xref: /openbmc/linux/arch/x86/kernel/process.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/tick.h>
25 #include <linux/cpuidle.h>
26 #include <trace/events/power.h>
27 #include <linux/hw_breakpoint.h>
28 #include <asm/cpu.h>
29 #include <asm/apic.h>
30 #include <asm/syscalls.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 
43 /*
44  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45  * no more per-task TSS's. The TSS size is kept cacheline-aligned
46  * so they are allowed to end up in the .data..cacheline_aligned
47  * section. Since TSS's are completely CPU-local, we want them
48  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49  */
50 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
51 	.x86_tss = {
52 		.sp0 = TOP_OF_INIT_STACK,
53 #ifdef CONFIG_X86_32
54 		.ss0 = __KERNEL_DS,
55 		.ss1 = __KERNEL_CS,
56 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
57 #endif
58 	 },
59 #ifdef CONFIG_X86_32
60 	 /*
61 	  * Note that the .io_bitmap member must be extra-big. This is because
62 	  * the CPU will access an additional byte beyond the end of the IO
63 	  * permission bitmap. The extra byte must be all 1 bits, and must
64 	  * be within the limit.
65 	  */
66 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
67 #endif
68 #ifdef CONFIG_X86_32
69 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
70 #endif
71 };
72 EXPORT_PER_CPU_SYMBOL(cpu_tss);
73 
74 DEFINE_PER_CPU(bool, __tss_limit_invalid);
75 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
76 
77 /*
78  * this gets called so that we can store lazy state into memory and copy the
79  * current task into the new thread.
80  */
81 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
82 {
83 	memcpy(dst, src, arch_task_struct_size);
84 #ifdef CONFIG_VM86
85 	dst->thread.vm86 = NULL;
86 #endif
87 
88 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
89 }
90 
91 /*
92  * Free current thread data structures etc..
93  */
94 void exit_thread(struct task_struct *tsk)
95 {
96 	struct thread_struct *t = &tsk->thread;
97 	unsigned long *bp = t->io_bitmap_ptr;
98 	struct fpu *fpu = &t->fpu;
99 
100 	if (bp) {
101 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
102 
103 		t->io_bitmap_ptr = NULL;
104 		clear_thread_flag(TIF_IO_BITMAP);
105 		/*
106 		 * Careful, clear this in the TSS too:
107 		 */
108 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
109 		t->io_bitmap_max = 0;
110 		put_cpu();
111 		kfree(bp);
112 	}
113 
114 	free_vm86(t);
115 
116 	fpu__drop(fpu);
117 }
118 
119 void flush_thread(void)
120 {
121 	struct task_struct *tsk = current;
122 
123 	flush_ptrace_hw_breakpoint(tsk);
124 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125 
126 	fpu__clear(&tsk->thread.fpu);
127 }
128 
129 void disable_TSC(void)
130 {
131 	preempt_disable();
132 	if (!test_and_set_thread_flag(TIF_NOTSC))
133 		/*
134 		 * Must flip the CPU state synchronously with
135 		 * TIF_NOTSC in the current running context.
136 		 */
137 		cr4_set_bits(X86_CR4_TSD);
138 	preempt_enable();
139 }
140 
141 static void enable_TSC(void)
142 {
143 	preempt_disable();
144 	if (test_and_clear_thread_flag(TIF_NOTSC))
145 		/*
146 		 * Must flip the CPU state synchronously with
147 		 * TIF_NOTSC in the current running context.
148 		 */
149 		cr4_clear_bits(X86_CR4_TSD);
150 	preempt_enable();
151 }
152 
153 int get_tsc_mode(unsigned long adr)
154 {
155 	unsigned int val;
156 
157 	if (test_thread_flag(TIF_NOTSC))
158 		val = PR_TSC_SIGSEGV;
159 	else
160 		val = PR_TSC_ENABLE;
161 
162 	return put_user(val, (unsigned int __user *)adr);
163 }
164 
165 int set_tsc_mode(unsigned int val)
166 {
167 	if (val == PR_TSC_SIGSEGV)
168 		disable_TSC();
169 	else if (val == PR_TSC_ENABLE)
170 		enable_TSC();
171 	else
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
178 
179 static void set_cpuid_faulting(bool on)
180 {
181 	u64 msrval;
182 
183 	msrval = this_cpu_read(msr_misc_features_shadow);
184 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
185 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
186 	this_cpu_write(msr_misc_features_shadow, msrval);
187 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
188 }
189 
190 static void disable_cpuid(void)
191 {
192 	preempt_disable();
193 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
194 		/*
195 		 * Must flip the CPU state synchronously with
196 		 * TIF_NOCPUID in the current running context.
