1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <trace/events/power.h> 28 #include <linux/hw_breakpoint.h> 29 #include <asm/cpu.h> 30 #include <asm/apic.h> 31 #include <linux/uaccess.h> 32 #include <asm/mwait.h> 33 #include <asm/fpu/internal.h> 34 #include <asm/debugreg.h> 35 #include <asm/nmi.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mce.h> 38 #include <asm/vm86.h> 39 #include <asm/switch_to.h> 40 #include <asm/desc.h> 41 #include <asm/prctl.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/io_bitmap.h> 44 #include <asm/proto.h> 45 46 #include "process.h" 47 48 /* 49 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 50 * no more per-task TSS's. The TSS size is kept cacheline-aligned 51 * so they are allowed to end up in the .data..cacheline_aligned 52 * section. Since TSS's are completely CPU-local, we want them 53 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 54 */ 55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 56 .x86_tss = { 57 /* 58 * .sp0 is only used when entering ring 0 from a lower 59 * privilege level. Since the init task never runs anything 60 * but ring 0 code, there is no need for a valid value here. 61 * Poison it. 62 */ 63 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 64 65 /* 66 * .sp1 is cpu_current_top_of_stack. The init task never 67 * runs user code, but cpu_current_top_of_stack should still 68 * be well defined before the first context switch. 69 */ 70 .sp1 = TOP_OF_INIT_STACK, 71 72 #ifdef CONFIG_X86_32 73 .ss0 = __KERNEL_DS, 74 .ss1 = __KERNEL_CS, 75 #endif 76 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 77 }, 78 }; 79 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 80 81 DEFINE_PER_CPU(bool, __tss_limit_invalid); 82 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 83 84 /* 85 * this gets called so that we can store lazy state into memory and copy the 86 * current task into the new thread. 87 */ 88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 89 { 90 memcpy(dst, src, arch_task_struct_size); 91 #ifdef CONFIG_VM86 92 dst->thread.vm86 = NULL; 93 #endif 94 95 return fpu__copy(dst, src); 96 } 97 98 /* 99 * Free current thread data structures etc.. 100 */ 101 void exit_thread(struct task_struct *tsk) 102 { 103 struct thread_struct *t = &tsk->thread; 104 struct fpu *fpu = &t->fpu; 105 106 if (test_thread_flag(TIF_IO_BITMAP)) 107 io_bitmap_exit(); 108 109 free_vm86(t); 110 111 fpu__drop(fpu); 112 } 113 114 static int set_new_tls(struct task_struct *p, unsigned long tls) 115 { 116 struct user_desc __user *utls = (struct user_desc __user *)tls; 117 118 if (in_ia32_syscall()) 119 return do_set_thread_area(p, -1, utls, 0); 120 else 121 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 122 } 123 124 int copy_thread_tls(unsigned long clone_flags, unsigned long sp, 125 unsigned long arg, struct task_struct *p, unsigned long tls) 126 { 127 struct inactive_task_frame *frame; 128 struct fork_frame *fork_frame; 129 struct pt_regs *childregs; 130 int ret = 0; 131 132 childregs = task_pt_regs(p); 133 fork_frame = container_of(childregs, struct fork_frame, regs); 134 frame = &fork_frame->frame; 135 136 frame->bp = 0; 137 frame->ret_addr = (unsigned long) ret_from_fork; 138 p->thread.sp = (unsigned long) fork_frame; 139 p->thread.io_bitmap = NULL; 140 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 141 142 #ifdef CONFIG_X86_64 143 savesegment(gs, p->thread.gsindex); 144 p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase; 145 savesegment(fs, p->thread.fsindex); 146 p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase; 147 savesegment(es, p->thread.es); 148 savesegment(ds, p->thread.ds); 149 #else 150 p->thread.sp0 = (unsigned long) (childregs + 1); 151 /* 152 * Clear all status flags including IF and set fixed bit. 64bit 153 * does not have this initialization as the frame does not contain 154 * flags. The flags consistency (especially vs. AC) is there 155 * ensured via objtool, which lacks 32bit support. 