xref: /openbmc/linux/arch/x86/kernel/process.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45 
46 #include "process.h"
47 
48 /*
49  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
50  * no more per-task TSS's. The TSS size is kept cacheline-aligned
51  * so they are allowed to end up in the .data..cacheline_aligned
52  * section. Since TSS's are completely CPU-local, we want them
53  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
54  */
55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
56 	.x86_tss = {
57 		/*
58 		 * .sp0 is only used when entering ring 0 from a lower
59 		 * privilege level.  Since the init task never runs anything
60 		 * but ring 0 code, there is no need for a valid value here.
61 		 * Poison it.
62 		 */
63 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
64 
65 		/*
66 		 * .sp1 is cpu_current_top_of_stack.  The init task never
67 		 * runs user code, but cpu_current_top_of_stack should still
68 		 * be well defined before the first context switch.
69 		 */
70 		.sp1 = TOP_OF_INIT_STACK,
71 
72 #ifdef CONFIG_X86_32
73 		.ss0 = __KERNEL_DS,
74 		.ss1 = __KERNEL_CS,
75 #endif
76 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
77 	 },
78 };
79 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
80 
81 DEFINE_PER_CPU(bool, __tss_limit_invalid);
82 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
83 
84 /*
85  * this gets called so that we can store lazy state into memory and copy the
86  * current task into the new thread.
87  */
88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
89 {
90 	memcpy(dst, src, arch_task_struct_size);
91 #ifdef CONFIG_VM86
92 	dst->thread.vm86 = NULL;
93 #endif
94 
95 	return fpu__copy(dst, src);
96 }
97 
98 /*
99  * Free current thread data structures etc..
100  */
101 void exit_thread(struct task_struct *tsk)
102 {
103 	struct thread_struct *t = &tsk->thread;
104 	struct fpu *fpu = &t->fpu;
105 
106 	if (test_thread_flag(TIF_IO_BITMAP))
107 		io_bitmap_exit();
108 
109 	free_vm86(t);
110 
111 	fpu__drop(fpu);
112 }
113 
114 static int set_new_tls(struct task_struct *p, unsigned long tls)
115 {
116 	struct user_desc __user *utls = (struct user_desc __user *)tls;
117 
118 	if (in_ia32_syscall())
119 		return do_set_thread_area(p, -1, utls, 0);
120 	else
121 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
122 }
123 
124 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
125 		    unsigned long arg, struct task_struct *p, unsigned long tls)
126 {
127 	struct inactive_task_frame *frame;
128 	struct fork_frame *fork_frame;
129 	struct pt_regs *childregs;
130 	int ret = 0;
131 
132 	childregs = task_pt_regs(p);
133 	fork_frame = container_of(childregs, struct fork_frame, regs);
134 	frame = &fork_frame->frame;
135 
136 	frame->bp = 0;
137 	frame->ret_addr = (unsigned long) ret_from_fork;
138 	p->thread.sp = (unsigned long) fork_frame;
139 	p->thread.io_bitmap = NULL;
140 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
141 
142 #ifdef CONFIG_X86_64
143 	savesegment(gs, p->thread.gsindex);
144 	p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase;
145 	savesegment(fs, p->thread.fsindex);
146 	p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase;
147 	savesegment(es, p->thread.es);
148 	savesegment(ds, p->thread.ds);
149 #else
150 	p->thread.sp0 = (unsigned long) (childregs + 1);
151 	/*
152 	 * Clear all status flags including IF and set fixed bit. 64bit
153 	 * does not have this initialization as the frame does not contain
154 	 * flags. The flags consistency (especially vs. AC) is there
155 	 * ensured via objtool, which lacks 32bit support.