197 		 */
198 		set_cpuid_faulting(true);
199 	}
200 	preempt_enable();
201 }
202 
203 static void enable_cpuid(void)
204 {
205 	preempt_disable();
206 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
207 		/*
208 		 * Must flip the CPU state synchronously with
209 		 * TIF_NOCPUID in the current running context.
210 		 */
211 		set_cpuid_faulting(false);
212 	}
213 	preempt_enable();
214 }
215 
216 static int get_cpuid_mode(void)
217 {
218 	return !test_thread_flag(TIF_NOCPUID);
219 }
220 
221 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
222 {
223 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
224 		return -ENODEV;
225 
226 	if (cpuid_enabled)
227 		enable_cpuid();
228 	else
229 		disable_cpuid();
230 
231 	return 0;
232 }
233 
234 /*
235  * Called immediately after a successful exec.
236  */
237 void arch_setup_new_exec(void)
238 {
239 	/* If cpuid was previously disabled for this task, re-enable it. */
240 	if (test_thread_flag(TIF_NOCPUID))
241 		enable_cpuid();
242 }
243 
244 static inline void switch_to_bitmap(struct tss_struct *tss,
245 				    struct thread_struct *prev,
246 				    struct thread_struct *next,
247 				    unsigned long tifp, unsigned long tifn)
248 {
249 	if (tifn & _TIF_IO_BITMAP) {
250 		/*
251 		 * Copy the relevant range of the IO bitmap.
252 		 * Normally this is 128 bytes or less:
253 		 */
254 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 		       max(prev->io_bitmap_max, next->io_bitmap_max));
256 		/*
257 		 * Make sure that the TSS limit is correct for the CPU
258 		 * to notice the IO bitmap.
259 		 */
260 		refresh_tss_limit();
261 	} else if (tifp & _TIF_IO_BITMAP) {
262 		/*
263 		 * Clear any possible leftover bits:
264 		 */
265 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
266 	}
267 }
268 
269 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
270 		      struct tss_struct *tss)
271 {
272 	struct thread_struct *prev, *next;
273 	unsigned long tifp, tifn;
274 
275 	prev = &prev_p->thread;
276 	next = &next_p->thread;
277 
278 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
279 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
280 	switch_to_bitmap(tss, prev, next, tifp, tifn);
281 
282 	propagate_user_return_notify(prev_p, next_p);
283 
284 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
285 	    arch_has_block_step()) {
286 		unsigned long debugctl, msk;
287 
288 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
289 		debugctl &= ~DEBUGCTLMSR_BTF;
290 		msk = tifn & _TIF_BLOCKSTEP;
291 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
292 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
293 	}
294 
295 	if ((tifp ^ tifn) & _TIF_NOTSC)
296 		cr4_toggle_bits(X86_CR4_TSD);
297 
298 	if ((tifp ^ tifn) & _TIF_NOCPUID)
299 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
300 }
301 
302 /*
303  * Idle related variables and functions
304  */
305 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
306 EXPORT_SYMBOL(boot_option_idle_override);
307 
308 static void (*x86_idle)(void);
309 
310 #ifndef CONFIG_SMP
311 static inline void play_dead(void)
312 {
313 	BUG();
314 }
315 #endif
316 
317 void arch_cpu_idle_enter(void)
318 {
319 	tsc_verify_tsc_adjust(false);
320 	local_touch_nmi();
321 }
322 
323 void arch_cpu_idle_dead(void)
324 {
325 	play_dead();
326 }
327 
328 /*
329  * Called from the generic idle code.
330  */
331 void arch_cpu_idle(void)
332 {
333 	x86_idle();
334 }
335 
336 /*
337  * We use this if we don't have any better idle routine..
