xref: /openbmc/linux/arch/x86/kernel/process.c (revision a2cce7a9)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34 
35 /*
36  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37  * no more per-task TSS's. The TSS size is kept cacheline-aligned
38  * so they are allowed to end up in the .data..cacheline_aligned
39  * section. Since TSS's are completely CPU-local, we want them
40  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
41  */
42 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
43 	.x86_tss = {
44 		.sp0 = TOP_OF_INIT_STACK,
45 #ifdef CONFIG_X86_32
46 		.ss0 = __KERNEL_DS,
47 		.ss1 = __KERNEL_CS,
48 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
49 #endif
50 	 },
51 #ifdef CONFIG_X86_32
52 	 /*
53 	  * Note that the .io_bitmap member must be extra-big. This is because
54 	  * the CPU will access an additional byte beyond the end of the IO
55 	  * permission bitmap. The extra byte must be all 1 bits, and must
56 	  * be within the limit.
57 	  */
58 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
59 #endif
60 };
61 EXPORT_PER_CPU_SYMBOL(cpu_tss);
62 
63 #ifdef CONFIG_X86_64
64 static DEFINE_PER_CPU(unsigned char, is_idle);
65 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
66 
67 void idle_notifier_register(struct notifier_block *n)
68 {
69 	atomic_notifier_chain_register(&idle_notifier, n);
70 }
71 EXPORT_SYMBOL_GPL(idle_notifier_register);
72 
73 void idle_notifier_unregister(struct notifier_block *n)
74 {
75 	atomic_notifier_chain_unregister(&idle_notifier, n);
76 }
77 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
78 #endif
79 
80 /*
81  * this gets called so that we can store lazy state into memory and copy the
82  * current task into the new thread.
83  */
84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
85 {
86 	memcpy(dst, src, arch_task_struct_size);
87 
88 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
89 }
90 
91 /*
92  * Free current thread data structures etc..
93  */
94 void exit_thread(void)
95 {
96 	struct task_struct *me = current;
97 	struct thread_struct *t = &me->thread;
98 	unsigned long *bp = t->io_bitmap_ptr;
99 	struct fpu *fpu = &t->fpu;
100 
101 	if (bp) {
102 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
103 
104 		t->io_bitmap_ptr = NULL;
105 		clear_thread_flag(TIF_IO_BITMAP);
106 		/*
107 		 * Careful, clear this in the TSS too:
108 		 */
109 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
110 		t->io_bitmap_max = 0;
111 		put_cpu();
112 		kfree(bp);
113 	}
114 
115 	free_vm86(t);
116 
117 	fpu__drop(fpu);
118 }
119 
120 void flush_thread(void)
121 {
122 	struct task_struct *tsk = current;
123 
124 	flush_ptrace_hw_breakpoint(tsk);
125 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
126 
127 	fpu__clear(&tsk->thread.fpu);
128 }
129 
130 static void hard_disable_TSC(void)
131 {
132 	cr4_set_bits(X86_CR4_TSD);
133 }
134 
135 void disable_TSC(void)
136 {
137 	preempt_disable();
138 	if (!test_and_set_thread_flag(TIF_NOTSC))
139 		/*
140 		 * Must flip the CPU state synchronously with
141 		 * TIF_NOTSC in the current running context.
142 		 */
143 		hard_disable_TSC();
144 	preempt_enable();
145 }
146 
147 static void hard_enable_TSC(void)
148 {
149 	cr4_clear_bits(X86_CR4_TSD);
150 }
151 
152 static void enable_TSC(void)
153 {
154 	preempt_disable();
155 	if (test_and_clear_thread_flag(TIF_NOTSC))
156 		/*
157 		 * Must flip the CPU state synchronously with
158 		 * TIF_NOTSC in the current running context.
159 		 */
160 		hard_enable_TSC();
161 	preempt_enable();
162 }
163 
164 int get_tsc_mode(unsigned long adr)
165 {
166 	unsigned int val;
167 
168 	if (test_thread_flag(TIF_NOTSC))
169 		val = PR_TSC_SIGSEGV;
170 	else
171 		val = PR_TSC_ENABLE;
172 
173 	return put_user(val, (unsigned int __user *)adr);
174 }
175 
176 int set_tsc_mode(unsigned int val)
177 {
178 	if (val == PR_TSC_SIGSEGV)
179 		disable_TSC();
180 	else if (val == PR_TSC_ENABLE)
181 		enable_TSC();
182 	else
183 		return -EINVAL;
184 
185 	return 0;
186 }
187 
188 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
189 		      struct tss_struct *tss)
190 {
191 	struct thread_struct *prev, *next;
192 
193 	prev = &prev_p->thread;
194 	next = &next_p->thread;
195 
196 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
197 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
198 		unsigned long debugctl = get_debugctlmsr();
199 
200 		debugctl &= ~DEBUGCTLMSR_BTF;
201 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
202 			debugctl |= DEBUGCTLMSR_BTF;
203 
204 		update_debugctlmsr(debugctl);
205 	}
206 
207 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
208 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
209 		/* prev and next are different */
210 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
211 			hard_disable_TSC();
212 		else
213 			hard_enable_TSC();
214 	}
215 
216 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
217 		/*
218 		 * Copy the relevant range of the IO bitmap.