156 	 */
157 	frame->flags = X86_EFLAGS_FIXED;
158 #endif
159 
160 	/* Kernel thread ? */
161 	if (unlikely(p->flags & PF_KTHREAD)) {
162 		memset(childregs, 0, sizeof(struct pt_regs));
163 		kthread_frame_init(frame, sp, arg);
164 		return 0;
165 	}
166 
167 	frame->bx = 0;
168 	*childregs = *current_pt_regs();
169 	childregs->ax = 0;
170 	if (sp)
171 		childregs->sp = sp;
172 
173 #ifdef CONFIG_X86_32
174 	task_user_gs(p) = get_user_gs(current_pt_regs());
175 #endif
176 
177 	/* Set a new TLS for the child thread? */
178 	if (clone_flags & CLONE_SETTLS)
179 		ret = set_new_tls(p, tls);
180 
181 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
182 		io_bitmap_share(p);
183 
184 	return ret;
185 }
186 
187 void flush_thread(void)
188 {
189 	struct task_struct *tsk = current;
190 
191 	flush_ptrace_hw_breakpoint(tsk);
192 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
193 
194 	fpu__clear(&tsk->thread.fpu);
195 }
196 
197 void disable_TSC(void)
198 {
199 	preempt_disable();
200 	if (!test_and_set_thread_flag(TIF_NOTSC))
201 		/*
202 		 * Must flip the CPU state synchronously with
203 		 * TIF_NOTSC in the current running context.
204 		 */
205 		cr4_set_bits(X86_CR4_TSD);
206 	preempt_enable();
207 }
208 
209 static void enable_TSC(void)
210 {
211 	preempt_disable();
212 	if (test_and_clear_thread_flag(TIF_NOTSC))
213 		/*
214 		 * Must flip the CPU state synchronously with
215 		 * TIF_NOTSC in the current running context.
216 		 */
217 		cr4_clear_bits(X86_CR4_TSD);
218 	preempt_enable();
219 }
220 
221 int get_tsc_mode(unsigned long adr)
222 {
223 	unsigned int val;
224 
225 	if (test_thread_flag(TIF_NOTSC))
226 		val = PR_TSC_SIGSEGV;
227 	else
228 		val = PR_TSC_ENABLE;
229 
230 	return put_user(val, (unsigned int __user *)adr);
231 }
232 
233 int set_tsc_mode(unsigned int val)
234 {
235 	if (val == PR_TSC_SIGSEGV)
236 		disable_TSC();
237 	else if (val == PR_TSC_ENABLE)
238 		enable_TSC();
239 	else
240 		return -EINVAL;
241 
242 	return 0;
243 }
244 
245 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
246 
247 static void set_cpuid_faulting(bool on)
248 {
249 	u64 msrval;
250 
251 	msrval = this_cpu_read(msr_misc_features_shadow);
252 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
253 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
254 	this_cpu_write(msr_misc_features_shadow, msrval);
255 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
256 }
257 
258 static void disable_cpuid(void)
259 {
260 	preempt_disable();
261 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
262 		/*
263 		 * Must flip the CPU state synchronously with
264 		 * TIF_NOCPUID in the current running context.
265 		 */
266 		set_cpuid_faulting(true);
267 	}
268 	preempt_enable();
269 }
270 
271 static void enable_cpuid(void)
272 {
273 	preempt_disable();
274 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
275 		/*
276 		 * Must flip the CPU state synchronously with
277 		 * TIF_NOCPUID in the current running context.
278 		 */
279 		set_cpuid_faulting(false);
280 	}
281 	preempt_enable();
282 }
283 
284 static int get_cpuid_mode(void)
285 {
286 	return !test_thread_flag(TIF_NOCPUID);
287 }
288 
289 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
290 {
291 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
292 		return -ENODEV;
293 
294 	if (cpuid_enabled)
295 		enable_cpuid();
296 	else
297 		disable_cpuid();
298 
299 	return 0;
300 }
301 
302 /*
303  * Called immediately after a successful exec.
304  */
305 void arch_setup_new_exec(void)
306 {
307 	/* If cpuid was previously disabled for this task, re-enable it. */
308 	if (test_thread_flag(TIF_NOCPUID))
309 		enable_cpuid();
310 
311 	/*
312 	 * Don't inherit TIF_SSBD across exec boundary when
313 	 * PR_SPEC_DISABLE_NOEXEC is used.