156 */ 157 frame->flags = X86_EFLAGS_FIXED; 158 #endif 159 160 /* Kernel thread ? */ 161 if (unlikely(p->flags & PF_KTHREAD)) { 162 memset(childregs, 0, sizeof(struct pt_regs)); 163 kthread_frame_init(frame, sp, arg); 164 return 0; 165 } 166 167 frame->bx = 0; 168 *childregs = *current_pt_regs(); 169 childregs->ax = 0; 170 if (sp) 171 childregs->sp = sp; 172 173 #ifdef CONFIG_X86_32 174 task_user_gs(p) = get_user_gs(current_pt_regs()); 175 #endif 176 177 /* Set a new TLS for the child thread? */ 178 if (clone_flags & CLONE_SETTLS) 179 ret = set_new_tls(p, tls); 180 181 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 182 io_bitmap_share(p); 183 184 return ret; 185 } 186 187 void flush_thread(void) 188 { 189 struct task_struct *tsk = current; 190 191 flush_ptrace_hw_breakpoint(tsk); 192 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 193 194 fpu__clear(&tsk->thread.fpu); 195 } 196 197 void disable_TSC(void) 198 { 199 preempt_disable(); 200 if (!test_and_set_thread_flag(TIF_NOTSC)) 201 /* 202 * Must flip the CPU state synchronously with 203 * TIF_NOTSC in the current running context. 204 */ 205 cr4_set_bits(X86_CR4_TSD); 206 preempt_enable(); 207 } 208 209 static void enable_TSC(void) 210 { 211 preempt_disable(); 212 if (test_and_clear_thread_flag(TIF_NOTSC)) 213 /* 214 * Must flip the CPU state synchronously with 215 * TIF_NOTSC in the current running context. 216 */ 217 cr4_clear_bits(X86_CR4_TSD); 218 preempt_enable(); 219 } 220 221 int get_tsc_mode(unsigned long adr) 222 { 223 unsigned int val; 224 225 if (test_thread_flag(TIF_NOTSC)) 226 val = PR_TSC_SIGSEGV; 227 else 228 val = PR_TSC_ENABLE; 229 230 return put_user(val, (unsigned int __user *)adr); 231 } 232 233 int set_tsc_mode(unsigned int val) 234 { 235 if (val == PR_TSC_SIGSEGV) 236 disable_TSC(); 237 else if (val == PR_TSC_ENABLE) 238 enable_TSC(); 239 else 240 return -EINVAL; 241 242 return 0; 243 } 244 245 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 246 247 static void set_cpuid_faulting(bool on) 248 { 249 u64 msrval; 250 251 msrval = this_cpu_read(msr_misc_features_shadow); 252 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 253 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 254 this_cpu_write(msr_misc_features_shadow, msrval); 255 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 256 } 257 258 static void disable_cpuid(void) 259 { 260 preempt_disable(); 261 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 262 /* 263 * Must flip the CPU state synchronously with 264 * TIF_NOCPUID in the current running context. 265 */ 266 set_cpuid_faulting(true); 267 } 268 preempt_enable(); 269 } 270 271 static void enable_cpuid(void) 272 { 273 preempt_disable(); 274 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 275 /* 276 * Must flip the CPU state synchronously with 277 * TIF_NOCPUID in the current running context. 278 */ 279 set_cpuid_faulting(false); 280 } 281 preempt_enable(); 282 } 283 284 static int get_cpuid_mode(void) 285 { 286 return !test_thread_flag(TIF_NOCPUID); 287 } 288 289 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 290 { 291 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 292 return -ENODEV; 293 294 if (cpuid_enabled) 295 enable_cpuid(); 296 else 297 disable_cpuid(); 298 299 return 0; 300 } 301 302 /* 303 * Called immediately after a successful exec. 304 */ 305 void arch_setup_new_exec(void) 306 { 307 /* If cpuid was previously disabled for this task, re-enable it. */ 308 if (test_thread_flag(TIF_NOCPUID)) 309 enable_cpuid(); 310 311 /* 312 * Don't inherit TIF_SSBD across exec boundary when 313 * PR_SPEC_DISABLE_NOEXEC is used. 