1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/tick.h> 25 #include <linux/cpuidle.h> 26 #include <trace/events/power.h> 27 #include <linux/hw_breakpoint.h> 28 #include <asm/cpu.h> 29 #include <asm/apic.h> 30 #include <asm/syscalls.h> 31 #include <linux/uaccess.h> 32 #include <asm/mwait.h> 33 #include <asm/fpu/internal.h> 34 #include <asm/debugreg.h> 35 #include <asm/nmi.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mce.h> 38 #include <asm/vm86.h> 39 #include <asm/switch_to.h> 40 #include <asm/desc.h> 41 #include <asm/prctl.h> 42 43 /* 44 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 45 * no more per-task TSS's. The TSS size is kept cacheline-aligned 46 * so they are allowed to end up in the .data..cacheline_aligned 47 * section. Since TSS's are completely CPU-local, we want them 48 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 49 */ 50 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss_rw) = { 51 .x86_tss = { 52 /* 53 * .sp0 is only used when entering ring 0 from a lower 54 * privilege level. Since the init task never runs anything 55 * but ring 0 code, there is no need for a valid value here. 56 * Poison it. 57 */ 58 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 59 60 #ifdef CONFIG_X86_64 61 /* 62 * .sp1 is cpu_current_top_of_stack. The init task never 63 * runs user code, but cpu_current_top_of_stack should still 64 * be well defined before the first context switch. 65 */ 66 .sp1 = TOP_OF_INIT_STACK, 67 #endif 68 69 #ifdef CONFIG_X86_32 70 .ss0 = __KERNEL_DS, 71 .ss1 = __KERNEL_CS, 72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 73 #endif 74 }, 75 #ifdef CONFIG_X86_32 76 /* 77 * Note that the .io_bitmap member must be extra-big. This is because 78 * the CPU will access an additional byte beyond the end of the IO 79 * permission bitmap. The extra byte must be all 1 bits, and must 80 * be within the limit. 81 */ 82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 83 #endif 84 }; 85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 86 87 DEFINE_PER_CPU(bool, __tss_limit_invalid); 88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 89 90 /* 91 * this gets called so that we can store lazy state into memory and copy the 92 * current task into the new thread. 93 */ 94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 95 { 96 memcpy(dst, src, arch_task_struct_size); 97 #ifdef CONFIG_VM86 98 dst->thread.vm86 = NULL; 99 #endif 100 101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 102 } 103 104 /* 105 * Free current thread data structures etc.. 106 */ 107 void exit_thread(struct task_struct *tsk) 108 { 109 struct thread_struct *t = &tsk->thread; 110 unsigned long *bp = t->io_bitmap_ptr; 111 struct fpu *fpu = &t->fpu; 112 113 if (bp) { 114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); 115 116 t->io_bitmap_ptr = NULL; 117 clear_thread_flag(TIF_IO_BITMAP); 118 /* 119 * Careful, clear this in the TSS too: 120 */ 121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 122 t->io_bitmap_max = 0; 123 put_cpu(); 124 kfree(bp); 125 } 126 127 free_vm86(t); 128 129 fpu__drop(fpu); 130 } 131 132 void flush_thread(void) 133 { 134 struct task_struct *tsk = current; 135 136 flush_ptrace_hw_breakpoint(tsk); 137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 138 139 fpu__clear(&tsk->thread.fpu); 140 } 141 142 void disable_TSC(void) 143 { 144 preempt_disable(); 145 if (!test_and_set_thread_flag(TIF_NOTSC)) 146 /* 147 * Must flip the CPU state synchronously with 148 * TIF_NOTSC in the current running context. 149 */ 150 cr4_set_bits(X86_CR4_TSD); 151 preempt_enable(); 152 } 153 154 static void enable_TSC(void) 155 { 156 preempt_disable(); 157 if (test_and_clear_thread_flag(TIF_NOTSC)) 158 /* 159 * Must flip the CPU state synchronously with 160 * TIF_NOTSC in the current running context. 