219 		 * Normally this is 128 bytes or less:
220 		 */
221 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
222 		       max(prev->io_bitmap_max, next->io_bitmap_max));
223 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
224 		/*
225 		 * Clear any possible leftover bits:
226 		 */
227 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
228 	}
229 	propagate_user_return_notify(prev_p, next_p);
230 }
231 
232 /*
233  * Idle related variables and functions
234  */
235 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
236 EXPORT_SYMBOL(boot_option_idle_override);
237 
238 static void (*x86_idle)(void);
239 
240 #ifndef CONFIG_SMP
241 static inline void play_dead(void)
242 {
243 	BUG();
244 }
245 #endif
246 
247 #ifdef CONFIG_X86_64
248 void enter_idle(void)
249 {
250 	this_cpu_write(is_idle, 1);
251 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
252 }
253 
254 static void __exit_idle(void)
255 {
256 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
257 		return;
258 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
259 }
260 
261 /* Called from interrupts to signify idle end */
262 void exit_idle(void)
263 {
264 	/* idle loop has pid 0 */
265 	if (current->pid)
266 		return;
267 	__exit_idle();
268 }
269 #endif
270 
271 void arch_cpu_idle_enter(void)
272 {
273 	local_touch_nmi();
274 	enter_idle();
275 }
276 
277 void arch_cpu_idle_exit(void)
278 {
279 	__exit_idle();
280 }
281 
282 void arch_cpu_idle_dead(void)
283 {
284 	play_dead();
285 }
286 
287 /*
288  * Called from the generic idle code.
289  */
290 void arch_cpu_idle(void)
291 {
292 	x86_idle();
293 }
294 
295 /*
296  * We use this if we don't have any better idle routine..
297  */
298 void default_idle(void)
299 {
300 	trace_cpu_idle_rcuidle(1, smp_processor_id());
301 	safe_halt();
302 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
303 }
304 #ifdef CONFIG_APM_MODULE
305 EXPORT_SYMBOL(default_idle);
306 #endif
307 
308 #ifdef CONFIG_XEN
309 bool xen_set_default_idle(void)
310 {
311 	bool ret = !!x86_idle;
312 
313 	x86_idle = default_idle;
314 
315 	return ret;
316 }
317 #endif
318 void stop_this_cpu(void *dummy)
319 {
320 	local_irq_disable();
321 	/*
322 	 * Remove this CPU:
323 	 */
324 	set_cpu_online(smp_processor_id(), false);
325 	disable_local_APIC();
326 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
327 
328 	for (;;)
329 		halt();
330 }
331 
332 bool amd_e400_c1e_detected;
333 EXPORT_SYMBOL(amd_e400_c1e_detected);
334 
335 static cpumask_var_t amd_e400_c1e_mask;
336 
337 void amd_e400_remove_cpu(int cpu)
338 {
339 	if (amd_e400_c1e_mask != NULL)
340 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
341 }
342 
343 /*
344  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
345  * pending message MSR. If we detect C1E, then we handle it the same
346  * way as C3 power states (local apic timer and TSC stop)
347  */
348 static void amd_e400_idle(void)
349 {
350 	if (!amd_e400_c1e_detected) {
351 		u32 lo, hi;
352 
353 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
354 
355 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
356 			amd_e400_c1e_detected = true;
357 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
358 				mark_tsc_unstable("TSC halt in AMD C1E");
359 			pr_info("System has AMD C1E enabled\n");
360 		}
361 	}
362 
363 	if (amd_e400_c1e_detected) {
364 		int cpu = smp_processor_id();
365 
366 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
367 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
368 			/* Force broadcast so ACPI can not interfere. */
369 			tick_broadcast_force();
370 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
371 		}
372 		tick_broadcast_enter();
373 
374 		default_idle();
375 
376 		/*
377 		 * The switch back from broadcast mode needs to be
378 		 * called with interrupts disabled.
379 		 */
380 		local_irq_disable();
381 		tick_broadcast_exit();
382 		local_irq_enable();
383 	} else
384 		default_idle();
385 }
386 
387 /*
388  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
389  * We can't rely on cpuidle installing MWAIT, because it will not load
390  * on systems that support only C1 -- so the boot default must be MWAIT.
391  *
392  * Some AMD machines are the opposite, they depend on using HALT.
393  *
394  * So for default C1, which is used during boot until cpuidle loads,
395  * use MWAIT-C1 on Intel HW that has it, else use HALT.
396  */
397 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
398 {
399 	if (c->x86_vendor != X86_VENDOR_INTEL)
400 		return 0;
401 
402 	if (!cpu_has(c, X86_FEATURE_MWAIT))
403 		return 0;
404 
405 	return 1;
406 }
407 
408 /*
409  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
410  * with interrupts enabled and no flags, which is backwards compatible with the
411  * original MWAIT implementation.