314 */ 315 if (test_thread_flag(TIF_SSBD) && 316 task_spec_ssb_noexec(current)) { 317 clear_thread_flag(TIF_SSBD); 318 task_clear_spec_ssb_disable(current); 319 task_clear_spec_ssb_noexec(current); 320 speculation_ctrl_update(task_thread_info(current)->flags); 321 } 322 } 323 324 #ifdef CONFIG_X86_IOPL_IOPERM 325 static inline void tss_invalidate_io_bitmap(struct tss_struct *tss) 326 { 327 /* 328 * Invalidate the I/O bitmap by moving io_bitmap_base outside the 329 * TSS limit so any subsequent I/O access from user space will 330 * trigger a #GP. 331 * 332 * This is correct even when VMEXIT rewrites the TSS limit 333 * to 0x67 as the only requirement is that the base points 334 * outside the limit. 335 */ 336 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID; 337 } 338 339 static inline void switch_to_bitmap(unsigned long tifp) 340 { 341 /* 342 * Invalidate I/O bitmap if the previous task used it. This prevents 343 * any possible leakage of an active I/O bitmap. 344 * 345 * If the next task has an I/O bitmap it will handle it on exit to 346 * user mode. 347 */ 348 if (tifp & _TIF_IO_BITMAP) 349 tss_invalidate_io_bitmap(this_cpu_ptr(&cpu_tss_rw)); 350 } 351 352 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 353 { 354 /* 355 * Copy at least the byte range of the incoming tasks bitmap which 356 * covers the permitted I/O ports. 357 * 358 * If the previous task which used an I/O bitmap had more bits 359 * permitted, then the copy needs to cover those as well so they 360 * get turned off. 361 */ 362 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 363 max(tss->io_bitmap.prev_max, iobm->max)); 364 365 /* 366 * Store the new max and the sequence number of this bitmap 367 * and a pointer to the bitmap itself. 368 */ 369 tss->io_bitmap.prev_max = iobm->max; 370 tss->io_bitmap.prev_sequence = iobm->sequence; 371 } 372 373 /** 374 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode 375 */ 376 void native_tss_update_io_bitmap(void) 377 { 378 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 379 struct thread_struct *t = ¤t->thread; 380 u16 *base = &tss->x86_tss.io_bitmap_base; 381 382 if (!test_thread_flag(TIF_IO_BITMAP)) { 383 tss_invalidate_io_bitmap(tss); 384 return; 385 } 386 387 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 388 *base = IO_BITMAP_OFFSET_VALID_ALL; 389 } else { 390 struct io_bitmap *iobm = t->io_bitmap; 391 392 /* 393 * Only copy bitmap data when the sequence number differs. The 394 * update time is accounted to the incoming task. 395 */ 396 if (tss->io_bitmap.prev_sequence != iobm->sequence) 397 tss_copy_io_bitmap(tss, iobm); 398 399 /* Enable the bitmap */ 400 *base = IO_BITMAP_OFFSET_VALID_MAP; 401 } 402 403 /* 404 * Make sure that the TSS limit is covering the IO bitmap. It might have 405 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 406 * access from user space to trigger a #GP because tbe bitmap is outside 407 * the TSS limit. 408 */ 409 refresh_tss_limit(); 410 } 411 #else /* CONFIG_X86_IOPL_IOPERM */ 412 static inline void switch_to_bitmap(unsigned long tifp) { } 413 #endif 414 415 #ifdef CONFIG_SMP 416 417 struct ssb_state { 418 struct ssb_state *shared_state; 419 raw_spinlock_t lock; 420 unsigned int disable_state; 421 unsigned long local_state; 422 }; 423 424 #define LSTATE_SSB 0 425 426 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 427 428 void speculative_store_bypass_ht_init(void) 429 { 430 struct ssb_state *st = this_cpu_ptr(&ssb_state); 431 unsigned int this_cpu = smp_processor_id(); 432 unsigned int cpu; 433 434 st->local_state = 0; 435 436 /* 437 * Shared state setup happens once on the first bringup 438 * of the CPU. It's not destroyed on CPU hotunplug. 439 */ 440 if (st->shared_state) 441 return; 442 443 raw_spin_lock_init(&st->lock); 444 445 /* 446 * Go over HT siblings and check whether one of them has set up the 447 * shared state pointer already. 