1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <trace/events/power.h> 28 #include <linux/hw_breakpoint.h> 29 #include <asm/cpu.h> 30 #include <asm/apic.h> 31 #include <asm/syscalls.h> 32 #include <linux/uaccess.h> 33 #include <asm/mwait.h> 34 #include <asm/fpu/internal.h> 35 #include <asm/debugreg.h> 36 #include <asm/nmi.h> 37 #include <asm/tlbflush.h> 38 #include <asm/mce.h> 39 #include <asm/vm86.h> 40 #include <asm/switch_to.h> 41 #include <asm/desc.h> 42 #include <asm/prctl.h> 43 #include <asm/spec-ctrl.h> 44 #include <asm/proto.h> 45 46 #include "process.h" 47 48 /* 49 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 50 * no more per-task TSS's. The TSS size is kept cacheline-aligned 51 * so they are allowed to end up in the .data..cacheline_aligned 52 * section. Since TSS's are completely CPU-local, we want them 53 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 54 */ 55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 56 .x86_tss = { 57 /* 58 * .sp0 is only used when entering ring 0 from a lower 59 * privilege level. Since the init task never runs anything 60 * but ring 0 code, there is no need for a valid value here. 61 * Poison it. 62 */ 63 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 64 65 /* 66 * .sp1 is cpu_current_top_of_stack. The init task never 67 * runs user code, but cpu_current_top_of_stack should still 68 * be well defined before the first context switch. 69 */ 70 .sp1 = TOP_OF_INIT_STACK, 71 72 #ifdef CONFIG_X86_32 73 .ss0 = __KERNEL_DS, 74 .ss1 = __KERNEL_CS, 75 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 76 #endif 77 }, 78 #ifdef CONFIG_X86_32 79 /* 80 * Note that the .io_bitmap member must be extra-big. This is because 81 * the CPU will access an additional byte beyond the end of the IO 82 * permission bitmap. The extra byte must be all 1 bits, and must 83 * be within the limit. 84 */ 85 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 86 #endif 87 }; 88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 89 90 DEFINE_PER_CPU(bool, __tss_limit_invalid); 91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 92 93 /* 94 * this gets called so that we can store lazy state into memory and copy the 95 * current task into the new thread. 96 */ 97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 98 { 99 memcpy(dst, src, arch_task_struct_size); 100 #ifdef CONFIG_VM86 101 dst->thread.vm86 = NULL; 102 #endif 103 104 return fpu__copy(dst, src); 105 } 106 107 /* 108 * Free current thread data structures etc.. 109 */ 110 void exit_thread(struct task_struct *tsk) 111 { 112 struct thread_struct *t = &tsk->thread; 113 unsigned long *bp = t->io_bitmap_ptr; 114 struct fpu *fpu = &t->fpu; 115 116 if (bp) { 117 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); 118 119 t->io_bitmap_ptr = NULL; 120 clear_thread_flag(TIF_IO_BITMAP); 121 /* 122 * Careful, clear this in the TSS too: 123 */ 124 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 125 t->io_bitmap_max = 0; 126 put_cpu(); 127 kfree(bp); 128 } 129 130 free_vm86(t); 131 132 fpu__drop(fpu); 133 } 134 135 void flush_thread(void) 136 { 137 struct task_struct *tsk = current; 138 139 flush_ptrace_hw_breakpoint(tsk); 140 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 141 142 fpu__clear(&tsk->thread.fpu); 143 } 144 145 void disable_TSC(void) 146 { 147 preempt_disable(); 148 if (!test_and_set_thread_flag(TIF_NOTSC)) 149 /* 150 * Must flip the CPU state synchronously with 151 * TIF_NOTSC in the current running context. 152 */ 153 cr4_set_bits(X86_CR4_TSD); 154 preempt_enable(); 155 } 156 157 static void enable_TSC(void) 158 { 159 preempt_disable(); 160 if (test_and_clear_thread_flag(TIF_NOTSC)) 161 /* 162 * Must flip the CPU state synchronously with 163 * TIF_NOTSC in the current running context. 