1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <trace/events/power.h> 28 #include <linux/hw_breakpoint.h> 29 #include <asm/cpu.h> 30 #include <asm/apic.h> 31 #include <linux/uaccess.h> 32 #include <asm/mwait.h> 33 #include <asm/fpu/internal.h> 34 #include <asm/debugreg.h> 35 #include <asm/nmi.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mce.h> 38 #include <asm/vm86.h> 39 #include <asm/switch_to.h> 40 #include <asm/desc.h> 41 #include <asm/prctl.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/io_bitmap.h> 44 #include <asm/proto.h> 45 46 #include "process.h" 47 48 /* 49 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 50 * no more per-task TSS's. The TSS size is kept cacheline-aligned 51 * so they are allowed to end up in the .data..cacheline_aligned 52 * section. Since TSS's are completely CPU-local, we want them 53 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 54 */ 55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 56 .x86_tss = { 57 /* 58 * .sp0 is only used when entering ring 0 from a lower 59 * privilege level. Since the init task never runs anything 60 * but ring 0 code, there is no need for a valid value here. 61 * Poison it. 62 */ 63 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 64 65 /* 66 * .sp1 is cpu_current_top_of_stack. The init task never 67 * runs user code, but cpu_current_top_of_stack should still 68 * be well defined before the first context switch. 69 */ 70 .sp1 = TOP_OF_INIT_STACK, 71 72 #ifdef CONFIG_X86_32 73 .ss0 = __KERNEL_DS, 74 .ss1 = __KERNEL_CS, 75 #endif 76 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 77 }, 78 }; 79 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 80 81 DEFINE_PER_CPU(bool, __tss_limit_invalid); 82 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 83 84 /* 85 * this gets called so that we can store lazy state into memory and copy the 86 * current task into the new thread. 87 */ 88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 89 { 90 memcpy(dst, src, arch_task_struct_size); 91 #ifdef CONFIG_VM86 92 dst->thread.vm86 = NULL; 93 #endif 94 95 return fpu__copy(dst, src); 96 } 97 98 /* 99 * Free thread data structures etc.. 100 */ 101 void exit_thread(struct task_struct *tsk) 102 { 103 struct thread_struct *t = &tsk->thread; 104 struct fpu *fpu = &t->fpu; 105 106 if (test_thread_flag(TIF_IO_BITMAP)) 107 io_bitmap_exit(tsk); 108 109 free_vm86(t); 110 111 fpu__drop(fpu); 112 } 113 114 static int set_new_tls(struct task_struct *p, unsigned long tls) 115 { 116 struct user_desc __user *utls = (struct user_desc __user *)tls; 117 118 if (in_ia32_syscall()) 119 return do_set_thread_area(p, -1, utls, 0); 120 else 121 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 122 } 123 124 int copy_thread_tls(unsigned long clone_flags, unsigned long sp, 125 unsigned long arg, struct task_struct *p, unsigned long tls) 126 { 127 struct inactive_task_frame *frame; 128 struct fork_frame *fork_frame; 129 struct pt_regs *childregs; 130 int ret = 0; 131 132 childregs = task_pt_regs(p); 133 fork_frame = container_of(childregs, struct fork_frame, regs); 134 frame = &fork_frame->frame; 135 136 frame->bp = 0; 137 frame->ret_addr = (unsigned long) ret_from_fork; 138 p->thread.sp = (unsigned long) fork_frame; 139 p->thread.io_bitmap = NULL; 140 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 141 142 #ifdef CONFIG_X86_64 143 savesegment(gs, p->thread.gsindex); 144 p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase; 145 savesegment(fs, p->thread.fsindex); 146 p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase; 147 savesegment(es, p->thread.es); 148 savesegment(ds, p->thread.ds); 149 #else 150 p->thread.sp0 = (unsigned long) (childregs + 1); 151 /* 152 * Clear all status flags including IF and set fixed bit. 64bit 153 * does not have this initialization as the frame does not contain 154 * flags. The flags consistency (especially vs. AC) is there 155 * ensured via objtool, which lacks 32bit support. 