xref: /openbmc/linux/arch/x86/kernel/process.c (revision 9f69e8a7)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/i387.h>
29 #include <asm/fpu-internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33 
34 /*
35  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
36  * no more per-task TSS's. The TSS size is kept cacheline-aligned
37  * so they are allowed to end up in the .data..cacheline_aligned
38  * section. Since TSS's are completely CPU-local, we want them
39  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
40  */
41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
42 	.x86_tss = {
43 		.sp0 = TOP_OF_INIT_STACK,
44 #ifdef CONFIG_X86_32
45 		.ss0 = __KERNEL_DS,
46 		.ss1 = __KERNEL_CS,
47 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
48 #endif
49 	 },
50 #ifdef CONFIG_X86_32
51 	 /*
52 	  * Note that the .io_bitmap member must be extra-big. This is because
53 	  * the CPU will access an additional byte beyond the end of the IO
54 	  * permission bitmap. The extra byte must be all 1 bits, and must
55 	  * be within the limit.
56 	  */
57 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
58 #endif
59 };
60 EXPORT_PER_CPU_SYMBOL(cpu_tss);
61 
62 #ifdef CONFIG_X86_64
63 static DEFINE_PER_CPU(unsigned char, is_idle);
64 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
65 
66 void idle_notifier_register(struct notifier_block *n)
67 {
68 	atomic_notifier_chain_register(&idle_notifier, n);
69 }
70 EXPORT_SYMBOL_GPL(idle_notifier_register);
71 
72 void idle_notifier_unregister(struct notifier_block *n)
73 {
74 	atomic_notifier_chain_unregister(&idle_notifier, n);
75 }
76 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
77 #endif
78 
79 struct kmem_cache *task_xstate_cachep;
80 EXPORT_SYMBOL_GPL(task_xstate_cachep);
81 
82 /*
83  * this gets called so that we can store lazy state into memory and copy the
84  * current task into the new thread.
85  */
86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
87 {
88 	*dst = *src;
89 
90 	dst->thread.fpu_counter = 0;
91 	dst->thread.fpu.has_fpu = 0;
92 	dst->thread.fpu.state = NULL;
93 	task_disable_lazy_fpu_restore(dst);
94 	if (tsk_used_math(src)) {
95 		int err = fpu_alloc(&dst->thread.fpu);
96 		if (err)
97 			return err;
98 		fpu_copy(dst, src);
99 	}
100 	return 0;
101 }
102 
103 void free_thread_xstate(struct task_struct *tsk)
104 {
105 	fpu_free(&tsk->thread.fpu);
106 }
107 
108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 	free_thread_xstate(tsk);
111 }
112 
113 void arch_task_cache_init(void)
114 {
115         task_xstate_cachep =
116         	kmem_cache_create("task_xstate", xstate_size,
117 				  __alignof__(union thread_xstate),
118 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
119 	setup_xstate_comp();
120 }
121 
122 /*
123  * Free current thread data structures etc..
124  */
125 void exit_thread(void)
126 {
127 	struct task_struct *me = current;
128 	struct thread_struct *t = &me->thread;
129 	unsigned long *bp = t->io_bitmap_ptr;
130 
131 	if (bp) {
132 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
133 
134 		t->io_bitmap_ptr = NULL;
135 		clear_thread_flag(TIF_IO_BITMAP);
136 		/*
137 		 * Careful, clear this in the TSS too:
138 		 */
139 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
140 		t->io_bitmap_max = 0;
141 		put_cpu();
142 		kfree(bp);
143 	}
144 
145 	drop_fpu(me);
146 }
147 
148 void flush_thread(void)
149 {
150 	struct task_struct *tsk = current;
151 
152 	flush_ptrace_hw_breakpoint(tsk);
153 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 
155 	if (!use_eager_fpu()) {
156 		/* FPU state will be reallocated lazily at the first use. */
157 		drop_fpu(tsk);
158 		free_thread_xstate(tsk);
159 	} else {
160 		if (!tsk_used_math(tsk)) {
161 			/* kthread execs. TODO: cleanup this horror. */
162 			if (WARN_ON(init_fpu(tsk)))
163 				force_sig(SIGKILL, tsk);
164 			user_fpu_begin();
165 		}
166 		restore_init_xstate();
167 	}
168 }
169 
170 static void hard_disable_TSC(void)
171 {
172 	cr4_set_bits(X86_CR4_TSD);
173 }
174 
175 void disable_TSC(void)
176 {
177 	preempt_disable();
178 	if (!test_and_set_thread_flag(TIF_NOTSC))
179 		/*
180 		 * Must flip the CPU state synchronously with
181 		 * TIF_NOTSC in the current running context.