164 */ 165 cr4_clear_bits(X86_CR4_TSD); 166 preempt_enable(); 167 } 168 169 int get_tsc_mode(unsigned long adr) 170 { 171 unsigned int val; 172 173 if (test_thread_flag(TIF_NOTSC)) 174 val = PR_TSC_SIGSEGV; 175 else 176 val = PR_TSC_ENABLE; 177 178 return put_user(val, (unsigned int __user *)adr); 179 } 180 181 int set_tsc_mode(unsigned int val) 182 { 183 if (val == PR_TSC_SIGSEGV) 184 disable_TSC(); 185 else if (val == PR_TSC_ENABLE) 186 enable_TSC(); 187 else 188 return -EINVAL; 189 190 return 0; 191 } 192 193 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 194 195 static void set_cpuid_faulting(bool on) 196 { 197 u64 msrval; 198 199 msrval = this_cpu_read(msr_misc_features_shadow); 200 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 201 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 202 this_cpu_write(msr_misc_features_shadow, msrval); 203 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 204 } 205 206 static void disable_cpuid(void) 207 { 208 preempt_disable(); 209 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 210 /* 211 * Must flip the CPU state synchronously with 212 * TIF_NOCPUID in the current running context. 213 */ 214 set_cpuid_faulting(true); 215 } 216 preempt_enable(); 217 } 218 219 static void enable_cpuid(void) 220 { 221 preempt_disable(); 222 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 223 /* 224 * Must flip the CPU state synchronously with 225 * TIF_NOCPUID in the current running context. 226 */ 227 set_cpuid_faulting(false); 228 } 229 preempt_enable(); 230 } 231 232 static int get_cpuid_mode(void) 233 { 234 return !test_thread_flag(TIF_NOCPUID); 235 } 236 237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 238 { 239 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 240 return -ENODEV; 241 242 if (cpuid_enabled) 243 enable_cpuid(); 244 else 245 disable_cpuid(); 246 247 return 0; 248 } 249 250 /* 251 * Called immediately after a successful exec. 252 */ 253 void arch_setup_new_exec(void) 254 { 255 /* If cpuid was previously disabled for this task, re-enable it. */ 256 if (test_thread_flag(TIF_NOCPUID)) 257 enable_cpuid(); 258 259 /* 260 * Don't inherit TIF_SSBD across exec boundary when 261 * PR_SPEC_DISABLE_NOEXEC is used. 262 */ 263 if (test_thread_flag(TIF_SSBD) && 264 task_spec_ssb_noexec(current)) { 265 clear_thread_flag(TIF_SSBD); 266 task_clear_spec_ssb_disable(current); 267 task_clear_spec_ssb_noexec(current); 268 speculation_ctrl_update(task_thread_info(current)->flags); 269 } 270 } 271 272 static inline void switch_to_bitmap(struct thread_struct *prev, 273 struct thread_struct *next, 274 unsigned long tifp, unsigned long tifn) 275 { 276 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 277 278 if (tifn & _TIF_IO_BITMAP) { 279 /* 280 * Copy the relevant range of the IO bitmap. 281 * Normally this is 128 bytes or less: 282 */ 283 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 284 max(prev->io_bitmap_max, next->io_bitmap_max)); 285 /* 286 * Make sure that the TSS limit is correct for the CPU 287 * to notice the IO bitmap. 288 */ 289 refresh_tss_limit(); 290 } else if (tifp & _TIF_IO_BITMAP) { 291 /* 292 * Clear any possible leftover bits: 293 */ 294 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 295 } 296 } 297 298 #ifdef CONFIG_SMP 299 300 struct ssb_state { 301 struct ssb_state *shared_state; 302 raw_spinlock_t lock; 303 unsigned int disable_state; 304 unsigned long local_state; 305 }; 306 307 #define LSTATE_SSB 0 308 309 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 310 311 void speculative_store_bypass_ht_init(void) 312 { 313 struct ssb_state *st = this_cpu_ptr(&ssb_state); 314 unsigned int this_cpu = smp_processor_id(); 315 unsigned int cpu; 316 317 st->local_state = 0; 318 319 /* 320 * Shared state setup happens once on the first bringup 321 * of the CPU. It's not destroyed on CPU hotunplug. 