338  */
339 void __cpuidle default_idle(void)
340 {
341 	trace_cpu_idle_rcuidle(1, smp_processor_id());
342 	safe_halt();
343 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
344 }
345 #ifdef CONFIG_APM_MODULE
346 EXPORT_SYMBOL(default_idle);
347 #endif
348 
349 #ifdef CONFIG_XEN
350 bool xen_set_default_idle(void)
351 {
352 	bool ret = !!x86_idle;
353 
354 	x86_idle = default_idle;
355 
356 	return ret;
357 }
358 #endif
359 
360 void stop_this_cpu(void *dummy)
361 {
362 	local_irq_disable();
363 	/*
364 	 * Remove this CPU:
365 	 */
366 	set_cpu_online(smp_processor_id(), false);
367 	disable_local_APIC();
368 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
369 
370 	for (;;) {
371 		/*
372 		 * Use wbinvd followed by hlt to stop the processor. This
373 		 * provides support for kexec on a processor that supports
374 		 * SME. With kexec, going from SME inactive to SME active
375 		 * requires clearing cache entries so that addresses without
376 		 * the encryption bit set don't corrupt the same physical
377 		 * address that has the encryption bit set when caches are
378 		 * flushed. To achieve this a wbinvd is performed followed by
379 		 * a hlt. Even if the processor is not in the kexec/SME
380 		 * scenario this only adds a wbinvd to a halting processor.
381 		 */
382 		asm volatile("wbinvd; hlt" : : : "memory");
383 	}
384 }
385 
386 /*
387  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
388  * states (local apic timer and TSC stop).
389  */
390 static void amd_e400_idle(void)
391 {
392 	/*
393 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
394 	 * gets set after static_cpu_has() places have been converted via
395 	 * alternatives.
396 	 */
397 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
398 		default_idle();
399 		return;
400 	}
401 
402 	tick_broadcast_enter();
403 
404 	default_idle();
405 
406 	/*
407 	 * The switch back from broadcast mode needs to be called with
408 	 * interrupts disabled.
409 	 */
410 	local_irq_disable();
411 	tick_broadcast_exit();
412 	local_irq_enable();
413 }
414 
415 /*
416  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
417  * We can't rely on cpuidle installing MWAIT, because it will not load
418  * on systems that support only C1 -- so the boot default must be MWAIT.
419  *
420  * Some AMD machines are the opposite, they depend on using HALT.
421  *
422  * So for default C1, which is used during boot until cpuidle loads,
423  * use MWAIT-C1 on Intel HW that has it, else use HALT.
424  */
425 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
426 {
427 	if (c->x86_vendor != X86_VENDOR_INTEL)
428 		return 0;
429 
430 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
431 		return 0;
432 
433 	return 1;
434 }
435 
436 /*
437  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
438  * with interrupts enabled and no flags, which is backwards compatible with the
439  * original MWAIT implementation.
440  */
441 static __cpuidle void mwait_idle(void)
442 {
443 	if (!current_set_polling_and_test()) {
444 		trace_cpu_idle_rcuidle(1, smp_processor_id());
445 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
446 			mb(); /* quirk */
447 			clflush((void *)&current_thread_info()->flags);
448 			mb(); /* quirk */
449 		}
450 
451 		__monitor((void *)&current_thread_info()->flags, 0, 0);
452 		if (!need_resched())
453 			__sti_mwait(0, 0);
454 		else
455 			local_irq_enable();
456 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
457 	} else {
458 		local_irq_enable();
459 	}
460 	__current_clr_polling();
461 }
462 
463 void select_idle_routine(const struct cpuinfo_x86 *c)
464 {
465 #ifdef CONFIG_SMP
466 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
467 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
468 #endif
469 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
470 		return;
471 
472 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
473 		pr_info("using AMD E400 aware idle routine\n");
474 		x86_idle = amd_e400_idle;
475 	} else if (prefer_mwait_c1_over_halt(c)) {
476 		pr_info("using mwait in idle threads\n");
477 		x86_idle = mwait_idle;
478 	} else
479 		x86_idle = default_idle;
480 }
481 
482 void amd_e400_c1e_apic_setup(void)
483 {
484 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
485 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
486 		local_irq_disable();
487 		tick_broadcast_force();
488 		local_irq_enable();
489 	}
490 }
491 
492 void __init arch_post_acpi_subsys_init(void)
493 {
494 	u32 lo, hi;
495 
496 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
497 		return;
498 
499 	/*
500 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
501 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
502 	 * MSR_K8_INT_PENDING_MSG.