448 */ 449 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 450 if (cpu == this_cpu) 451 continue; 452 453 if (!per_cpu(ssb_state, cpu).shared_state) 454 continue; 455 456 /* Link it to the state of the sibling: */ 457 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 458 return; 459 } 460 461 /* 462 * First HT sibling to come up on the core. Link shared state of 463 * the first HT sibling to itself. The siblings on the same core 464 * which come up later will see the shared state pointer and link 465 * themself to the state of this CPU. 466 */ 467 st->shared_state = st; 468 } 469 470 /* 471 * Logic is: First HT sibling enables SSBD for both siblings in the core 472 * and last sibling to disable it, disables it for the whole core. This how 473 * MSR_SPEC_CTRL works in "hardware": 474 * 475 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 476 */ 477 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 478 { 479 struct ssb_state *st = this_cpu_ptr(&ssb_state); 480 u64 msr = x86_amd_ls_cfg_base; 481 482 if (!static_cpu_has(X86_FEATURE_ZEN)) { 483 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 484 wrmsrl(MSR_AMD64_LS_CFG, msr); 485 return; 486 } 487 488 if (tifn & _TIF_SSBD) { 489 /* 490 * Since this can race with prctl(), block reentry on the 491 * same CPU. 492 */ 493 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 494 return; 495 496 msr |= x86_amd_ls_cfg_ssbd_mask; 497 498 raw_spin_lock(&st->shared_state->lock); 499 /* First sibling enables SSBD: */ 500 if (!st->shared_state->disable_state) 501 wrmsrl(MSR_AMD64_LS_CFG, msr); 502 st->shared_state->disable_state++; 503 raw_spin_unlock(&st->shared_state->lock); 504 } else { 505 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 506 return; 507 508 raw_spin_lock(&st->shared_state->lock); 509 st->shared_state->disable_state--; 510 if (!st->shared_state->disable_state) 511 wrmsrl(MSR_AMD64_LS_CFG, msr); 512 raw_spin_unlock(&st->shared_state->lock); 513 } 514 } 515 #else 516 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 517 { 518 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 519 520 wrmsrl(MSR_AMD64_LS_CFG, msr); 521 } 522 #endif 523 524 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 525 { 526 /* 527 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 528 * so ssbd_tif_to_spec_ctrl() just works. 529 */ 530 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 531 } 532 533 /* 534 * Update the MSRs managing speculation control, during context switch. 535 * 536 * tifp: Previous task's thread flags 537 * tifn: Next task's thread flags 538 */ 539 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 540 unsigned long tifn) 541 { 542 unsigned long tif_diff = tifp ^ tifn; 543 u64 msr = x86_spec_ctrl_base; 544 bool updmsr = false; 545 546 lockdep_assert_irqs_disabled(); 547 548 /* 549 * If TIF_SSBD is different, select the proper mitigation 550 * method. Note that if SSBD mitigation is disabled or permanentely 551 * enabled this branch can't be taken because nothing can set 552 * TIF_SSBD. 553 */ 554 if (tif_diff & _TIF_SSBD) { 555 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 556 amd_set_ssb_virt_state(tifn); 557 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 558 amd_set_core_ssb_state(tifn); 559 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 560 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 561 msr |= ssbd_tif_to_spec_ctrl(tifn); 562 updmsr = true; 563 } 564 } 565 566 /* 567 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled, 568 * otherwise avoid the MSR write. 