156 */ 157 frame->flags = X86_EFLAGS_FIXED; 158 #endif 159 160 /* Kernel thread ? */ 161 if (unlikely(p->flags & PF_KTHREAD)) { 162 memset(childregs, 0, sizeof(struct pt_regs)); 163 kthread_frame_init(frame, sp, arg); 164 return 0; 165 } 166 167 frame->bx = 0; 168 *childregs = *current_pt_regs(); 169 childregs->ax = 0; 170 if (sp) 171 childregs->sp = sp; 172 173 #ifdef CONFIG_X86_32 174 task_user_gs(p) = get_user_gs(current_pt_regs()); 175 #endif 176 177 /* Set a new TLS for the child thread? */ 178 if (clone_flags & CLONE_SETTLS) 179 ret = set_new_tls(p, tls); 180 181 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 182 io_bitmap_share(p); 183 184 return ret; 185 } 186 187 void flush_thread(void) 188 { 189 struct task_struct *tsk = current; 190 191 flush_ptrace_hw_breakpoint(tsk); 192 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 193 194 fpu__clear_all(&tsk->thread.fpu); 195 } 196 197 void disable_TSC(void) 198 { 199 preempt_disable(); 200 if (!test_and_set_thread_flag(TIF_NOTSC)) 201 /* 202 * Must flip the CPU state synchronously with 203 * TIF_NOTSC in the current running context. 204 */ 205 cr4_set_bits(X86_CR4_TSD); 206 preempt_enable(); 207 } 208 209 static void enable_TSC(void) 210 { 211 preempt_disable(); 212 if (test_and_clear_thread_flag(TIF_NOTSC)) 213 /* 214 * Must flip the CPU state synchronously with 215 * TIF_NOTSC in the current running context. 216 */ 217 cr4_clear_bits(X86_CR4_TSD); 218 preempt_enable(); 219 } 220 221 int get_tsc_mode(unsigned long adr) 222 { 223 unsigned int val; 224 225 if (test_thread_flag(TIF_NOTSC)) 226 val = PR_TSC_SIGSEGV; 227 else 228 val = PR_TSC_ENABLE; 229 230 return put_user(val, (unsigned int __user *)adr); 231 } 232 233 int set_tsc_mode(unsigned int val) 234 { 235 if (val == PR_TSC_SIGSEGV) 236 disable_TSC(); 237 else if (val == PR_TSC_ENABLE) 238 enable_TSC(); 239 else 240 return -EINVAL; 241 242 return 0; 243 } 244 245 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 246 247 static void set_cpuid_faulting(bool on) 248 { 249 u64 msrval; 250 251 msrval = this_cpu_read(msr_misc_features_shadow); 252 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 253 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 254 this_cpu_write(msr_misc_features_shadow, msrval); 255 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 256 } 257 258 static void disable_cpuid(void) 259 { 260 preempt_disable(); 261 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 262 /* 263 * Must flip the CPU state synchronously with 264 * TIF_NOCPUID in the current running context. 265 */ 266 set_cpuid_faulting(true); 267 } 268 preempt_enable(); 269 } 270 271 static void enable_cpuid(void) 272 { 273 preempt_disable(); 274 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 275 /* 276 * Must flip the CPU state synchronously with 277 * TIF_NOCPUID in the current running context. 278 */ 279 set_cpuid_faulting(false); 280 } 281 preempt_enable(); 282 } 283 284 static int get_cpuid_mode(void) 285 { 286 return !test_thread_flag(TIF_NOCPUID); 287 } 288 289 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 290 { 291 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 292 return -ENODEV; 293 294 if (cpuid_enabled) 295 enable_cpuid(); 296 else 297 disable_cpuid(); 298 299 return 0; 300 } 301 302 /* 303 * Called immediately after a successful exec. 304 */ 305 void arch_setup_new_exec(void) 306 { 307 /* If cpuid was previously disabled for this task, re-enable it. */ 308 if (test_thread_flag(TIF_NOCPUID)) 309 enable_cpuid(); 310 311 /* 312 * Don't inherit TIF_SSBD across exec boundary when 313 * PR_SPEC_DISABLE_NOEXEC is used. 314 */ 315 if (test_thread_flag(TIF_SSBD) && 316 task_spec_ssb_noexec(current)) { 317 clear_thread_flag(TIF_SSBD); 318 task_clear_spec_ssb_disable(current); 319 task_clear_spec_ssb_noexec(current); 320 speculation_ctrl_update(task_thread_info(current)->flags); 321 } 322 } 323 324 #ifdef CONFIG_X86_IOPL_IOPERM 325 static inline void switch_to_bitmap(unsigned long tifp) 326 { 327 /* 328 * Invalidate I/O bitmap if the previous task used it. This prevents 329 * any possible leakage of an active I/O bitmap. 330 * 331 * If the next task has an I/O bitmap it will handle it on exit to 332 * user mode. 333 */ 334 if (tifp & _TIF_IO_BITMAP) 335 tss_invalidate_io_bitmap(); 336 } 337 338 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 339 { 340 /* 341 * Copy at least the byte range of the incoming tasks bitmap which 342 * covers the permitted I/O ports. 343 * 344 * If the previous task which used an I/O bitmap had more bits 345 * permitted, then the copy needs to cover those as well so they 346 * get turned off. 347 */ 348 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 349 max(tss->io_bitmap.prev_max, iobm->max)); 350 351 /* 352 * Store the new max and the sequence number of this bitmap 353 * and a pointer to the bitmap itself. 