314 	 */
315 	if (test_thread_flag(TIF_SSBD) &&
316 	    task_spec_ssb_noexec(current)) {
317 		clear_thread_flag(TIF_SSBD);
318 		task_clear_spec_ssb_disable(current);
319 		task_clear_spec_ssb_noexec(current);
320 		speculation_ctrl_update(task_thread_info(current)->flags);
321 	}
322 }
323 
324 #ifdef CONFIG_X86_IOPL_IOPERM
325 static inline void tss_invalidate_io_bitmap(struct tss_struct *tss)
326 {
327 	/*
328 	 * Invalidate the I/O bitmap by moving io_bitmap_base outside the
329 	 * TSS limit so any subsequent I/O access from user space will
330 	 * trigger a #GP.
331 	 *
332 	 * This is correct even when VMEXIT rewrites the TSS limit
333 	 * to 0x67 as the only requirement is that the base points
334 	 * outside the limit.
335 	 */
336 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
337 }
338 
339 static inline void switch_to_bitmap(unsigned long tifp)
340 {
341 	/*
342 	 * Invalidate I/O bitmap if the previous task used it. This prevents
343 	 * any possible leakage of an active I/O bitmap.
344 	 *
345 	 * If the next task has an I/O bitmap it will handle it on exit to
346 	 * user mode.
347 	 */
348 	if (tifp & _TIF_IO_BITMAP)
349 		tss_invalidate_io_bitmap(this_cpu_ptr(&cpu_tss_rw));
350 }
351 
352 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
353 {
354 	/*
355 	 * Copy at least the byte range of the incoming tasks bitmap which
356 	 * covers the permitted I/O ports.
357 	 *
358 	 * If the previous task which used an I/O bitmap had more bits
359 	 * permitted, then the copy needs to cover those as well so they
360 	 * get turned off.
361 	 */
362 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
363 	       max(tss->io_bitmap.prev_max, iobm->max));
364 
365 	/*
366 	 * Store the new max and the sequence number of this bitmap
367 	 * and a pointer to the bitmap itself.
368 	 */
369 	tss->io_bitmap.prev_max = iobm->max;
370 	tss->io_bitmap.prev_sequence = iobm->sequence;
371 }
372 
373 /**
374  * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
375  */
376 void native_tss_update_io_bitmap(void)
377 {
378 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
379 	struct thread_struct *t = &current->thread;
380 	u16 *base = &tss->x86_tss.io_bitmap_base;
381 
382 	if (!test_thread_flag(TIF_IO_BITMAP)) {
383 		tss_invalidate_io_bitmap(tss);
384 		return;
385 	}
386 
387 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
388 		*base = IO_BITMAP_OFFSET_VALID_ALL;
389 	} else {
390 		struct io_bitmap *iobm = t->io_bitmap;
391 
392 		/*
393 		 * Only copy bitmap data when the sequence number differs. The
394 		 * update time is accounted to the incoming task.
395 		 */
396 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
397 			tss_copy_io_bitmap(tss, iobm);
398 
399 		/* Enable the bitmap */
400 		*base = IO_BITMAP_OFFSET_VALID_MAP;
401 	}
402 
403 	/*
404 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
405 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
406 	 * access from user space to trigger a #GP because tbe bitmap is outside
407 	 * the TSS limit.
408 	 */
409 	refresh_tss_limit();
410 }
411 #else /* CONFIG_X86_IOPL_IOPERM */
412 static inline void switch_to_bitmap(unsigned long tifp) { }
413 #endif
414 
415 #ifdef CONFIG_SMP
416 
417 struct ssb_state {
418 	struct ssb_state	*shared_state;
419 	raw_spinlock_t		lock;
420 	unsigned int		disable_state;
421 	unsigned long		local_state;
422 };
423 
424 #define LSTATE_SSB	0
425 
426 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
427 
428 void speculative_store_bypass_ht_init(void)
429 {
430 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
431 	unsigned int this_cpu = smp_processor_id();
432 	unsigned int cpu;
433 
434 	st->local_state = 0;
435 
436 	/*
437 	 * Shared state setup happens once on the first bringup
438 	 * of the CPU. It's not destroyed on CPU hotunplug.