503 	 */
504 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
505 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
506 		return;
507 
508 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
509 
510 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
511 		mark_tsc_unstable("TSC halt in AMD C1E");
512 	pr_info("System has AMD C1E enabled\n");
513 }
514 
515 static int __init idle_setup(char *str)
516 {
517 	if (!str)
518 		return -EINVAL;
519 
520 	if (!strcmp(str, "poll")) {
521 		pr_info("using polling idle threads\n");
522 		boot_option_idle_override = IDLE_POLL;
523 		cpu_idle_poll_ctrl(true);
524 	} else if (!strcmp(str, "halt")) {
525 		/*
526 		 * When the boot option of idle=halt is added, halt is
527 		 * forced to be used for CPU idle. In such case CPU C2/C3
528 		 * won't be used again.
529 		 * To continue to load the CPU idle driver, don't touch
530 		 * the boot_option_idle_override.
531 		 */
532 		x86_idle = default_idle;
533 		boot_option_idle_override = IDLE_HALT;
534 	} else if (!strcmp(str, "nomwait")) {
535 		/*
536 		 * If the boot option of "idle=nomwait" is added,
537 		 * it means that mwait will be disabled for CPU C2/C3
538 		 * states. In such case it won't touch the variable
539 		 * of boot_option_idle_override.
540 		 */
541 		boot_option_idle_override = IDLE_NOMWAIT;
542 	} else
543 		return -1;
544 
545 	return 0;
546 }
547 early_param("idle", idle_setup);
548 
549 unsigned long arch_align_stack(unsigned long sp)
550 {
551 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
552 		sp -= get_random_int() % 8192;
553 	return sp & ~0xf;
554 }
555 
556 unsigned long arch_randomize_brk(struct mm_struct *mm)
557 {
558 	return randomize_page(mm->brk, 0x02000000);
559 }
560 
561 /*
562  * Called from fs/proc with a reference on @p to find the function
563  * which called into schedule(). This needs to be done carefully
564  * because the task might wake up and we might look at a stack
565  * changing under us.
566  */
567 unsigned long get_wchan(struct task_struct *p)
568 {
569 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
570 	int count = 0;
571 
572 	if (!p || p == current || p->state == TASK_RUNNING)
573 		return 0;
574 
575 	if (!try_get_task_stack(p))
576 		return 0;
577 
578 	start = (unsigned long)task_stack_page(p);
579 	if (!start)
580 		goto out;
581 
582 	/*
583 	 * Layout of the stack page:
584 	 *
585 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
586 	 * PADDING
587 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
588 	 * stack
589 	 * ----------- bottom = start
590 	 *
591 	 * The tasks stack pointer points at the location where the
592 	 * framepointer is stored. The data on the stack is:
593 	 * ... IP FP ... IP FP
594 	 *
595 	 * We need to read FP and IP, so we need to adjust the upper
596 	 * bound by another unsigned long.
597 	 */
598 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
599 	top -= 2 * sizeof(unsigned long);
600 	bottom = start;
601 
602 	sp = READ_ONCE(p->thread.sp);
603 	if (sp < bottom || sp > top)
604 		goto out;
605 
606 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
607 	do {
608 		if (fp < bottom || fp > top)
609 			goto out;
610 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
611 		if (!in_sched_functions(ip)) {
612 			ret = ip;
613 			goto out;
614 		}
615 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
616 	} while (count++ < 16 && p->state != TASK_RUNNING);
617 
618 out:
619 	put_task_stack(p);
620 	return ret;
621 }
622 
623 long do_arch_prctl_common(struct task_struct *task, int option,
624 			  unsigned long cpuid_enabled)
625 {
626 	switch (option) {
627 	case ARCH_GET_CPUID:
628 		return get_cpuid_mode();
629 	case ARCH_SET_CPUID:
630 		return set_cpuid_mode(task, cpuid_enabled);
631 	}
632 
633 	return -EINVAL;
634 }
635