354 */ 355 tss->io_bitmap.prev_max = iobm->max; 356 tss->io_bitmap.prev_sequence = iobm->sequence; 357 } 358 359 /** 360 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode 361 */ 362 void native_tss_update_io_bitmap(void) 363 { 364 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 365 struct thread_struct *t = ¤t->thread; 366 u16 *base = &tss->x86_tss.io_bitmap_base; 367 368 if (!test_thread_flag(TIF_IO_BITMAP)) { 369 native_tss_invalidate_io_bitmap(); 370 return; 371 } 372 373 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 374 *base = IO_BITMAP_OFFSET_VALID_ALL; 375 } else { 376 struct io_bitmap *iobm = t->io_bitmap; 377 378 /* 379 * Only copy bitmap data when the sequence number differs. The 380 * update time is accounted to the incoming task. 381 */ 382 if (tss->io_bitmap.prev_sequence != iobm->sequence) 383 tss_copy_io_bitmap(tss, iobm); 384 385 /* Enable the bitmap */ 386 *base = IO_BITMAP_OFFSET_VALID_MAP; 387 } 388 389 /* 390 * Make sure that the TSS limit is covering the IO bitmap. It might have 391 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 392 * access from user space to trigger a #GP because tbe bitmap is outside 393 * the TSS limit. 394 */ 395 refresh_tss_limit(); 396 } 397 #else /* CONFIG_X86_IOPL_IOPERM */ 398 static inline void switch_to_bitmap(unsigned long tifp) { } 399 #endif 400 401 #ifdef CONFIG_SMP 402 403 struct ssb_state { 404 struct ssb_state *shared_state; 405 raw_spinlock_t lock; 406 unsigned int disable_state; 407 unsigned long local_state; 408 }; 409 410 #define LSTATE_SSB 0 411 412 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 413 414 void speculative_store_bypass_ht_init(void) 415 { 416 struct ssb_state *st = this_cpu_ptr(&ssb_state); 417 unsigned int this_cpu = smp_processor_id(); 418 unsigned int cpu; 419 420 st->local_state = 0; 421 422 /* 423 * Shared state setup happens once on the first bringup 424 * of the CPU. It's not destroyed on CPU hotunplug. 425 */ 426 if (st->shared_state) 427 return; 428 429 raw_spin_lock_init(&st->lock); 430 431 /* 432 * Go over HT siblings and check whether one of them has set up the 433 * shared state pointer already. 434 */ 435 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 436 if (cpu == this_cpu) 437 continue; 438 439 if (!per_cpu(ssb_state, cpu).shared_state) 440 continue; 441 442 /* Link it to the state of the sibling: */ 443 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 444 return; 445 } 446 447 /* 448 * First HT sibling to come up on the core. Link shared state of 449 * the first HT sibling to itself. The siblings on the same core 450 * which come up later will see the shared state pointer and link 451 * themself to the state of this CPU. 452 */ 453 st->shared_state = st; 454 } 455 456 /* 457 * Logic is: First HT sibling enables SSBD for both siblings in the core 458 * and last sibling to disable it, disables it for the whole core. This how 459 * MSR_SPEC_CTRL works in "hardware": 460 * 461 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 462 */ 463 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 464 { 465 struct ssb_state *st = this_cpu_ptr(&ssb_state); 466 u64 msr = x86_amd_ls_cfg_base; 467 468 if (!static_cpu_has(X86_FEATURE_ZEN)) { 469 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 470 wrmsrl(MSR_AMD64_LS_CFG, msr); 471 return; 472 } 473 474 if (tifn & _TIF_SSBD) { 475 /* 476 * Since this can race with prctl(), block reentry on the 477 * same CPU. 478 */ 479 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 480 return; 481 482 msr |= x86_amd_ls_cfg_ssbd_mask; 483 484 raw_spin_lock(&st->shared_state->lock); 485 /* First sibling enables SSBD: */ 486 if (!st->shared_state->disable_state) 487 wrmsrl(MSR_AMD64_LS_CFG, msr); 488 st->shared_state->disable_state++; 489 raw_spin_unlock(&st->shared_state->lock); 490 } else { 491 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 492 return; 493 494 raw_spin_lock(&st->shared_state->lock); 495 st->shared_state->disable_state--; 496 if (!st->shared_state->disable_state) 497 wrmsrl(MSR_AMD64_LS_CFG, msr); 498 raw_spin_unlock(&st->shared_state->lock); 499 } 500 } 501 #else 502 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 503 { 504 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 505 506 wrmsrl(MSR_AMD64_LS_CFG, msr); 507 } 508 #endif 509 510 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 511 { 512 /* 513 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 514 * so ssbd_tif_to_spec_ctrl() just works. 