1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <trace/power.h> 12 #include <asm/system.h> 13 #include <asm/apic.h> 14 #include <asm/idle.h> 15 #include <asm/uaccess.h> 16 #include <asm/i387.h> 17 18 unsigned long idle_halt; 19 EXPORT_SYMBOL(idle_halt); 20 unsigned long idle_nomwait; 21 EXPORT_SYMBOL(idle_nomwait); 22 23 struct kmem_cache *task_xstate_cachep; 24 25 DEFINE_TRACE(power_start); 26 DEFINE_TRACE(power_end); 27 28 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 29 { 30 *dst = *src; 31 if (src->thread.xstate) { 32 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, 33 GFP_KERNEL); 34 if (!dst->thread.xstate) 35 return -ENOMEM; 36 WARN_ON((unsigned long)dst->thread.xstate & 15); 37 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); 38 } 39 return 0; 40 } 41 42 void free_thread_xstate(struct task_struct *tsk) 43 { 44 if (tsk->thread.xstate) { 45 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); 46 tsk->thread.xstate = NULL; 47 } 48 } 49 50 void free_thread_info(struct thread_info *ti) 51 { 52 free_thread_xstate(ti->task); 53 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 54 } 55 56 void arch_task_cache_init(void) 57 { 58 task_xstate_cachep = 59 kmem_cache_create("task_xstate", xstate_size, 60 __alignof__(union thread_xstate), 61 SLAB_PANIC, NULL); 62 } 63 64 /* 65 * Free current thread data structures etc.. 66 */ 67 void exit_thread(void) 68 { 69 struct task_struct *me = current; 70 struct thread_struct *t = &me->thread; 71 unsigned long *bp = t->io_bitmap_ptr; 72 73 if (bp) { 74 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 75 76 t->io_bitmap_ptr = NULL; 77 clear_thread_flag(TIF_IO_BITMAP); 78 /* 79 * Careful, clear this in the TSS too: 80 */ 81 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 82 t->io_bitmap_max = 0; 83 put_cpu(); 84 kfree(bp); 85 } 86 87 ds_exit_thread(current); 88 } 89 90 void flush_thread(void) 91 { 92 struct task_struct *tsk = current; 93 94 #ifdef CONFIG_X86_64 95 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) { 96 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING); 97 if (test_tsk_thread_flag(tsk, TIF_IA32)) { 98 clear_tsk_thread_flag(tsk, TIF_IA32); 99 } else { 100 set_tsk_thread_flag(tsk, TIF_IA32); 101 current_thread_info()->status |= TS_COMPAT; 102 } 103 } 104 #endif 105 106 clear_tsk_thread_flag(tsk, TIF_DEBUG); 107 108 tsk->thread.debugreg0 = 0; 109 tsk->thread.debugreg1 = 0; 110 tsk->thread.debugreg2 = 0; 111 tsk->thread.debugreg3 = 0; 112 tsk->thread.debugreg6 = 0; 113 tsk->thread.debugreg7 = 0; 114 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 115 /* 116 * Forget coprocessor state.. 117 */ 118 tsk->fpu_counter = 0; 119 clear_fpu(tsk); 120 clear_used_math(); 121 } 122 123 static void hard_disable_TSC(void) 124 { 125 write_cr4(read_cr4() | X86_CR4_TSD); 126 } 127 128 void disable_TSC(void) 129 { 130 preempt_disable(); 131 if (!test_and_set_thread_flag(TIF_NOTSC)) 132 /* 133 * Must flip the CPU state synchronously with 134 * TIF_NOTSC in the current running context. 135 */ 136 hard_disable_TSC(); 137 preempt_enable(); 138 } 139 140 static void hard_enable_TSC(void) 141 { 142 write_cr4(read_cr4() & ~X86_CR4_TSD); 143 } 144 145 static void enable_TSC(void) 146 { 147 preempt_disable(); 148 if (test_and_clear_thread_flag(TIF_NOTSC)) 149 /* 150 * Must flip the CPU state synchronously with 151 * TIF_NOTSC in the current running context. 