322 */ 323 if (st->shared_state) 324 return; 325 326 raw_spin_lock_init(&st->lock); 327 328 /* 329 * Go over HT siblings and check whether one of them has set up the 330 * shared state pointer already. 331 */ 332 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 333 if (cpu == this_cpu) 334 continue; 335 336 if (!per_cpu(ssb_state, cpu).shared_state) 337 continue; 338 339 /* Link it to the state of the sibling: */ 340 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 341 return; 342 } 343 344 /* 345 * First HT sibling to come up on the core. Link shared state of 346 * the first HT sibling to itself. The siblings on the same core 347 * which come up later will see the shared state pointer and link 348 * themself to the state of this CPU. 349 */ 350 st->shared_state = st; 351 } 352 353 /* 354 * Logic is: First HT sibling enables SSBD for both siblings in the core 355 * and last sibling to disable it, disables it for the whole core. This how 356 * MSR_SPEC_CTRL works in "hardware": 357 * 358 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 359 */ 360 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 361 { 362 struct ssb_state *st = this_cpu_ptr(&ssb_state); 363 u64 msr = x86_amd_ls_cfg_base; 364 365 if (!static_cpu_has(X86_FEATURE_ZEN)) { 366 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 367 wrmsrl(MSR_AMD64_LS_CFG, msr); 368 return; 369 } 370 371 if (tifn & _TIF_SSBD) { 372 /* 373 * Since this can race with prctl(), block reentry on the 374 * same CPU. 375 */ 376 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 377 return; 378 379 msr |= x86_amd_ls_cfg_ssbd_mask; 380 381 raw_spin_lock(&st->shared_state->lock); 382 /* First sibling enables SSBD: */ 383 if (!st->shared_state->disable_state) 384 wrmsrl(MSR_AMD64_LS_CFG, msr); 385 st->shared_state->disable_state++; 386 raw_spin_unlock(&st->shared_state->lock); 387 } else { 388 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 389 return; 390 391 raw_spin_lock(&st->shared_state->lock); 392 st->shared_state->disable_state--; 393 if (!st->shared_state->disable_state) 394 wrmsrl(MSR_AMD64_LS_CFG, msr); 395 raw_spin_unlock(&st->shared_state->lock); 396 } 397 } 398 #else 399 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 400 { 401 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 402 403 wrmsrl(MSR_AMD64_LS_CFG, msr); 404 } 405 #endif 406 407 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 408 { 409 /* 410 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 411 * so ssbd_tif_to_spec_ctrl() just works. 412 */ 413 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 414 } 415 416 /* 417 * Update the MSRs managing speculation control, during context switch. 418 * 419 * tifp: Previous task's thread flags 420 * tifn: Next task's thread flags 421 */ 422 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 423 unsigned long tifn) 424 { 425 unsigned long tif_diff = tifp ^ tifn; 426 u64 msr = x86_spec_ctrl_base; 427 bool updmsr = false; 428 429 lockdep_assert_irqs_disabled(); 430 431 /* 432 * If TIF_SSBD is different, select the proper mitigation 433 * method. Note that if SSBD mitigation is disabled or permanentely 434 * enabled this branch can't be taken because nothing can set 435 * TIF_SSBD. 436 */ 437 if (tif_diff & _TIF_SSBD) { 438 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 439 amd_set_ssb_virt_state(tifn); 440 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 441 amd_set_core_ssb_state(tifn); 442 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 443 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 444 msr |= ssbd_tif_to_spec_ctrl(tifn); 445 updmsr = true; 446 } 447 } 448 449 /* 450 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled, 451 * otherwise avoid the MSR write. 