161 */ 162 cr4_clear_bits(X86_CR4_TSD); 163 preempt_enable(); 164 } 165 166 int get_tsc_mode(unsigned long adr) 167 { 168 unsigned int val; 169 170 if (test_thread_flag(TIF_NOTSC)) 171 val = PR_TSC_SIGSEGV; 172 else 173 val = PR_TSC_ENABLE; 174 175 return put_user(val, (unsigned int __user *)adr); 176 } 177 178 int set_tsc_mode(unsigned int val) 179 { 180 if (val == PR_TSC_SIGSEGV) 181 disable_TSC(); 182 else if (val == PR_TSC_ENABLE) 183 enable_TSC(); 184 else 185 return -EINVAL; 186 187 return 0; 188 } 189 190 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 191 192 static void set_cpuid_faulting(bool on) 193 { 194 u64 msrval; 195 196 msrval = this_cpu_read(msr_misc_features_shadow); 197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 199 this_cpu_write(msr_misc_features_shadow, msrval); 200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 201 } 202 203 static void disable_cpuid(void) 204 { 205 preempt_disable(); 206 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 207 /* 208 * Must flip the CPU state synchronously with 209 * TIF_NOCPUID in the current running context. 210 */ 211 set_cpuid_faulting(true); 212 } 213 preempt_enable(); 214 } 215 216 static void enable_cpuid(void) 217 { 218 preempt_disable(); 219 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 220 /* 221 * Must flip the CPU state synchronously with 222 * TIF_NOCPUID in the current running context. 223 */ 224 set_cpuid_faulting(false); 225 } 226 preempt_enable(); 227 } 228 229 static int get_cpuid_mode(void) 230 { 231 return !test_thread_flag(TIF_NOCPUID); 232 } 233 234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 235 { 236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT)) 237 return -ENODEV; 238 239 if (cpuid_enabled) 240 enable_cpuid(); 241 else 242 disable_cpuid(); 243 244 return 0; 245 } 246 247 /* 248 * Called immediately after a successful exec. 249 */ 250 void arch_setup_new_exec(void) 251 { 252 /* If cpuid was previously disabled for this task, re-enable it. */ 253 if (test_thread_flag(TIF_NOCPUID)) 254 enable_cpuid(); 255 } 256 257 static inline void switch_to_bitmap(struct tss_struct *tss, 258 struct thread_struct *prev, 259 struct thread_struct *next, 260 unsigned long tifp, unsigned long tifn) 261 { 262 if (tifn & _TIF_IO_BITMAP) { 263 /* 264 * Copy the relevant range of the IO bitmap. 265 * Normally this is 128 bytes or less: 266 */ 267 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 268 max(prev->io_bitmap_max, next->io_bitmap_max)); 269 /* 270 * Make sure that the TSS limit is correct for the CPU 271 * to notice the IO bitmap. 272 */ 273 refresh_tss_limit(); 274 } else if (tifp & _TIF_IO_BITMAP) { 275 /* 276 * Clear any possible leftover bits: 277 */ 278 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 279 } 280 } 281 282 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 283 struct tss_struct *tss) 284 { 285 struct thread_struct *prev, *next; 286 unsigned long tifp, tifn; 287 288 prev = &prev_p->thread; 289 next = &next_p->thread; 290 291 tifn = READ_ONCE(task_thread_info(next_p)->flags); 292 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 293 switch_to_bitmap(tss, prev, next, tifp, tifn); 294 295 propagate_user_return_notify(prev_p, next_p); 296 297 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 298 arch_has_block_step()) { 299 unsigned long debugctl, msk; 300 301 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 302 debugctl &= ~DEBUGCTLMSR_BTF; 303 msk = tifn & _TIF_BLOCKSTEP; 304 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 305 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 306 } 307 308 if ((tifp ^ tifn) & _TIF_NOTSC) 309 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 310 311 if ((tifp ^ tifn) & _TIF_NOCPUID) 312 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 313 } 314 315 /* 316 * Idle related variables and functions 317 */ 318 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 319 EXPORT_SYMBOL(boot_option_idle_override); 320 321 static void (*x86_idle)(void); 322 323 #ifndef CONFIG_SMP 324 static inline void play_dead(void) 325 { 326 BUG(); 327 } 328 #endif 329 330 void arch_cpu_idle_enter(void) 331 { 332 tsc_verify_tsc_adjust(false); 333 local_touch_nmi(); 334 } 335 336 void arch_cpu_idle_dead(void) 337 { 338 play_dead(); 339 } 340 341 /* 342 * Called from the generic idle code. 343 */ 344 void arch_cpu_idle(void) 345 { 346 x86_idle(); 347 } 348 349 /* 350 * We use this if we don't have any better idle routine.. 