515 */ 516 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 517 } 518 519 /* 520 * Update the MSRs managing speculation control, during context switch. 521 * 522 * tifp: Previous task's thread flags 523 * tifn: Next task's thread flags 524 */ 525 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 526 unsigned long tifn) 527 { 528 unsigned long tif_diff = tifp ^ tifn; 529 u64 msr = x86_spec_ctrl_base; 530 bool updmsr = false; 531 532 lockdep_assert_irqs_disabled(); 533 534 /* Handle change of TIF_SSBD depending on the mitigation method. */ 535 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 536 if (tif_diff & _TIF_SSBD) 537 amd_set_ssb_virt_state(tifn); 538 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 539 if (tif_diff & _TIF_SSBD) 540 amd_set_core_ssb_state(tifn); 541 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 542 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 543 updmsr |= !!(tif_diff & _TIF_SSBD); 544 msr |= ssbd_tif_to_spec_ctrl(tifn); 545 } 546 547 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 548 if (IS_ENABLED(CONFIG_SMP) && 549 static_branch_unlikely(&switch_to_cond_stibp)) { 550 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 551 msr |= stibp_tif_to_spec_ctrl(tifn); 552 } 553 554 if (updmsr) 555 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 556 } 557 558 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 559 { 560 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 561 if (task_spec_ssb_disable(tsk)) 562 set_tsk_thread_flag(tsk, TIF_SSBD); 563 else 564 clear_tsk_thread_flag(tsk, TIF_SSBD); 565 566 if (task_spec_ib_disable(tsk)) 567 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 568 else 569 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 570 } 571 /* Return the updated threadinfo flags*/ 572 return task_thread_info(tsk)->flags; 573 } 574 575 void speculation_ctrl_update(unsigned long tif) 576 { 577 unsigned long flags; 578 579 /* Forced update. Make sure all relevant TIF flags are different */ 580 local_irq_save(flags); 581 __speculation_ctrl_update(~tif, tif); 582 local_irq_restore(flags); 583 } 584 585 /* Called from seccomp/prctl update */ 586 void speculation_ctrl_update_current(void) 587 { 588 preempt_disable(); 589 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 590 preempt_enable(); 591 } 592 593 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 594 { 595 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 596 597 newval = cr4 ^ mask; 598 if (newval != cr4) { 599 this_cpu_write(cpu_tlbstate.cr4, newval); 600 __write_cr4(newval); 601 } 602 } 603 604 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 605 { 606 unsigned long tifp, tifn; 607 608 tifn = READ_ONCE(task_thread_info(next_p)->flags); 609 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 610 611 switch_to_bitmap(tifp); 612 613 propagate_user_return_notify(prev_p, next_p); 614 615 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 616 arch_has_block_step()) { 617 unsigned long debugctl, msk; 618 619 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 620 debugctl &= ~DEBUGCTLMSR_BTF; 621 msk = tifn & _TIF_BLOCKSTEP; 622 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 623 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 624 } 625 626 if ((tifp ^ tifn) & _TIF_NOTSC) 627 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 628 629 if ((tifp ^ tifn) & _TIF_NOCPUID) 630 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 631 632 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 633 __speculation_ctrl_update(tifp, tifn); 634 } else { 635 speculation_ctrl_update_tif(prev_p); 636 tifn = speculation_ctrl_update_tif(next_p); 637 638 /* Enforce MSR update to ensure consistent state */ 639 __speculation_ctrl_update(~tifn, tifn); 640 } 641 642 if ((tifp ^ tifn) & _TIF_SLD) 643 switch_to_sld(tifn); 644 } 645 646 /* 647 * Idle related variables and functions 648 */ 649 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 650 EXPORT_SYMBOL(boot_option_idle_override); 651 652 static void (*x86_idle)(void); 653 654 #ifndef CONFIG_SMP 655 static inline void play_dead(void) 656 { 657 BUG(); 658 } 659 #endif 660 661 void arch_cpu_idle_enter(void) 662 { 663 tsc_verify_tsc_adjust(false); 664 local_touch_nmi(); 665 } 666 667 void arch_cpu_idle_dead(void) 668 { 669 play_dead(); 670 } 671 672 /* 673 * Called from the generic idle code. 674 */ 675 void arch_cpu_idle(void) 676 { 677 x86_idle(); 678 } 679 680 /* 681 * We use this if we don't have any better idle routine.. 