452 */ 453 if (IS_ENABLED(CONFIG_SMP) && 454 static_branch_unlikely(&switch_to_cond_stibp)) { 455 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 456 msr |= stibp_tif_to_spec_ctrl(tifn); 457 } 458 459 if (updmsr) 460 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 461 } 462 463 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 464 { 465 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 466 if (task_spec_ssb_disable(tsk)) 467 set_tsk_thread_flag(tsk, TIF_SSBD); 468 else 469 clear_tsk_thread_flag(tsk, TIF_SSBD); 470 471 if (task_spec_ib_disable(tsk)) 472 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 473 else 474 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 475 } 476 /* Return the updated threadinfo flags*/ 477 return task_thread_info(tsk)->flags; 478 } 479 480 void speculation_ctrl_update(unsigned long tif) 481 { 482 unsigned long flags; 483 484 /* Forced update. Make sure all relevant TIF flags are different */ 485 local_irq_save(flags); 486 __speculation_ctrl_update(~tif, tif); 487 local_irq_restore(flags); 488 } 489 490 /* Called from seccomp/prctl update */ 491 void speculation_ctrl_update_current(void) 492 { 493 preempt_disable(); 494 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 495 preempt_enable(); 496 } 497 498 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 499 { 500 struct thread_struct *prev, *next; 501 unsigned long tifp, tifn; 502 503 prev = &prev_p->thread; 504 next = &next_p->thread; 505 506 tifn = READ_ONCE(task_thread_info(next_p)->flags); 507 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 508 switch_to_bitmap(prev, next, tifp, tifn); 509 510 propagate_user_return_notify(prev_p, next_p); 511 512 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 513 arch_has_block_step()) { 514 unsigned long debugctl, msk; 515 516 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 517 debugctl &= ~DEBUGCTLMSR_BTF; 518 msk = tifn & _TIF_BLOCKSTEP; 519 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 520 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 521 } 522 523 if ((tifp ^ tifn) & _TIF_NOTSC) 524 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 525 526 if ((tifp ^ tifn) & _TIF_NOCPUID) 527 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 528 529 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 530 __speculation_ctrl_update(tifp, tifn); 531 } else { 532 speculation_ctrl_update_tif(prev_p); 533 tifn = speculation_ctrl_update_tif(next_p); 534 535 /* Enforce MSR update to ensure consistent state */ 536 __speculation_ctrl_update(~tifn, tifn); 537 } 538 } 539 540 /* 541 * Idle related variables and functions 542 */ 543 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 544 EXPORT_SYMBOL(boot_option_idle_override); 545 546 static void (*x86_idle)(void); 547 548 #ifndef CONFIG_SMP 549 static inline void play_dead(void) 550 { 551 BUG(); 552 } 553 #endif 554 555 void arch_cpu_idle_enter(void) 556 { 557 tsc_verify_tsc_adjust(false); 558 local_touch_nmi(); 559 } 560 561 void arch_cpu_idle_dead(void) 562 { 563 play_dead(); 564 } 565 566 /* 567 * Called from the generic idle code. 568 */ 569 void arch_cpu_idle(void) 570 { 571 x86_idle(); 572 } 573 574 /* 575 * We use this if we don't have any better idle routine.. 576 */ 577 void __cpuidle default_idle(void) 578 { 579 trace_cpu_idle_rcuidle(1, smp_processor_id()); 580 safe_halt(); 581 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 582 } 583 #ifdef CONFIG_APM_MODULE 584 EXPORT_SYMBOL(default_idle); 585 #endif 586 587 #ifdef CONFIG_XEN 588 bool xen_set_default_idle(void) 589 { 590 bool ret = !!x86_idle; 591 592 x86_idle = default_idle; 593 594 return ret; 595 } 596 #endif 597 598 void stop_this_cpu(void *dummy) 599 { 600 local_irq_disable(); 601 /* 602 * Remove this CPU: 603 */ 604 set_cpu_online(smp_processor_id(), false); 605 disable_local_APIC(); 606 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 607 608 /* 609 * Use wbinvd on processors that support SME. This provides support 610 * for performing a successful kexec when going from SME inactive 611 * to SME active (or vice-versa). The cache must be cleared so that 612 * if there are entries with the same physical address, both with and 613 * without the encryption bit, they don't race each other when flushed 614 * and potentially end up with the wrong entry being committed to 615 * memory. 