152 */ 153 hard_enable_TSC(); 154 preempt_enable(); 155 } 156 157 int get_tsc_mode(unsigned long adr) 158 { 159 unsigned int val; 160 161 if (test_thread_flag(TIF_NOTSC)) 162 val = PR_TSC_SIGSEGV; 163 else 164 val = PR_TSC_ENABLE; 165 166 return put_user(val, (unsigned int __user *)adr); 167 } 168 169 int set_tsc_mode(unsigned int val) 170 { 171 if (val == PR_TSC_SIGSEGV) 172 disable_TSC(); 173 else if (val == PR_TSC_ENABLE) 174 enable_TSC(); 175 else 176 return -EINVAL; 177 178 return 0; 179 } 180 181 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 182 struct tss_struct *tss) 183 { 184 struct thread_struct *prev, *next; 185 186 prev = &prev_p->thread; 187 next = &next_p->thread; 188 189 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 190 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 191 ds_switch_to(prev_p, next_p); 192 else if (next->debugctlmsr != prev->debugctlmsr) 193 update_debugctlmsr(next->debugctlmsr); 194 195 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 196 set_debugreg(next->debugreg0, 0); 197 set_debugreg(next->debugreg1, 1); 198 set_debugreg(next->debugreg2, 2); 199 set_debugreg(next->debugreg3, 3); 200 /* no 4 and 5 */ 201 set_debugreg(next->debugreg6, 6); 202 set_debugreg(next->debugreg7, 7); 203 } 204 205 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 206 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 207 /* prev and next are different */ 208 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 209 hard_disable_TSC(); 210 else 211 hard_enable_TSC(); 212 } 213 214 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 215 /* 216 * Copy the relevant range of the IO bitmap. 217 * Normally this is 128 bytes or less: 218 */ 219 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 220 max(prev->io_bitmap_max, next->io_bitmap_max)); 221 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 222 /* 223 * Clear any possible leftover bits: 224 */ 225 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 226 } 227 } 228 229 int sys_fork(struct pt_regs *regs) 230 { 231 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 232 } 233 234 /* 235 * This is trivial, and on the face of it looks like it 236 * could equally well be done in user mode. 237 * 238 * Not so, for quite unobvious reasons - register pressure. 239 * In user mode vfork() cannot have a stack frame, and if 240 * done by calling the "clone()" system call directly, you 241 * do not have enough call-clobbered registers to hold all 242 * the information you need. 243 */ 244 int sys_vfork(struct pt_regs *regs) 245 { 246 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 247 NULL, NULL); 248 } 249 250 251 /* 252 * Idle related variables and functions 253 */ 254 unsigned long boot_option_idle_override = 0; 255 EXPORT_SYMBOL(boot_option_idle_override); 256 257 /* 258 * Powermanagement idle function, if any.. 259 */ 260 void (*pm_idle)(void); 261 EXPORT_SYMBOL(pm_idle); 262 263 #ifdef CONFIG_X86_32 264 /* 265 * This halt magic was a workaround for ancient floppy DMA 266 * wreckage. It should be safe to remove. 267 */ 268 static int hlt_counter; 269 void disable_hlt(void) 270 { 271 hlt_counter++; 272 } 273 EXPORT_SYMBOL(disable_hlt); 274 275 void enable_hlt(void) 276 { 277 hlt_counter--; 278 } 279 EXPORT_SYMBOL(enable_hlt); 280 281 static inline int hlt_use_halt(void) 282 { 283 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 284 } 285 #else 286 static inline int hlt_use_halt(void) 287 { 288 return 1; 289 } 290 #endif 291 292 /* 293 * We use this if we don't have any better 294 * idle routine.. 295 */ 296 void default_idle(void) 297 { 298 if (hlt_use_halt()) { 299 struct power_trace it; 300 301 trace_power_start(&it, POWER_CSTATE, 1); 302 current_thread_info()->status &= ~TS_POLLING; 303 /* 304 * TS_POLLING-cleared state must be visible before we 305 * test NEED_RESCHED: 306 */ 307 smp_mb(); 308 309 if (!need_resched()) 310 safe_halt(); /* enables interrupts racelessly */ 311 else 312 local_irq_enable(); 313 current_thread_info()->status |= TS_POLLING; 314 trace_power_end(&it); 315 } else { 316 local_irq_enable(); 317 /* loop is done by the caller */ 318 cpu_relax(); 319 } 320 } 321 #ifdef CONFIG_APM_MODULE 322 EXPORT_SYMBOL(default_idle); 323 #endif 324 325 void stop_this_cpu(void *dummy) 326 { 327 local_irq_disable(); 328 /* 329 * Remove this CPU: 330 */ 331 set_cpu_online(smp_processor_id(), false); 332 disable_local_APIC(); 333 334 for (;;) { 335 if (hlt_works(smp_processor_id())) 336 halt(); 337 } 338 } 339 340 static void do_nothing(void *unused) 341 { 342 } 343 344 /* 345 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 346 * pm_idle and update to new pm_idle value. Required while changing pm_idle 347 * handler on SMP systems. 