682 */ 683 void __cpuidle default_idle(void) 684 { 685 trace_cpu_idle_rcuidle(1, smp_processor_id()); 686 safe_halt(); 687 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 688 } 689 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 690 EXPORT_SYMBOL(default_idle); 691 #endif 692 693 #ifdef CONFIG_XEN 694 bool xen_set_default_idle(void) 695 { 696 bool ret = !!x86_idle; 697 698 x86_idle = default_idle; 699 700 return ret; 701 } 702 #endif 703 704 void stop_this_cpu(void *dummy) 705 { 706 local_irq_disable(); 707 /* 708 * Remove this CPU: 709 */ 710 set_cpu_online(smp_processor_id(), false); 711 disable_local_APIC(); 712 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 713 714 /* 715 * Use wbinvd on processors that support SME. This provides support 716 * for performing a successful kexec when going from SME inactive 717 * to SME active (or vice-versa). The cache must be cleared so that 718 * if there are entries with the same physical address, both with and 719 * without the encryption bit, they don't race each other when flushed 720 * and potentially end up with the wrong entry being committed to 721 * memory. 722 */ 723 if (boot_cpu_has(X86_FEATURE_SME)) 724 native_wbinvd(); 725 for (;;) { 726 /* 727 * Use native_halt() so that memory contents don't change 728 * (stack usage and variables) after possibly issuing the 729 * native_wbinvd() above. 730 */ 731 native_halt(); 732 } 733 } 734 735 /* 736 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 737 * states (local apic timer and TSC stop). 738 */ 739 static void amd_e400_idle(void) 740 { 741 /* 742 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 743 * gets set after static_cpu_has() places have been converted via 744 * alternatives. 745 */ 746 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 747 default_idle(); 748 return; 749 } 750 751 tick_broadcast_enter(); 752 753 default_idle(); 754 755 /* 756 * The switch back from broadcast mode needs to be called with 757 * interrupts disabled. 758 */ 759 local_irq_disable(); 760 tick_broadcast_exit(); 761 local_irq_enable(); 762 } 763 764 /* 765 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 766 * We can't rely on cpuidle installing MWAIT, because it will not load 767 * on systems that support only C1 -- so the boot default must be MWAIT. 768 * 769 * Some AMD machines are the opposite, they depend on using HALT. 770 * 771 * So for default C1, which is used during boot until cpuidle loads, 772 * use MWAIT-C1 on Intel HW that has it, else use HALT. 773 */ 774 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 775 { 776 if (c->x86_vendor != X86_VENDOR_INTEL) 777 return 0; 778 779 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) 780 return 0; 781 782 return 1; 783 } 784 785 /* 786 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 787 * with interrupts enabled and no flags, which is backwards compatible with the 788 * original MWAIT implementation. 789 */ 790 static __cpuidle void mwait_idle(void) 791 { 792 if (!current_set_polling_and_test()) { 793 trace_cpu_idle_rcuidle(1, smp_processor_id()); 794 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 795 mb(); /* quirk */ 796 clflush((void *)¤t_thread_info()->flags); 797 mb(); /* quirk */ 798 } 799 800 __monitor((void *)¤t_thread_info()->flags, 0, 0); 801 if (!need_resched()) 802 __sti_mwait(0, 0); 803 else 804 local_irq_enable(); 805 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 806 } else { 807 local_irq_enable(); 808 } 809 __current_clr_polling(); 810 } 811 812 void select_idle_routine(const struct cpuinfo_x86 *c) 813 { 814 #ifdef CONFIG_SMP 815 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 816 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 817 #endif 818 if (x86_idle || boot_option_idle_override == IDLE_POLL) 819 return; 820 821 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 822 pr_info("using AMD E400 aware idle routine\n"); 823 x86_idle = amd_e400_idle; 824 } else if (prefer_mwait_c1_over_halt(c)) { 825 pr_info("using mwait in idle threads\n"); 826 x86_idle = mwait_idle; 827 } else 828 x86_idle = default_idle; 829 } 830 831 void amd_e400_c1e_apic_setup(void) 832 { 833 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 834 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 835 local_irq_disable(); 836 tick_broadcast_force(); 837 local_irq_enable(); 838 } 839 } 840 841 void __init arch_post_acpi_subsys_init(void) 842 { 843 u32 lo, hi; 844 845 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 846 return; 847 848 /* 849 * AMD E400 detection needs to happen after ACPI has been enabled. If 850 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 851 * MSR_K8_INT_PENDING_MSG. 852 */ 853 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 854 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 855 return; 856 857 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 858 859 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 860 mark_tsc_unstable("TSC halt in AMD C1E"); 861 pr_info("System has AMD C1E enabled\n"); 862 } 863 864 static int __init idle_setup(char *str) 865 { 866 if (!str) 867 return -EINVAL; 868 869 if (!strcmp(str, "poll")) { 870 pr_info("using polling idle threads\n"); 871 boot_option_idle_override = IDLE_POLL; 872 cpu_idle_poll_ctrl(true); 873 } else if (!strcmp(str, "halt")) { 874 /* 875 * When the boot option of idle=halt is added, halt is 876 * forced to be used for CPU idle. In such case CPU C2/C3 877 * won't be used again. 878 * To continue to load the CPU idle driver, don't touch 879 * the boot_option_idle_override. 880 */ 881 x86_idle = default_idle; 882 boot_option_idle_override = IDLE_HALT; 883 } else if (!strcmp(str, "nomwait")) { 884 /* 885 * If the boot option of "idle=nomwait" is added, 886 * it means that mwait will be disabled for CPU C2/C3 887 * states. In such case it won't touch the variable 888 * of boot_option_idle_override. 889 */ 890 boot_option_idle_override = IDLE_NOMWAIT; 891 } else 892 return -1; 893 894 return 0; 895 } 896 early_param("idle", idle_setup); 897 898 unsigned long arch_align_stack(unsigned long sp) 899 { 900 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 901 sp -= get_random_int() % 8192; 902 return sp & ~0xf; 903 } 904 905 unsigned long arch_randomize_brk(struct mm_struct *mm) 906 { 907 return randomize_page(mm->brk, 0x02000000); 908 } 909 910 /* 911 * Called from fs/proc with a reference on @p to find the function 912 * which called into schedule(). This needs to be done carefully 913 * because the task might wake up and we might look at a stack 914 * changing under us. 915 */ 916 unsigned long get_wchan(struct task_struct *p) 917 { 918 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 919 int count = 0; 920 921 if (p == current || p->state == TASK_RUNNING) 922 return 0; 923 924 if (!try_get_task_stack(p)) 925 return 0; 926 927 start = (unsigned long)task_stack_page(p); 928 if (!start) 929 goto out; 930 931 /* 932 * Layout of the stack page: 933 * 934 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 935 * PADDING 936 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 937 * stack 938 * ----------- bottom = start 939 * 940 * The tasks stack pointer points at the location where the 941 * framepointer is stored. The data on the stack is: 942 * ... IP FP ... IP FP 943 * 944 * We need to read FP and IP, so we need to adjust the upper 945 * bound by another unsigned long. 946 */ 947 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 948 top -= 2 * sizeof(unsigned long); 949 bottom = start; 950 951 sp = READ_ONCE(p->thread.sp); 952 if (sp < bottom || sp > top) 953 goto out; 954 955 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 956 do { 957 if (fp < bottom || fp > top) 958 goto out; 959 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 960 if (!in_sched_functions(ip)) { 961 ret = ip; 962 goto out; 963 } 964 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 965 } while (count++ < 16 && p->state != TASK_RUNNING); 966 967 out: 968 put_task_stack(p); 969 return ret; 970 } 971 972 long do_arch_prctl_common(struct task_struct *task, int option, 973 unsigned long cpuid_enabled) 974 { 975 switch (option) { 976 case ARCH_GET_CPUID: 977 return get_cpuid_mode(); 978 case ARCH_SET_CPUID: 979 return set_cpuid_mode(task, cpuid_enabled); 980 } 981 982 return -EINVAL; 983 } 984