616 */ 617 if (boot_cpu_has(X86_FEATURE_SME)) 618 native_wbinvd(); 619 for (;;) { 620 /* 621 * Use native_halt() so that memory contents don't change 622 * (stack usage and variables) after possibly issuing the 623 * native_wbinvd() above. 624 */ 625 native_halt(); 626 } 627 } 628 629 /* 630 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 631 * states (local apic timer and TSC stop). 632 */ 633 static void amd_e400_idle(void) 634 { 635 /* 636 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 637 * gets set after static_cpu_has() places have been converted via 638 * alternatives. 639 */ 640 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 641 default_idle(); 642 return; 643 } 644 645 tick_broadcast_enter(); 646 647 default_idle(); 648 649 /* 650 * The switch back from broadcast mode needs to be called with 651 * interrupts disabled. 652 */ 653 local_irq_disable(); 654 tick_broadcast_exit(); 655 local_irq_enable(); 656 } 657 658 /* 659 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 660 * We can't rely on cpuidle installing MWAIT, because it will not load 661 * on systems that support only C1 -- so the boot default must be MWAIT. 662 * 663 * Some AMD machines are the opposite, they depend on using HALT. 664 * 665 * So for default C1, which is used during boot until cpuidle loads, 666 * use MWAIT-C1 on Intel HW that has it, else use HALT. 667 */ 668 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 669 { 670 if (c->x86_vendor != X86_VENDOR_INTEL) 671 return 0; 672 673 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) 674 return 0; 675 676 return 1; 677 } 678 679 /* 680 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 681 * with interrupts enabled and no flags, which is backwards compatible with the 682 * original MWAIT implementation. 683 */ 684 static __cpuidle void mwait_idle(void) 685 { 686 if (!current_set_polling_and_test()) { 687 trace_cpu_idle_rcuidle(1, smp_processor_id()); 688 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 689 mb(); /* quirk */ 690 clflush((void *)¤t_thread_info()->flags); 691 mb(); /* quirk */ 692 } 693 694 __monitor((void *)¤t_thread_info()->flags, 0, 0); 695 if (!need_resched()) 696 __sti_mwait(0, 0); 697 else 698 local_irq_enable(); 699 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 700 } else { 701 local_irq_enable(); 702 } 703 __current_clr_polling(); 704 } 705 706 void select_idle_routine(const struct cpuinfo_x86 *c) 707 { 708 #ifdef CONFIG_SMP 709 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 710 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 711 #endif 712 if (x86_idle || boot_option_idle_override == IDLE_POLL) 713 return; 714 715 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 716 pr_info("using AMD E400 aware idle routine\n"); 717 x86_idle = amd_e400_idle; 718 } else if (prefer_mwait_c1_over_halt(c)) { 719 pr_info("using mwait in idle threads\n"); 720 x86_idle = mwait_idle; 721 } else 722 x86_idle = default_idle; 723 } 724 725 void amd_e400_c1e_apic_setup(void) 726 { 727 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 728 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 729 local_irq_disable(); 730 tick_broadcast_force(); 731 local_irq_enable(); 732 } 733 } 734 735 void __init arch_post_acpi_subsys_init(void) 736 { 737 u32 lo, hi; 738 739 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 740 