182 		 */
183 		hard_disable_TSC();
184 	preempt_enable();
185 }
186 
187 static void hard_enable_TSC(void)
188 {
189 	cr4_clear_bits(X86_CR4_TSD);
190 }
191 
192 static void enable_TSC(void)
193 {
194 	preempt_disable();
195 	if (test_and_clear_thread_flag(TIF_NOTSC))
196 		/*
197 		 * Must flip the CPU state synchronously with
198 		 * TIF_NOTSC in the current running context.
199 		 */
200 		hard_enable_TSC();
201 	preempt_enable();
202 }
203 
204 int get_tsc_mode(unsigned long adr)
205 {
206 	unsigned int val;
207 
208 	if (test_thread_flag(TIF_NOTSC))
209 		val = PR_TSC_SIGSEGV;
210 	else
211 		val = PR_TSC_ENABLE;
212 
213 	return put_user(val, (unsigned int __user *)adr);
214 }
215 
216 int set_tsc_mode(unsigned int val)
217 {
218 	if (val == PR_TSC_SIGSEGV)
219 		disable_TSC();
220 	else if (val == PR_TSC_ENABLE)
221 		enable_TSC();
222 	else
223 		return -EINVAL;
224 
225 	return 0;
226 }
227 
228 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
229 		      struct tss_struct *tss)
230 {
231 	struct thread_struct *prev, *next;
232 
233 	prev = &prev_p->thread;
234 	next = &next_p->thread;
235 
236 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
237 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
238 		unsigned long debugctl = get_debugctlmsr();
239 
240 		debugctl &= ~DEBUGCTLMSR_BTF;
241 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
242 			debugctl |= DEBUGCTLMSR_BTF;
243 
244 		update_debugctlmsr(debugctl);
245 	}
246 
247 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
248 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
249 		/* prev and next are different */
250 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
251 			hard_disable_TSC();
252 		else
253 			hard_enable_TSC();
254 	}
255 
256 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
257 		/*
258 		 * Copy the relevant range of the IO bitmap.
259 		 * Normally this is 128 bytes or less:
260 		 */
261 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
262 		       max(prev->io_bitmap_max, next->io_bitmap_max));
263 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
264 		/*
265 		 * Clear any possible leftover bits:
266 		 */
267 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
268 	}
269 	propagate_user_return_notify(prev_p, next_p);
270 }
271 
272 /*
273  * Idle related variables and functions
274  */
275 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
276 EXPORT_SYMBOL(boot_option_idle_override);
277 
278 static void (*x86_idle)(void);
279 
280 #ifndef CONFIG_SMP
281 static inline void play_dead(void)
282 {
283 	BUG();
284 }
285 #endif
286 
287 #ifdef CONFIG_X86_64
288 void enter_idle(void)
289 {
290 	this_cpu_write(is_idle, 1);
291 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
292 }
293 
294 static void __exit_idle(void)
295 {
296 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
297 		return;
298 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
299 }
300 
301 /* Called from interrupts to signify idle end */
302 void exit_idle(void)
303 {
304 	/* idle loop has pid 0 */
305 	if (current->pid)
306 		return;
307 	__exit_idle();
308 }
309 #endif
310 
311 void arch_cpu_idle_enter(void)
312 {
313 	local_touch_nmi();
314 	enter_idle();
315 }
316 
317 void arch_cpu_idle_exit(void)
318 {
319 	__exit_idle();
320 }
321 
322 void arch_cpu_idle_dead(void)
323 {
324 	play_dead();
325 }
326 
327 /*
328  * Called from the generic idle code.
329  */
330 void arch_cpu_idle(void)
331 {
332 	x86_idle();
333 }
334 
335 /*
336  * We use this if we don't have any better idle routine..
337  */
338 void default_idle(void)
339 {
340 	trace_cpu_idle_rcuidle(1, smp_processor_id());
341 	safe_halt();
342 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
343 }
344 #ifdef CONFIG_APM_MODULE
345 EXPORT_SYMBOL(default_idle);
346 #endif
347 
348 #ifdef CONFIG_XEN
349 bool xen_set_default_idle(void)
350 {
351 	bool ret = !!x86_idle;
352 
353 	x86_idle = default_idle;
354 
355 	return ret;
356 }
357 #endif
358 void stop_this_cpu(void *dummy)
359 {
360 	local_irq_disable();
361 	/*
362 	 * Remove this CPU:
363 	 */
364 	set_cpu_online(smp_processor_id(), false);
365 	disable_local_APIC();
366 
367 	for (;;)
368 		halt();
369 }
370 
371 bool amd_e400_c1e_detected;
372 EXPORT_SYMBOL(amd_e400_c1e_detected);
373 
374 static cpumask_var_t amd_e400_c1e_mask;
375 
376 void amd_e400_remove_cpu(int cpu)
377 {
378 	if (amd_e400_c1e_mask != NULL)
379 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
380 }
381 
382 /*
383  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
384  * pending message MSR. If we detect C1E, then we handle it the same
385  * way as C3 power states (local apic timer and TSC stop)
386  */
387 static void amd_e400_idle(void)
388 {
389 	if (!amd_e400_c1e_detected) {
390 		u32 lo, hi;
391 
392 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
393 
394 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
395 			amd_e400_c1e_detected = true;
396 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
397 				mark_tsc_unstable("TSC halt in AMD C1E");
398 			pr_info("System has AMD C1E enabled\n");
399 		}
400 	}
401 
402 	if (amd_e400_c1e_detected) {
403 		int cpu = smp_processor_id();
404 
405 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
406 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
407 			/* Force broadcast so ACPI can not interfere. */
408 			tick_broadcast_force();
409 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
410 		}
411 		tick_broadcast_enter();
412 
413 		default_idle();
414 
415 		/*
416 		 * The switch back from broadcast mode needs to be
417 		 * called with interrupts disabled.