439 	 */
440 	if (st->shared_state)
441 		return;
442 
443 	raw_spin_lock_init(&st->lock);
444 
445 	/*
446 	 * Go over HT siblings and check whether one of them has set up the
447 	 * shared state pointer already.
448 	 */
449 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
450 		if (cpu == this_cpu)
451 			continue;
452 
453 		if (!per_cpu(ssb_state, cpu).shared_state)
454 			continue;
455 
456 		/* Link it to the state of the sibling: */
457 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
458 		return;
459 	}
460 
461 	/*
462 	 * First HT sibling to come up on the core.  Link shared state of
463 	 * the first HT sibling to itself. The siblings on the same core
464 	 * which come up later will see the shared state pointer and link
465 	 * themself to the state of this CPU.
466 	 */
467 	st->shared_state = st;
468 }
469 
470 /*
471  * Logic is: First HT sibling enables SSBD for both siblings in the core
472  * and last sibling to disable it, disables it for the whole core. This how
473  * MSR_SPEC_CTRL works in "hardware":
474  *
475  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
476  */
477 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
478 {
479 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
480 	u64 msr = x86_amd_ls_cfg_base;
481 
482 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
483 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
484 		wrmsrl(MSR_AMD64_LS_CFG, msr);
485 		return;
486 	}
487 
488 	if (tifn & _TIF_SSBD) {
489 		/*
490 		 * Since this can race with prctl(), block reentry on the
491 		 * same CPU.
492 		 */
493 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
494 			return;
495 
496 		msr |= x86_amd_ls_cfg_ssbd_mask;
497 
498 		raw_spin_lock(&st->shared_state->lock);
499 		/* First sibling enables SSBD: */
500 		if (!st->shared_state->disable_state)
501 			wrmsrl(MSR_AMD64_LS_CFG, msr);
502 		st->shared_state->disable_state++;
503 		raw_spin_unlock(&st->shared_state->lock);
504 	} else {
505 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
506 			return;
507 
508 		raw_spin_lock(&st->shared_state->lock);
509 		st->shared_state->disable_state--;
510 		if (!st->shared_state->disable_state)
511 			wrmsrl(MSR_AMD64_LS_CFG, msr);
512 		raw_spin_unlock(&st->shared_state->lock);
513 	}
514 }
515 #else
516 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
517 {
518 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
519 
520 	wrmsrl(MSR_AMD64_LS_CFG, msr);
521 }
522 #endif
523 
524 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
525 {
526 	/*
527 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
528 	 * so ssbd_tif_to_spec_ctrl() just works.
529 	 */
530 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
531 }
532 
533 /*
534  * Update the MSRs managing speculation control, during context switch.
535  *
536  * tifp: Previous task's thread flags
537  * tifn: Next task's thread flags
538  */
539 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
540 						      unsigned long tifn)
541 {
542 	unsigned long tif_diff = tifp ^ tifn;
543 	u64 msr = x86_spec_ctrl_base;
544 	bool updmsr = false;
545 
546 	lockdep_assert_irqs_disabled();
547 
548 	/*
549 	 * If TIF_SSBD is different, select the proper mitigation
550 	 * method. Note that if SSBD mitigation is disabled or permanentely
551 	 * enabled this branch can't be taken because nothing can set
552 	 * TIF_SSBD.
553 	 */
554 	if (tif_diff & _TIF_SSBD) {
555 		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
556 			amd_set_ssb_virt_state(tifn);
557 		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
558 			amd_set_core_ssb_state(tifn);
559 		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
560 			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
561 			msr |= ssbd_tif_to_spec_ctrl(tifn);
562 			updmsr  = true;
563 		}
564 	}
565 
566 	/*
567 	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
568 	 * otherwise avoid the MSR write.