569 */ 570 if (IS_ENABLED(CONFIG_SMP) && 571 static_branch_unlikely(&switch_to_cond_stibp)) { 572 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 573 msr |= stibp_tif_to_spec_ctrl(tifn); 574 } 575 576 if (updmsr) 577 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 578 } 579 580 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 581 { 582 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 583 if (task_spec_ssb_disable(tsk)) 584 set_tsk_thread_flag(tsk, TIF_SSBD); 585 else 586 clear_tsk_thread_flag(tsk, TIF_SSBD); 587 588 if (task_spec_ib_disable(tsk)) 589 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 590 else 591 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 592 } 593 /* Return the updated threadinfo flags*/ 594 return task_thread_info(tsk)->flags; 595 } 596 597 void speculation_ctrl_update(unsigned long tif) 598 { 599 unsigned long flags; 600 601 /* Forced update. Make sure all relevant TIF flags are different */ 602 local_irq_save(flags); 603 __speculation_ctrl_update(~tif, tif); 604 local_irq_restore(flags); 605 } 606 607 /* Called from seccomp/prctl update */ 608 void speculation_ctrl_update_current(void) 609 { 610 preempt_disable(); 611 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 612 preempt_enable(); 613 } 614 615 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 616 { 617 unsigned long tifp, tifn; 618 619 tifn = READ_ONCE(task_thread_info(next_p)->flags); 620 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 621 622 switch_to_bitmap(tifp); 623 624 propagate_user_return_notify(prev_p, next_p); 625 626 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 627 arch_has_block_step()) { 628 unsigned long debugctl, msk; 629 630 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 631 debugctl &= ~DEBUGCTLMSR_BTF; 632 msk = tifn & _TIF_BLOCKSTEP; 633 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 634 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 635 } 636 637 if ((tifp ^ tifn) & _TIF_NOTSC) 638 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 639 640 if ((tifp ^ tifn) & _TIF_NOCPUID) 641 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 642 643 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 644 __speculation_ctrl_update(tifp, tifn); 645 } else { 646 speculation_ctrl_update_tif(prev_p); 647 tifn = speculation_ctrl_update_tif(next_p); 648 649 /* Enforce MSR update to ensure consistent state */ 650 __speculation_ctrl_update(~tifn, tifn); 651 } 652 653 if ((tifp ^ tifn) & _TIF_SLD) 654 switch_to_sld(tifn); 655 } 656 657 /* 658 * Idle related variables and functions 659 */ 660 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 661 EXPORT_SYMBOL(boot_option_idle_override); 662 663 static void (*x86_idle)(void); 664 665 #ifndef CONFIG_SMP 666 static inline void play_dead(void) 667 { 668 BUG(); 669 } 670 #endif 671 672 void arch_cpu_idle_enter(void) 673 { 674 tsc_verify_tsc_adjust(false); 675 local_touch_nmi(); 676 } 677 678 void arch_cpu_idle_dead(void) 679 { 680 play_dead(); 681 } 682 683 /* 684 * Called from the generic idle code. 685 */ 686 void arch_cpu_idle(void) 687 { 688 x86_idle(); 689 } 690 691 /* 692 * We use this if we don't have any better idle routine.. 693 */ 694 void __cpuidle default_idle(void) 695 { 696 trace_cpu_idle_rcuidle(1, smp_processor_id()); 697 safe_halt(); 698 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 699 } 700 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 701 EXPORT_SYMBOL(default_idle); 702 #endif 703 704 #ifdef CONFIG_XEN 705 bool xen_set_default_idle(void) 706 { 707 bool ret = !!x86_idle; 708 709 x86_idle = default_idle; 710 711 return ret; 712 } 713 #endif 714 715 void stop_this_cpu(void *dummy) 716 { 717 local_irq_disable(); 718 /* 719 * Remove this CPU: 720 */ 721 set_cpu_online(smp_processor_id(), false); 722 disable_local_APIC(); 723 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 724 725 /* 726 * Use wbinvd on processors that support SME. This provides support 727 * for performing a successful kexec when going from SME inactive 728 * to SME active (or vice-versa). The cache must be cleared so that 729 * if there are entries with the same physical address, both with and 730 * without the encryption bit, they don't race each other when flushed 731 * and potentially end up with the wrong entry being committed to 732 * memory. 