418 		 */
419 		local_irq_disable();
420 		tick_broadcast_exit();
421 		local_irq_enable();
422 	} else
423 		default_idle();
424 }
425 
426 /*
427  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
428  * We can't rely on cpuidle installing MWAIT, because it will not load
429  * on systems that support only C1 -- so the boot default must be MWAIT.
430  *
431  * Some AMD machines are the opposite, they depend on using HALT.
432  *
433  * So for default C1, which is used during boot until cpuidle loads,
434  * use MWAIT-C1 on Intel HW that has it, else use HALT.
435  */
436 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
437 {
438 	if (c->x86_vendor != X86_VENDOR_INTEL)
439 		return 0;
440 
441 	if (!cpu_has(c, X86_FEATURE_MWAIT))
442 		return 0;
443 
444 	return 1;
445 }
446 
447 /*
448  * MONITOR/MWAIT with no hints, used for default default C1 state.
449  * This invokes MWAIT with interrutps enabled and no flags,
450  * which is backwards compatible with the original MWAIT implementation.
451  */
452 
453 static void mwait_idle(void)
454 {
455 	if (!current_set_polling_and_test()) {
456 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
457 			smp_mb(); /* quirk */
458 			clflush((void *)&current_thread_info()->flags);
459 			smp_mb(); /* quirk */
460 		}
461 
462 		__monitor((void *)&current_thread_info()->flags, 0, 0);
463 		if (!need_resched())
464 			__sti_mwait(0, 0);
465 		else
466 			local_irq_enable();
467 	} else {
468 		local_irq_enable();
469 	}
470 	__current_clr_polling();
471 }
472 
473 void select_idle_routine(const struct cpuinfo_x86 *c)
474 {
475 #ifdef CONFIG_SMP
476 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
477 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
478 #endif
479 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
480 		return;
481 
482 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
483 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
484 		pr_info("using AMD E400 aware idle routine\n");
485 		x86_idle = amd_e400_idle;
486 	} else if (prefer_mwait_c1_over_halt(c)) {
487 		pr_info("using mwait in idle threads\n");
488 		x86_idle = mwait_idle;
489 	} else
490 		x86_idle = default_idle;
491 }
492 
493 void __init init_amd_e400_c1e_mask(void)
494 {
495 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
496 	if (x86_idle == amd_e400_idle)
497 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
498 }
499 
500 static int __init idle_setup(char *str)
501 {
502 	if (!str)
503 		return -EINVAL;
504 
505 	if (!strcmp(str, "poll")) {
506 		pr_info("using polling idle threads\n");
507 		boot_option_idle_override = IDLE_POLL;
508 		cpu_idle_poll_ctrl(true);
509 	} else if (!strcmp(str, "halt")) {
510 		/*
511 		 * When the boot option of idle=halt is added, halt is
512 		 * forced to be used for CPU idle. In such case CPU C2/C3
513 		 * won't be used again.
514 		 * To continue to load the CPU idle driver, don't touch
515 		 * the boot_option_idle_override.
516 		 */
517 		x86_idle = default_idle;
518 		boot_option_idle_override = IDLE_HALT;
519 	} else if (!strcmp(str, "nomwait")) {
520 		/*
521 		 * If the boot option of "idle=nomwait" is added,
522 		 * it means that mwait will be disabled for CPU C2/C3
523 		 * states. In such case it won't touch the variable
524 		 * of boot_option_idle_override.
525 		 */
526 		boot_option_idle_override = IDLE_NOMWAIT;
527 	} else
528 		return -1;
529 
530 	return 0;
531 }
532 early_param("idle", idle_setup);
533 
534 unsigned long arch_align_stack(unsigned long sp)
535 {
536 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
537 		sp -= get_random_int() % 8192;
538 	return sp & ~0xf;
539 }
540 
541 unsigned long arch_randomize_brk(struct mm_struct *mm)
542 {
543 	unsigned long range_end = mm->brk + 0x02000000;
544 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
545 }
546 
547