569 	 */
570 	if (IS_ENABLED(CONFIG_SMP) &&
571 	    static_branch_unlikely(&switch_to_cond_stibp)) {
572 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
573 		msr |= stibp_tif_to_spec_ctrl(tifn);
574 	}
575 
576 	if (updmsr)
577 		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
578 }
579 
580 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
581 {
582 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
583 		if (task_spec_ssb_disable(tsk))
584 			set_tsk_thread_flag(tsk, TIF_SSBD);
585 		else
586 			clear_tsk_thread_flag(tsk, TIF_SSBD);
587 
588 		if (task_spec_ib_disable(tsk))
589 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
590 		else
591 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
592 	}
593 	/* Return the updated threadinfo flags*/
594 	return task_thread_info(tsk)->flags;
595 }
596 
597 void speculation_ctrl_update(unsigned long tif)
598 {
599 	unsigned long flags;
600 
601 	/* Forced update. Make sure all relevant TIF flags are different */
602 	local_irq_save(flags);
603 	__speculation_ctrl_update(~tif, tif);
604 	local_irq_restore(flags);
605 }
606 
607 /* Called from seccomp/prctl update */
608 void speculation_ctrl_update_current(void)
609 {
610 	preempt_disable();
611 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
612 	preempt_enable();
613 }
614 
615 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
616 {
617 	unsigned long tifp, tifn;
618 
619 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
620 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
621 
622 	switch_to_bitmap(tifp);
623 
624 	propagate_user_return_notify(prev_p, next_p);
625 
626 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
627 	    arch_has_block_step()) {
628 		unsigned long debugctl, msk;
629 
630 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
631 		debugctl &= ~DEBUGCTLMSR_BTF;
632 		msk = tifn & _TIF_BLOCKSTEP;
633 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
634 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
635 	}
636 
637 	if ((tifp ^ tifn) & _TIF_NOTSC)
638 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
639 
640 	if ((tifp ^ tifn) & _TIF_NOCPUID)
641 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
642 
643 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
644 		__speculation_ctrl_update(tifp, tifn);
645 	} else {
646 		speculation_ctrl_update_tif(prev_p);
647 		tifn = speculation_ctrl_update_tif(next_p);
648 
649 		/* Enforce MSR update to ensure consistent state */
650 		__speculation_ctrl_update(~tifn, tifn);
651 	}
652 
653 	if ((tifp ^ tifn) & _TIF_SLD)
654 		switch_to_sld(tifn);
655 }
656 
657 /*
658  * Idle related variables and functions
659  */
660 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
661 EXPORT_SYMBOL(boot_option_idle_override);
662 
663 static void (*x86_idle)(void);
664 
665 #ifndef CONFIG_SMP
666 static inline void play_dead(void)
667 {
668 	BUG();
669 }
670 #endif
671 
672 void arch_cpu_idle_enter(void)
673 {
674 	tsc_verify_tsc_adjust(false);
675 	local_touch_nmi();
676 }
677 
678 void arch_cpu_idle_dead(void)
679 {
680 	play_dead();
681 }
682 
683 /*
684  * Called from the generic idle code.
685  */
686 void arch_cpu_idle(void)
687 {
688 	x86_idle();
689 }
690 
691 /*
692  * We use this if we don't have any better idle routine..