733 */ 734 if (boot_cpu_has(X86_FEATURE_SME)) 735 native_wbinvd(); 736 for (;;) { 737 /* 738 * Use native_halt() so that memory contents don't change 739 * (stack usage and variables) after possibly issuing the 740 * native_wbinvd() above. 741 */ 742 native_halt(); 743 } 744 } 745 746 /* 747 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 748 * states (local apic timer and TSC stop). 749 */ 750 static void amd_e400_idle(void) 751 { 752 /* 753 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 754 * gets set after static_cpu_has() places have been converted via 755 * alternatives. 756 */ 757 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 758 default_idle(); 759 return; 760 } 761 762 tick_broadcast_enter(); 763 764 default_idle(); 765 766 /* 767 * The switch back from broadcast mode needs to be called with 768 * interrupts disabled. 769 */ 770 local_irq_disable(); 771 tick_broadcast_exit(); 772 local_irq_enable(); 773 } 774 775 /* 776 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 777 * We can't rely on cpuidle installing MWAIT, because it will not load 778 * on systems that support only C1 -- so the boot default must be MWAIT. 779 * 780 * Some AMD machines are the opposite, they depend on using HALT. 781 * 782 * So for default C1, which is used during boot until cpuidle loads, 783 * use MWAIT-C1 on Intel HW that has it, else use HALT. 784 */ 785 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 786 { 787 if (c->x86_vendor != X86_VENDOR_INTEL) 788 return 0; 789 790 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) 791 return 0; 792 793 return 1; 794 } 795 796 /* 797 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 798 * with interrupts enabled and no flags, which is backwards compatible with the 799 * original MWAIT implementation. 800 */ 801 static __cpuidle void mwait_idle(void) 802 { 803 if (!current_set_polling_and_test()) { 804 trace_cpu_idle_rcuidle(1, smp_processor_id()); 805 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 806 mb(); /* quirk */ 807 clflush((void *)¤t_thread_info()->flags); 808 mb(); /* quirk */ 809 } 810 811 __monitor((void *)¤t_thread_info()->flags, 0, 0); 812 if (!need_resched()) 813 __sti_mwait(0, 0); 814 else 815 local_irq_enable(); 816 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 817 } else { 818 local_irq_enable(); 819 } 820 __current_clr_polling(); 821 } 822 823 void select_idle_routine(const struct cpuinfo_x86 *c) 824 { 825 #ifdef CONFIG_SMP 826 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 827 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 828 #endif 829 if (x86_idle || boot_option_idle_override == IDLE_POLL) 830 return; 831 832 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 833 pr_info("using AMD E400 aware idle routine\n"); 834 x86_idle = amd_e400_idle; 835 } else if (prefer_mwait_c1_over_halt(c)) { 836 pr_info("using mwait in idle threads\n"); 837 x86_idle = mwait_idle; 838 } else 839 x86_idle = default_idle; 840 } 841 842 void amd_e400_c1e_apic_setup(void) 843 { 844 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 845 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 846 local_irq_disable(); 847 tick_broadcast_force(); 848 local_irq_enable(); 849 } 850 } 851 852 void __init arch_post_acpi_subsys_init(void) 853 { 854 u32 lo, hi; 855 856 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 857 return; 858 859 /* 860 * AMD