348 * 349 * Caller must have changed pm_idle to the new value before the call. Old 350 * pm_idle value will not be used by any CPU after the return of this function. 351 */ 352 void cpu_idle_wait(void) 353 { 354 smp_mb(); 355 /* kick all the CPUs so that they exit out of pm_idle */ 356 smp_call_function(do_nothing, NULL, 1); 357 } 358 EXPORT_SYMBOL_GPL(cpu_idle_wait); 359 360 /* 361 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 362 * which can obviate IPI to trigger checking of need_resched. 363 * We execute MONITOR against need_resched and enter optimized wait state 364 * through MWAIT. Whenever someone changes need_resched, we would be woken 365 * up from MWAIT (without an IPI). 366 * 367 * New with Core Duo processors, MWAIT can take some hints based on CPU 368 * capability. 369 */ 370 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 371 { 372 struct power_trace it; 373 374 trace_power_start(&it, POWER_CSTATE, (ax>>4)+1); 375 if (!need_resched()) { 376 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 377 clflush((void *)¤t_thread_info()->flags); 378 379 __monitor((void *)¤t_thread_info()->flags, 0, 0); 380 smp_mb(); 381 if (!need_resched()) 382 __mwait(ax, cx); 383 } 384 trace_power_end(&it); 385 } 386 387 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 388 static void mwait_idle(void) 389 { 390 struct power_trace it; 391 if (!need_resched()) { 392 trace_power_start(&it, POWER_CSTATE, 1); 393 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 394 clflush((void *)¤t_thread_info()->flags); 395 396 __monitor((void *)¤t_thread_info()->flags, 0, 0); 397 smp_mb(); 398 if (!need_resched()) 399 __sti_mwait(0, 0); 400 else 401 local_irq_enable(); 402 trace_power_end(&it); 403 } else 404 local_irq_enable(); 405 } 406 407 /* 408 * On SMP it's slightly faster (but much more power-consuming!) 409 * to poll the ->work.need_resched flag instead of waiting for the 410 * cross-CPU IPI to arrive. Use this option with caution. 411 */ 412 static void poll_idle(void) 413 { 414 struct power_trace it; 415 416 trace_power_start(&it, POWER_CSTATE, 0); 417 local_irq_enable(); 418 while (!need_resched()) 419 cpu_relax(); 420 trace_power_end(&it); 421 } 422 423 /* 424 * mwait selection logic: 425 * 426 * It depends on the CPU. For AMD CPUs that support MWAIT this is 427 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 428 * then depend on a clock divisor and current Pstate of the core. If 429 * all cores of a processor are in halt state (C1) the processor can 430 * enter the C1E (C1 enhanced) state. If mwait is used this will never 431 * happen. 432 * 433 * idle=mwait overrides this decision and forces the usage of mwait. 434 */ 435 static int __cpuinitdata force_mwait; 436 437 #define MWAIT_INFO 0x05 438 #define MWAIT_ECX_EXTENDED_INFO 0x01 439 #define MWAIT_EDX_C1 0xf0 440 441 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 442 { 443 u32 eax, ebx, ecx, edx; 444 445 if (force_mwait) 446 return 1; 447 448 if (c->cpuid_level < MWAIT_INFO) 449 return 0; 450 451 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 452 /* Check, whether EDX has extended info about MWAIT */ 453 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 454 return 1; 455 456 /* 457 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 458 * C1 supports MWAIT 459 */ 460 return (edx & MWAIT_EDX_C1); 461 } 462 463 /* 464 * Check for AMD CPUs, which have potentially C1E support 465 */ 466 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) 