693  */
694 void __cpuidle default_idle(void)
695 {
696 	trace_cpu_idle_rcuidle(1, smp_processor_id());
697 	safe_halt();
698 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
699 }
700 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
701 EXPORT_SYMBOL(default_idle);
702 #endif
703 
704 #ifdef CONFIG_XEN
705 bool xen_set_default_idle(void)
706 {
707 	bool ret = !!x86_idle;
708 
709 	x86_idle = default_idle;
710 
711 	return ret;
712 }
713 #endif
714 
715 void stop_this_cpu(void *dummy)
716 {
717 	local_irq_disable();
718 	/*
719 	 * Remove this CPU:
720 	 */
721 	set_cpu_online(smp_processor_id(), false);
722 	disable_local_APIC();
723 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
724 
725 	/*
726 	 * Use wbinvd on processors that support SME. This provides support
727 	 * for performing a successful kexec when going from SME inactive
728 	 * to SME active (or vice-versa). The cache must be cleared so that
729 	 * if there are entries with the same physical address, both with and
730 	 * without the encryption bit, they don't race each other when flushed
731 	 * and potentially end up with the wrong entry being committed to
732 	 * memory.
733 	 */
734 	if (boot_cpu_has(X86_FEATURE_SME))
735 		native_wbinvd();
736 	for (;;) {
737 		/*
738 		 * Use native_halt() so that memory contents don't change
739 		 * (stack usage and variables) after possibly issuing the
740 		 * native_wbinvd() above.
741 		 */
742 		native_halt();
743 	}
744 }
745 
746 /*
747  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
748  * states (local apic timer and TSC stop).
749  */
750 static void amd_e400_idle(void)
751 {
752 	/*
753 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
754 	 * gets set after static_cpu_has() places have been converted via
755 	 * alternatives.
756 	 */
757 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
758 		default_idle();
759 		return;
760 	}
761 
762 	tick_broadcast_enter();
763 
764 	default_idle();
765 
766 	/*
767 	 * The switch back from broadcast mode needs to be called with
768 	 * interrupts disabled.
769 	 */
770 	local_irq_disable();
771 	tick_broadcast_exit();
772 	local_irq_enable();
773 }
774 
775 /*
776  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
777  * We can't rely on cpuidle installing MWAIT, because it will not load
778  * on systems that support only C1 -- so the boot default must be MWAIT.
779  *
780  * Some AMD machines are the opposite, they depend on using HALT.
781  *
782  * So for default C1, which is used during boot until cpuidle loads,
783  * use MWAIT-C1 on Intel HW that has it, else use HALT.
784  */
785 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
786 {
787 	if (c->x86_vendor != X86_VENDOR_INTEL)
788 		return 0;
789 
790 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
791 		return 0;
792 
793 	return 1;
794 }
795 
796 /*
797  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
798  * with interrupts enabled and no flags, which is backwards compatible with the
799  * original MWAIT implementation.
800  */
801 static __cpuidle void mwait_idle(void)
802 {
803 	if (!current_set_polling_and_test()) {
804 		trace_cpu_idle_rcuidle(1, smp_processor_id());
805 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
806 			mb(); /* quirk */
807 			clflush((void *)&current_thread_info()->flags);
808 			mb(); /* quirk */
809 		}
810 
811 		__monitor((void *)&current_thread_info()->flags, 0, 0);
812 		if (!need_resched())
813 			__sti_mwait(0, 0);
814 		else
815 			local_irq_enable();
816 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
817 	} else {
818 		local_irq_enable();
819 	}
820 	__current_clr_polling();
821 }
822 
823 void select_idle_routine(const struct cpuinfo_x86 *c)
824 {
825 #ifdef CONFIG_SMP
826 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
827 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
828 #endif
829 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
830 		return;
831 
832 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
833 		pr_info("using AMD E400 aware idle routine\n");
834 		x86_idle = amd_e400_idle;
835 	} else if (prefer_mwait_c1_over_halt(c)) {
836 		pr_info("using mwait in idle threads\n");
837 		x86_idle = mwait_idle;
838 	} else
839 		x86_idle = default_idle;
840 }
841 
842 void amd_e400_c1e_apic_setup(void)
843 {
844 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
845 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
846 		local_irq_disable();
847 		tick_broadcast_force();
848 		local_irq_enable();
849 	}
850 }
851 
852 void __init arch_post_acpi_subsys_init(void)
853 {
854 	u32 lo, hi;
855 
856 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
857 		return;
858 
859 	/*
860 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
861 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
862 	 * MSR_K8_INT_PENDING_MSG.