return; 741 742 /* 743 * AMD E400 detection needs to happen after ACPI has been enabled. If 744 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 745 * MSR_K8_INT_PENDING_MSG. 746 */ 747 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 748 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 749 return; 750 751 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 752 753 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 754 mark_tsc_unstable("TSC halt in AMD C1E"); 755 pr_info("System has AMD C1E enabled\n"); 756 } 757 758 static int __init idle_setup(char *str) 759 { 760 if (!str) 761 return -EINVAL; 762 763 if (!strcmp(str, "poll")) { 764 pr_info("using polling idle threads\n"); 765 boot_option_idle_override = IDLE_POLL; 766 cpu_idle_poll_ctrl(true); 767 } else if (!strcmp(str, "halt")) { 768 /* 769 * When the boot option of idle=halt is added, halt is 770 * forced to be used for CPU idle. In such case CPU C2/C3 771 * won't be used again. 772 * To continue to load the CPU idle driver, don't touch 773 * the boot_option_idle_override. 774 */ 775 x86_idle = default_idle; 776 boot_option_idle_override = IDLE_HALT; 777 } else if (!strcmp(str, "nomwait")) { 778 /* 779 * If the boot option of "idle=nomwait" is added, 780 * it means that mwait will be disabled for CPU C2/C3 781 * states. In such case it won't touch the variable 782 * of boot_option_idle_override. 783 */ 784 boot_option_idle_override = IDLE_NOMWAIT; 785 } else 786 return -1; 787 788 return 0; 789 } 790 early_param("idle", idle_setup); 791 792 unsigned long arch_align_stack(unsigned long sp) 793 { 794 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 795 sp -= get_random_int() % 8192; 796 return sp & ~0xf; 797 } 798 799 unsigned long arch_randomize_brk(struct mm_struct *mm) 800 { 801 return randomize_page(mm->brk, 0x02000000); 802 } 803 804 /* 805 * Called from fs/proc with a reference on @p to find the function 806 * which called into schedule(). This needs to be done carefully 807 * because the task might wake up and we might look at a stack 808 * changing under us. 809 */ 810 unsigned long get_wchan(struct task_struct *p) 811 { 812 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 813 int count = 0; 814 815 if (p == current || p->state == TASK_RUNNING) 816 return 0; 817 818 if (!try_get_task_stack(p)) 819 return 0; 820 821 start = (unsigned long)task_stack_page(p); 822 if (!start) 823 goto out; 824 825 /* 826 * Layout of the stack page: 827 * 828 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 829 * PADDING 830 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 831 * stack 832 * ----------- bottom = start 833 * 834 * The tasks stack pointer points at the location where the 835 * framepointer is stored. The data on the stack is: 836 * ... IP FP ... IP FP 837 * 838 * We need to read FP and IP, so we need to adjust the upper 839 * bound by another unsigned long. 840 */ 841 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 842 top -= 2 * sizeof(unsigned long); 843 bottom = start; 844 845 sp = READ_ONCE(p->thread.sp); 846 if (sp < bottom || sp > top) 847 goto out; 848 849 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 850 do { 851 if (fp < bottom || fp > top) 852 goto out; 853 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 854 if (!in_sched_functions(ip)) { 855 ret = ip; 856 goto out; 857 } 858 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 859 } while (count++ < 16 && p->state != TASK_RUNNING); 860 861 out: 862 put_task_stack(p); 863 return ret; 864 } 865 866 long do_arch_prctl_common(struct task_struct *task, int option, 867 unsigned long cpuid_enabled) 868 { 869 switch (option) { 870 case ARCH_GET_CPUID: 871 return get_cpuid_mode(); 872 case ARCH_SET_CPUID: 873 return set_cpuid_mode(task, cpuid_enabled); 874 } 875 876 return -EINVAL; 877 } 878