E400 detection needs to happen after ACPI has been enabled. If 861 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 862 * MSR_K8_INT_PENDING_MSG. 863 */ 864 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 865 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 866 return; 867 868 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 869 870 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 871 mark_tsc_unstable("TSC halt in AMD C1E"); 872 pr_info("System has AMD C1E enabled\n"); 873 } 874 875 static int __init idle_setup(char *str) 876 { 877 if (!str) 878 return -EINVAL; 879 880 if (!strcmp(str, "poll")) { 881 pr_info("using polling idle threads\n"); 882 boot_option_idle_override = IDLE_POLL; 883 cpu_idle_poll_ctrl(true); 884 } else if (!strcmp(str, "halt")) { 885 /* 886 * When the boot option of idle=halt is added, halt is 887 * forced to be used for CPU idle. In such case CPU C2/C3 888 * won't be used again. 889 * To continue to load the CPU idle driver, don't touch 890 * the boot_option_idle_override. 891 */ 892 x86_idle = default_idle; 893 boot_option_idle_override = IDLE_HALT; 894 } else if (!strcmp(str, "nomwait")) { 895 /* 896 * If the boot option of "idle=nomwait" is added, 897 * it means that mwait will be disabled for CPU C2/C3 898 * states. In such case it won't touch the variable 899 * of boot_option_idle_override. 900 */ 901 boot_option_idle_override = IDLE_NOMWAIT; 902 } else 903 return -1; 904 905 return 0; 906 } 907 early_param("idle", idle_setup); 908 909 unsigned long arch_align_stack(unsigned long sp) 910 { 911 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 912 sp -= get_random_int() % 8192; 913 return sp & ~0xf; 914 } 915 916 unsigned long arch_randomize_brk(struct mm_struct *mm) 917 { 918 return randomize_page(mm->brk, 0x02000000); 919 } 920 921 /* 922 * Called from fs/proc with a reference on @p to find the function 923 * which called into schedule(). This needs to be done carefully 924 * because the task might wake up and we might look at a stack 925 * changing under us. 926 */ 927 unsigned long get_wchan(struct task_struct *p) 928 { 929 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 930 int count = 0; 931 932 if (p == current || p->state == TASK_RUNNING) 933 return 0; 934 935 if (!try_get_task_stack(p)) 936 return 0; 937 938 start = (unsigned long)task_stack_page(p); 939 if (!start) 940 goto out; 941 942 /* 943 * Layout of the stack page: 944 * 945 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 946 * PADDING 947 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 948 * stack 949 * ----------- bottom = start 950 * 951 * The tasks stack pointer points at the location where the 952 * framepointer is stored. The data on the stack is: 953 * ... IP FP ... IP FP 954 * 955 * We need to read FP and IP, so we need to adjust the upper 956 * bound by another unsigned long. 957 */ 958 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 959 top -= 2 * sizeof(unsigned long); 960 bottom = start; 961 962 sp = READ_ONCE(p->thread.sp); 963 if (sp < bottom || sp > top) 964 goto out; 965 966 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 967 do { 968 if (fp < bottom || fp > top) 969 goto out; 970 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 971 if (!in_sched_functions(ip)) { 972 ret = ip; 973 goto out; 974 } 975 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 976 } while (count++ < 16 && p->state != TASK_RUNNING); 977 978 out: 979 put_task_stack(p); 980 return ret; 981 } 982 983 long do_arch_prctl_common(struct task_struct *task, int option, 984 unsigned long cpuid_enabled) 985 { 986 switch (option) { 987 case ARCH_GET_CPUID: 988 return get_cpuid_mode(); 989 case ARCH_SET_CPUID: 990 return set_cpuid_mode(task, cpuid_enabled); 991 } 992 993 return -EINVAL; 994 } 995