351 */ 352 void __cpuidle default_idle(void) 353 { 354 trace_cpu_idle_rcuidle(1, smp_processor_id()); 355 safe_halt(); 356 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 357 } 358 #ifdef CONFIG_APM_MODULE 359 EXPORT_SYMBOL(default_idle); 360 #endif 361 362 #ifdef CONFIG_XEN 363 bool xen_set_default_idle(void) 364 { 365 bool ret = !!x86_idle; 366 367 x86_idle = default_idle; 368 369 return ret; 370 } 371 #endif 372 373 void stop_this_cpu(void *dummy) 374 { 375 local_irq_disable(); 376 /* 377 * Remove this CPU: 378 */ 379 set_cpu_online(smp_processor_id(), false); 380 disable_local_APIC(); 381 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 382 383 for (;;) { 384 /* 385 * Use wbinvd followed by hlt to stop the processor. This 386 * provides support for kexec on a processor that supports 387 * SME. With kexec, going from SME inactive to SME active 388 * requires clearing cache entries so that addresses without 389 * the encryption bit set don't corrupt the same physical 390 * address that has the encryption bit set when caches are 391 * flushed. To achieve this a wbinvd is performed followed by 392 * a hlt. Even if the processor is not in the kexec/SME 393 * scenario this only adds a wbinvd to a halting processor. 394 */ 395 asm volatile("wbinvd; hlt" : : : "memory"); 396 } 397 } 398 399 /* 400 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 401 * states (local apic timer and TSC stop). 402 */ 403 static void amd_e400_idle(void) 404 { 405 /* 406 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 407 * gets set after static_cpu_has() places have been converted via 408 * alternatives. 409 */ 410 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 411 default_idle(); 412 return; 413 } 414 415 tick_broadcast_enter(); 416 417 default_idle(); 418 419 /* 420 * The switch back from broadcast mode needs to be called with 421 * interrupts disabled. 422 */ 423 local_irq_disable(); 424 tick_broadcast_exit(); 425 local_irq_enable(); 426 } 427 428 /* 429 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 430 * We can't rely on cpuidle installing MWAIT, because it will not load 431 * on systems that support only C1 -- so the boot default must be MWAIT. 432 * 433 * Some AMD machines are the opposite, they depend on using HALT. 434 * 435 * So for default C1, which is used during boot until cpuidle loads, 436 * use MWAIT-C1 on Intel HW that has it, else use HALT. 437 */ 438 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 439 { 440 if (c->x86_vendor != X86_VENDOR_INTEL) 441 return 0; 442 443 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 444 return 0; 445 446 return 1; 447 } 448 449 /* 450 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 451 * with interrupts enabled and no flags, which is backwards compatible with the 452 * original MWAIT implementation. 453 */ 454 static __cpuidle void mwait_idle(void) 455 { 456 if (!current_set_polling_and_test()) { 457 trace_cpu_idle_rcuidle(1, smp_processor_id()); 458 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 459 mb(); /* quirk */ 460 clflush((void *)¤t_thread_info()->flags); 461 mb(); /* quirk */ 462 } 463 464 __monitor((void *)¤t_thread_info()->flags, 0, 0); 465 if (!need_resched()) 466 __sti_mwait(0, 0); 467 else 468 local_irq_enable(); 469 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 470 } else { 471 local_irq_enable(); 472 } 473 __current_clr_polling(); 474 } 475 476 void select_idle_routine(const struct cpuinfo_x86 *c) 477 { 478 #ifdef CONFIG_SMP 479 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 480 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 481 #endif 482 if (x86_idle || boot_option_idle_override == IDLE_POLL) 483 return; 484 485 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 486 pr_info("using AMD E400 aware idle routine\n"); 487 x86_idle = amd_e400_idle; 488 } else if (prefer_mwait_c1_over_halt(c)) { 489 pr_info("using mwait in idle threads\n"); 490 x86_idle = mwait_idle; 491 } else 492 x86_idle = default_idle; 493 } 494 495 void amd_e400_c1e_apic_setup(void) 496 { 497 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 