412  */
413 static void mwait_idle(void)
414 {
415 	if (!current_set_polling_and_test()) {
416 		trace_cpu_idle_rcuidle(1, smp_processor_id());
417 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
418 			smp_mb(); /* quirk */
419 			clflush((void *)&current_thread_info()->flags);
420 			smp_mb(); /* quirk */
421 		}
422 
423 		__monitor((void *)&current_thread_info()->flags, 0, 0);
424 		if (!need_resched())
425 			__sti_mwait(0, 0);
426 		else
427 			local_irq_enable();
428 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
429 	} else {
430 		local_irq_enable();
431 	}
432 	__current_clr_polling();
433 }
434 
435 void select_idle_routine(const struct cpuinfo_x86 *c)
436 {
437 #ifdef CONFIG_SMP
438 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
439 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
440 #endif
441 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
442 		return;
443 
444 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
445 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
446 		pr_info("using AMD E400 aware idle routine\n");
447 		x86_idle = amd_e400_idle;
448 	} else if (prefer_mwait_c1_over_halt(c)) {
449 		pr_info("using mwait in idle threads\n");
450 		x86_idle = mwait_idle;
451 	} else
452 		x86_idle = default_idle;
453 }
454 
455 void __init init_amd_e400_c1e_mask(void)
456 {
457 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
458 	if (x86_idle == amd_e400_idle)
459 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
460 }
461 
462 static int __init idle_setup(char *str)
463 {
464 	if (!str)
465 		return -EINVAL;
466 
467 	if (!strcmp(str, "poll")) {
468 		pr_info("using polling idle threads\n");
469 		boot_option_idle_override = IDLE_POLL;
470 		cpu_idle_poll_ctrl(true);
471 	} else if (!strcmp(str, "halt")) {
472 		/*
473 		 * When the boot option of idle=halt is added, halt is
474 		 * forced to be used for CPU idle. In such case CPU C2/C3
475 		 * won't be used again.
476 		 * To continue to load the CPU idle driver, don't touch
477 		 * the boot_option_idle_override.
478 		 */
479 		x86_idle = default_idle;
480 		boot_option_idle_override = IDLE_HALT;
481 	} else if (!strcmp(str, "nomwait")) {
482 		/*
483 		 * If the boot option of "idle=nomwait" is added,
484 		 * it means that mwait will be disabled for CPU C2/C3
485 		 * states. In such case it won't touch the variable
486 		 * of boot_option_idle_override.
487 		 */
488 		boot_option_idle_override = IDLE_NOMWAIT;
489 	} else
490 		return -1;
491 
492 	return 0;
493 }
494 early_param("idle", idle_setup);
495 
496 unsigned long arch_align_stack(unsigned long sp)
497 {
498 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
499 		sp -= get_random_int() % 8192;
500 	return sp & ~0xf;
501 }
502 
503 unsigned long arch_randomize_brk(struct mm_struct *mm)
504 {
505 	unsigned long range_end = mm->brk + 0x02000000;
506 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
507 }
508 
509 /*
510  * Called from fs/proc with a reference on @p to find the function
511  * which called into schedule(). This needs to be done carefully
512  * because the task might wake up and we might look at a stack
513  * changing under us.
514  */
515 unsigned long get_wchan(struct task_struct *p)
516 {
517 	unsigned long start, bottom, top, sp, fp, ip;
518 	int count = 0;
519 
520 	if (!p || p == current || p->state == TASK_RUNNING)
521 		return 0;
522 
523 	start = (unsigned long)task_stack_page(p);
524 	if (!start)
525 		return 0;
526 
527 	/*
528 	 * Layout of the stack page:
529 	 *
530 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
531 	 * PADDING
532 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
533 	 * stack
534 	 * ----------- bottom = start + sizeof(thread_info)
535 	 * thread_info
536 	 * ----------- start
537 	 *
538 	 * The tasks stack pointer points at the location where the
539 	 * framepointer is stored. The data on the stack is:
540 	 * ... IP FP ... IP FP
541 	 *
542 	 * We need to read FP and IP, so we need to adjust the upper
543 	 * bound by another unsigned long.
544 	 */
545 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
546 	top -= 2 * sizeof(unsigned long);
547 	bottom = start + sizeof(struct thread_info);
548 
549 	sp = READ_ONCE(p->thread.sp);
550 	if (sp < bottom || sp > top)
551 		return 0;
552 
553 	fp = READ_ONCE(*(unsigned long *)sp);
554 	do {
555 		if (fp < bottom || fp > top)
556 			return 0;
557 		ip = READ_ONCE(*(unsigned long *)(fp + sizeof(unsigned long)));
558 		if (!in_sched_functions(ip))
559 			return ip;
560 		fp = READ_ONCE(*(unsigned long *)fp);
561 	} while (count++ < 16 && p->state != TASK_RUNNING);
562 	return 0;
563 }
564