt(); 336 } 337 338 bool amd_e400_c1e_detected; 339 EXPORT_SYMBOL(amd_e400_c1e_detected); 340 341 static cpumask_var_t amd_e400_c1e_mask; 342 343 void amd_e400_remove_cpu(int cpu) 344 { 345 if (amd_e400_c1e_mask != NULL) 346 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 347 } 348 349 /* 350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 351 * pending message MSR. If we detect C1E, then we handle it the same 352 * way as C3 power states (local apic timer and TSC stop) 353 */ 354 static void amd_e400_idle(void) 355 { 356 if (!amd_e400_c1e_detected) { 357 u32 lo, hi; 358 359 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 360 361 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 362 amd_e400_c1e_detected = true; 363 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 364 mark_tsc_unstable("TSC halt in AMD C1E"); 365 pr_info("System has AMD C1E enabled\n"); 366 } 367 } 368 369 if (amd_e400_c1e_detected) { 370 int cpu = smp_processor_id(); 371 372 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 373 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 374 /* Force broadcast so ACPI can not interfere. */ 375 tick_broadcast_force(); 376 pr_info("Switch to broadcast mode on CPU%d\n", cpu); 377 } 378 tick_broadcast_enter(); 379 380 default_idle(); 381 382 /* 383 * The switch back from broadcast mode needs to be 384 * called with interrupts disabled. 385 */ 386 local_irq_disable(); 387 tick_broadcast_exit(); 388 local_irq_enable(); 389 } else 390 default_idle(); 391 } 392 393 /* 394 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 395 * We can't rely on cpuidle installing MWAIT, because it will not load 396 * on systems that support only C1 -- so the boot default must be MWAIT. 397 * 398 * Some AMD machines are the opposite, they depend on using HALT. 399 * 400 * So for default C1, which is used during boot until cpuidle loads, 401 * use MWAIT-C1 on Intel HW that has it, else use HALT. 402 */ 403 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 404 { 405 if (c->x86_vendor != X86_VENDOR_INTEL) 406 return 0; 407 408 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 409 return 0; 410 411 return 1; 412 } 413 414 /* 415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 416 * with interrupts enabled and no flags, which is backwards compatible with the 417 * original MWAIT implementation. 418 */ 419 static void mwait_idle(void) 420 { 421 if (!current_set_polling_and_test()) { 422 trace_cpu_idle_rcuidle(1, smp_processor_id()); 423 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 424 mb(); /* quirk */ 425 clflush((void *)¤t_thread_info()->flags); 426 mb(); /* quirk */ 427 } 428 429 __monitor((void *)¤t_thread_info()->flags, 0, 0); 430 if (!need_resched()) 431 __sti_mwait(0, 0); 432 else 433 local_irq_enable(); 434 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 435 } else { 436 local_irq_enable(); 437 } 438 __current_clr_polling(); 439 } 440 441 void select_idle_routine(const struct cpuinfo_x86 *c) 442 { 443 #ifdef CONFIG_SMP 444 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 445 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 446 #endif 447 if (x86_idle || boot_option_idle_override == IDLE_POLL) 448 return; 449 450 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) { 451 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 452 pr_info("using AMD E400 aware idle routine\n"); 453 x86_idle = amd_e400_idle; 454 } else if (prefer_mwait_c1_over_halt(c)) { 455 pr_info("using mwait in idle threads\n"); 456 x86_idle = mwait_idle; 457 } else 458 x86_idle = default_idle; 459 } 460 461 void __init init_amd_e400_c1e_mask(void) 462 { 463 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 464 if (x86_idle == amd_e400_idle) 465 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 466 } 467 468 static int __init idle_setup(char *str) 469 { 470 if (!str) 471 return -EINVAL; 472 473 if (!strcmp(str, "poll")) { 474 pr_info("using polling idle threads\n"); 475 boot_option_idle_override = IDLE_POLL; 476 cpu_idle_poll_ctrl(true); 477 } else if (!strcmp(str, "halt")) { 478 /* 479 * When the boot option of idle=halt is added, halt is 480 * forced to be used for CPU idle. In such case CPU C2/C3 481 * won't be used again. 482 * To continue to load the CPU idle driver, don't touch 483 * the boot_option_idle_override. 484 */ 485 x86_idle = default_idle; 486 boot_option_idle_override = IDLE_HALT; 487 } else if (!strcmp(str, "nomwait")) { 488 /* 489 * If the boot option of "idle=nomwait" is added, 490 * it means that mwait will be disabled for CPU C2/C3 491 * states. In such case it won't touch the variable 492 * of boot_option_idle_override. 493 */ 494 boot_option_idle_override = IDLE_NOMWAIT; 495 } else 496 return -1; 497 498 return 0; 499 } 500 early_param("idle", idle_setup); 501 502 unsigned long arch_align_stack(unsigned long sp) 503 { 504 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 505 sp -= get_random_int() % 8192; 506 return sp & ~0xf; 507 } 508 509 unsigned long arch_randomize_brk(struct mm_struct *mm) 510 { 511 unsigned long range_end = mm->brk + 0x02000000; 512 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 513 } 514 515 /* 516 * Called from fs/proc with a reference on @p to find the function 517 * which called into schedule(). This needs to be done carefully 518 * because the task might wake up and we might look at a stack 519 * changing under us. 520 */ 521 unsigned long get_wchan(struct task_struct *p) 522 { 523 unsigned long start, bottom, top, sp, fp, ip; 524 int count = 0; 525 526 if (!p || p == current || p->state == TASK_RUNNING) 527 return 0; 528 529 start = (unsigned long)task_stack_page(p); 530 if (!start) 531 return 0; 532 533 /* 534 * Layout of the stack page: 535 * 536 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 537 * PADDING 538 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 539 * stack 540 * ----------- bottom = start + sizeof(thread_info) 541 * thread_info 542 * ----------- start 543 * 544 * The tasks stack pointer points at the location where the 545 * framepointer is stored. The data on the stack is: 546 * ... IP FP ... IP FP 547 * 548 * We need to read FP and IP, so we need to adjust the upper 549 * bound by another unsigned long. 550 */ 551 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 552 top -= 2 * sizeof(unsigned long); 553 bottom = start + sizeof(struct thread_info); 554 555 sp = READ_ONCE(p->thread.sp); 556 if (sp < bottom || sp > top) 557 return 0; 558 559 fp = READ_ONCE_NOCHECK(*(unsigned long *)sp); 560 do { 561 if (fp < bottom || fp > top) 562 return 0; 563 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 564 if (!in_sched_functions(ip)) 565 return ip; 566 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 567 } while (count++ < 16 && p->state != TASK_RUNNING); 568 return 0; 569 } 570