467 { 468 if (c->x86_vendor != X86_VENDOR_AMD) 469 return 0; 470 471 if (c->x86 < 0x0F) 472 return 0; 473 474 /* Family 0x0f models < rev F do not have C1E */ 475 if (c->x86 == 0x0f && c->x86_model < 0x40) 476 return 0; 477 478 return 1; 479 } 480 481 static cpumask_var_t c1e_mask; 482 static int c1e_detected; 483 484 void c1e_remove_cpu(int cpu) 485 { 486 if (c1e_mask != NULL) 487 cpumask_clear_cpu(cpu, c1e_mask); 488 } 489 490 /* 491 * C1E aware idle routine. We check for C1E active in the interrupt 492 * pending message MSR. If we detect C1E, then we handle it the same 493 * way as C3 power states (local apic timer and TSC stop) 494 */ 495 static void c1e_idle(void) 496 { 497 if (need_resched()) 498 return; 499 500 if (!c1e_detected) { 501 u32 lo, hi; 502 503 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 504 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 505 c1e_detected = 1; 506 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 507 mark_tsc_unstable("TSC halt in AMD C1E"); 508 printk(KERN_INFO "System has AMD C1E enabled\n"); 509 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); 510 } 511 } 512 513 if (c1e_detected) { 514 int cpu = smp_processor_id(); 515 516 if (!cpumask_test_cpu(cpu, c1e_mask)) { 517 cpumask_set_cpu(cpu, c1e_mask); 518 /* 519 * Force broadcast so ACPI can not interfere. Needs 520 * to run with interrupts enabled as it uses 521 * smp_function_call. 522 */ 523 local_irq_enable(); 524 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 525 &cpu); 526 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 527 cpu); 528 local_irq_disable(); 529 } 530 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 531 532 default_idle(); 533 534 /* 535 * The switch back from broadcast mode needs to be 536 * called with interrupts disabled. 537 */ 538 local_irq_disable(); 539 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 540 local_irq_enable(); 541 } else 542 default_idle(); 543 } 544 545 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 546 { 547 #ifdef CONFIG_SMP 548 if (pm_idle == poll_idle && smp_num_siblings > 1) { 549 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 550 " performance may degrade.\n"); 551 } 552 #endif 553 if (pm_idle) 554 return; 555 556 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 557 /* 558 * One CPU supports mwait => All CPUs supports mwait 559 */ 560 printk(KERN_INFO "using mwait in idle threads.\n"); 561 pm_idle = mwait_idle; 562 } else if (check_c1e_idle(c)) { 563 printk(KERN_INFO "using C1E aware idle routine\n"); 564 pm_idle = c1e_idle; 565 } else 566 pm_idle = default_idle; 567 } 568 569 void __init init_c1e_mask(void) 570 { 571 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 572 if (pm_idle == c1e_idle) { 573 alloc_cpumask_var(&c1e_mask, GFP_KERNEL); 574 cpumask_clear(c1e_mask); 575 } 576 } 577 578 static int __init idle_setup(char *str) 579 { 580 if (!str) 581 return -EINVAL; 582 583 if (!strcmp(str, "poll")) { 584 printk("using polling idle threads.\n"); 585 pm_idle = poll_idle; 586 } else if (!strcmp(str, "mwait")) 587 force_mwait = 1; 588 else if (!strcmp(str, "halt")) { 589 /* 590 * When the boot option of idle=halt is added, halt is 591 * forced to be used for CPU idle. In such case CPU C2/C3 592 * won't be used again. 593 * To continue to load the CPU idle driver, don't touch 594 * the boot_option_idle_override. 595 */ 596 pm_idle = default_idle; 597 idle_halt = 1; 598 return 0; 599 } else if (!strcmp(str, "nomwait")) { 600 /* 601 * If the boot option of "idle=nomwait" is added, 602 * it means that mwait will be disabled for CPU C2/C3 603 * states. In such case it won't touch the variable 604 * of boot_option_idle_override. 605 */ 606 idle_nomwait = 1; 607 return 0; 608 } else 609 return -1; 610 611 boot_option_idle_override = 1; 612 return 0; 613 } 614 early_param("idle", idle_setup); 615 616