498 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 499 local_irq_disable(); 500 tick_broadcast_force(); 501 local_irq_enable(); 502 } 503 } 504 505 void __init arch_post_acpi_subsys_init(void) 506 { 507 u32 lo, hi; 508 509 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 510 return; 511 512 /* 513 * AMD E400 detection needs to happen after ACPI has been enabled. If 514 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 515 * MSR_K8_INT_PENDING_MSG. 516 */ 517 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 518 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 519 return; 520 521 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 522 523 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 524 mark_tsc_unstable("TSC halt in AMD C1E"); 525 pr_info("System has AMD C1E enabled\n"); 526 } 527 528 static int __init idle_setup(char *str) 529 { 530 if (!str) 531 return -EINVAL; 532 533 if (!strcmp(str, "poll")) { 534 pr_info("using polling idle threads\n"); 535 boot_option_idle_override = IDLE_POLL; 536 cpu_idle_poll_ctrl(true); 537 } else if (!strcmp(str, "halt")) { 538 /* 539 * When the boot option of idle=halt is added, halt is 540 * forced to be used for CPU idle. In such case CPU C2/C3 541 * won't be used again. 542 * To continue to load the CPU idle driver, don't touch 543 * the boot_option_idle_override. 544 */ 545 x86_idle = default_idle; 546 boot_option_idle_override = IDLE_HALT; 547 } else if (!strcmp(str, "nomwait")) { 548 /* 549 * If the boot option of "idle=nomwait" is added, 550 * it means that mwait will be disabled for CPU C2/C3 551 * states. In such case it won't touch the variable 552 * of boot_option_idle_override. 553 */ 554 boot_option_idle_override = IDLE_NOMWAIT; 555 } else 556 return -1; 557 558 return 0; 559 } 560 early_param("idle", idle_setup); 561 562 unsigned long arch_align_stack(unsigned long sp) 563 { 564 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 565 sp -= get_random_int() % 8192; 566 return sp & ~0xf; 567 } 568 569 unsigned long arch_randomize_brk(struct mm_struct *mm) 570 { 571 return randomize_page(mm->brk, 0x02000000); 572 } 573 574 /* 575 * Called from fs/proc with a reference on @p to find the function 576 * which called into schedule(). This needs to be done carefully 577 * because the task might wake up and we might look at a stack 578 * changing under us. 579 */ 580 unsigned long get_wchan(struct task_struct *p) 581 { 582 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 583 int count = 0; 584 585 if (!p || p == current || p->state == TASK_RUNNING) 586 return 0; 587 588 if (!try_get_task_stack(p)) 589 return 0; 590 591 start = (unsigned long)task_stack_page(p); 592 if (!start) 593 goto out; 594 595 /* 596 * Layout of the stack page: 597 * 598 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 599 * PADDING 600 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 601 * stack 602 * ----------- bottom = start 603 * 604 * The tasks stack pointer points at the location where the 605 * framepointer is stored. The data on the stack is: 606 * ... IP FP ... IP FP 607 * 608 * We need to read FP and IP, so we need to adjust the upper 609 * bound by another unsigned long. 610 */ 611 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 612 top -= 2 * sizeof(unsigned long); 613 bottom = start; 614 615 sp = READ_ONCE(p->thread.sp); 616 if (sp < bottom || sp > top) 617 goto out; 618 619 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 620 do { 621 if (fp < bottom || fp > top) 622 goto out; 623 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 624 if (!in_sched_functions(ip)) { 625 ret = ip; 626 goto out; 627 } 628 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 629 } while (count++ < 16 && p->state != TASK_RUNNING); 630 631 out: 632 put_task_stack(p); 633 return ret; 634 } 635 636 long do_arch_prctl_common(struct task_struct *task, int option, 637 unsigned long cpuid_enabled) 638 { 639 switch (option) { 640 case ARCH_GET_CPUID: 641 return get_cpuid_mode(); 642 case ARCH_SET_CPUID: 643 return set_cpuid_mode(task, cpuid_enabled); 644 } 645 646 return -EINVAL; 647 } 648