863 	 */
864 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
865 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
866 		return;
867 
868 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
869 
870 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
871 		mark_tsc_unstable("TSC halt in AMD C1E");
872 	pr_info("System has AMD C1E enabled\n");
873 }
874 
875 static int __init idle_setup(char *str)
876 {
877 	if (!str)
878 		return -EINVAL;
879 
880 	if (!strcmp(str, "poll")) {
881 		pr_info("using polling idle threads\n");
882 		boot_option_idle_override = IDLE_POLL;
883 		cpu_idle_poll_ctrl(true);
884 	} else if (!strcmp(str, "halt")) {
885 		/*
886 		 * When the boot option of idle=halt is added, halt is
887 		 * forced to be used for CPU idle. In such case CPU C2/C3
888 		 * won't be used again.
889 		 * To continue to load the CPU idle driver, don't touch
890 		 * the boot_option_idle_override.
891 		 */
892 		x86_idle = default_idle;
893 		boot_option_idle_override = IDLE_HALT;
894 	} else if (!strcmp(str, "nomwait")) {
895 		/*
896 		 * If the boot option of "idle=nomwait" is added,
897 		 * it means that mwait will be disabled for CPU C2/C3
898 		 * states. In such case it won't touch the variable
899 		 * of boot_option_idle_override.
900 		 */
901 		boot_option_idle_override = IDLE_NOMWAIT;
902 	} else
903 		return -1;
904 
905 	return 0;
906 }
907 early_param("idle", idle_setup);
908 
909 unsigned long arch_align_stack(unsigned long sp)
910 {
911 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
912 		sp -= get_random_int() % 8192;
913 	return sp & ~0xf;
914 }
915 
916 unsigned long arch_randomize_brk(struct mm_struct *mm)
917 {
918 	return randomize_page(mm->brk, 0x02000000);
919 }
920 
921 /*
922  * Called from fs/proc with a reference on @p to find the function
923  * which called into schedule(). This needs to be done carefully
924  * because the task might wake up and we might look at a stack
925  * changing under us.
926  */
927 unsigned long get_wchan(struct task_struct *p)
928 {
929 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
930 	int count = 0;
931 
932 	if (p == current || p->state == TASK_RUNNING)
933 		return 0;
934 
935 	if (!try_get_task_stack(p))
936 		return 0;
937 
938 	start = (unsigned long)task_stack_page(p);
939 	if (!start)
940 		goto out;
941 
942 	/*
943 	 * Layout of the stack page:
944 	 *
945 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
946 	 * PADDING
947 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
948 	 * stack
949 	 * ----------- bottom = start
950 	 *
951 	 * The tasks stack pointer points at the location where the
952 	 * framepointer is stored. The data on the stack is:
953 	 * ... IP FP ... IP FP
954 	 *
955 	 * We need to read FP and IP, so we need to adjust the upper
956 	 * bound by another unsigned long.
957 	 */
958 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
959 	top -= 2 * sizeof(unsigned long);
960 	bottom = start;
961 
962 	sp = READ_ONCE(p->thread.sp);
963 	if (sp < bottom || sp > top)
964 		goto out;
965 
966 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
967 	do {
968 		if (fp < bottom || fp > top)
969 			goto out;
970 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
971 		if (!in_sched_functions(ip)) {
972 			ret = ip;
973 			goto out;
974 		}
975 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
976 	} while (count++ < 16 && p->state != TASK_RUNNING);
977 
978 out:
979 	put_task_stack(p);
980 	return ret;
981 }
982 
983 long do_arch_prctl_common(struct task_struct *task, int option,
984 			  unsigned long cpuid_enabled)
985 {
986 	switch (option) {
987 	case ARCH_GET_CPUID:
988 		return get_cpuid_mode();
989 	case ARCH_SET_CPUID:
990 		return set_cpuid_mode(task, cpuid_enabled);
991 	}
992 
993 	return -EINVAL;
994 }
995