xref: /openbmc/linux/arch/x86/kernel/process.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/tick.h>
25 #include <linux/cpuidle.h>
26 #include <trace/events/power.h>
27 #include <linux/hw_breakpoint.h>
28 #include <asm/cpu.h>
29 #include <asm/apic.h>
30 #include <asm/syscalls.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 
43 /*
44  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45  * no more per-task TSS's. The TSS size is kept cacheline-aligned
46  * so they are allowed to end up in the .data..cacheline_aligned
47  * section. Since TSS's are completely CPU-local, we want them
48  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49  */
50 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51 	.x86_tss = {
52 		/*
53 		 * .sp0 is only used when entering ring 0 from a lower
54 		 * privilege level.  Since the init task never runs anything
55 		 * but ring 0 code, there is no need for a valid value here.
56 		 * Poison it.
57 		 */
58 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 
60 #ifdef CONFIG_X86_64
61 		/*
62 		 * .sp1 is cpu_current_top_of_stack.  The init task never
63 		 * runs user code, but cpu_current_top_of_stack should still
64 		 * be well defined before the first context switch.
65 		 */
66 		.sp1 = TOP_OF_INIT_STACK,
67 #endif
68 
69 #ifdef CONFIG_X86_32
70 		.ss0 = __KERNEL_DS,
71 		.ss1 = __KERNEL_CS,
72 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
73 #endif
74 	 },
75 #ifdef CONFIG_X86_32
76 	 /*
77 	  * Note that the .io_bitmap member must be extra-big. This is because
78 	  * the CPU will access an additional byte beyond the end of the IO
79 	  * permission bitmap. The extra byte must be all 1 bits, and must
80 	  * be within the limit.
81 	  */
82 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
83 #endif
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86 
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89 
90 /*
91  * this gets called so that we can store lazy state into memory and copy the
92  * current task into the new thread.
93  */
94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 	memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 	dst->thread.vm86 = NULL;
99 #endif
100 
101 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102 }
103 
104 /*
105  * Free current thread data structures etc..
106  */
107 void exit_thread(struct task_struct *tsk)
108 {
109 	struct thread_struct *t = &tsk->thread;
110 	unsigned long *bp = t->io_bitmap_ptr;
111 	struct fpu *fpu = &t->fpu;
112 
113 	if (bp) {
114 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115 
116 		t->io_bitmap_ptr = NULL;
117 		clear_thread_flag(TIF_IO_BITMAP);
118 		/*
119 		 * Careful, clear this in the TSS too:
120 		 */
121 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 		t->io_bitmap_max = 0;
123 		put_cpu();
124 		kfree(bp);
125 	}
126 
127 	free_vm86(t);
128 
129 	fpu__drop(fpu);
130 }
131 
132 void flush_thread(void)
133 {
134 	struct task_struct *tsk = current;
135 
136 	flush_ptrace_hw_breakpoint(tsk);
137 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138 
139 	fpu__clear(&tsk->thread.fpu);
140 }
141 
142 void disable_TSC(void)
143 {
144 	preempt_disable();
145 	if (!test_and_set_thread_flag(TIF_NOTSC))
146 		/*
147 		 * Must flip the CPU state synchronously with
148 		 * TIF_NOTSC in the current running context.
149 		 */
150 		cr4_set_bits(X86_CR4_TSD);
151 	preempt_enable();
152 }
153 
154 static void enable_TSC(void)
155 {
156 	preempt_disable();
157 	if (test_and_clear_thread_flag(TIF_NOTSC))
158 		/*
159 		 * Must flip the CPU state synchronously with
160 		 * TIF_NOTSC in the current running context.
161 		 */
162 		cr4_clear_bits(X86_CR4_TSD);
163 	preempt_enable();
164 }
165 
166 int get_tsc_mode(unsigned long adr)
167 {
168 	unsigned int val;
169 
170 	if (test_thread_flag(TIF_NOTSC))
171 		val = PR_TSC_SIGSEGV;
172 	else
173 		val = PR_TSC_ENABLE;
174 
175 	return put_user(val, (unsigned int __user *)adr);
176 }
177 
178 int set_tsc_mode(unsigned int val)
179 {
180 	if (val == PR_TSC_SIGSEGV)
181 		disable_TSC();
182 	else if (val == PR_TSC_ENABLE)
183 		enable_TSC();
184 	else
185 		return -EINVAL;
186 
187 	return 0;
188 }
189 
190 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191 
192 static void set_cpuid_faulting(bool on)
193 {
194 	u64 msrval;
195 
196 	msrval = this_cpu_read(msr_misc_features_shadow);
197 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 	this_cpu_write(msr_misc_features_shadow, msrval);
200 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201 }
202 
203 static void disable_cpuid(void)
204 {
205 	preempt_disable();
206 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 		/*
208 		 * Must flip the CPU state synchronously with
209 		 * TIF_NOCPUID in the current running context.
210 		 */
211 		set_cpuid_faulting(true);
212 	}
213 	preempt_enable();
214 }
215 
216 static void enable_cpuid(void)
217 {
218 	preempt_disable();
219 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 		/*
221 		 * Must flip the CPU state synchronously with
222 		 * TIF_NOCPUID in the current running context.
223 		 */
224 		set_cpuid_faulting(false);
225 	}
226 	preempt_enable();
227 }
228 
229 static int get_cpuid_mode(void)
230 {
231 	return !test_thread_flag(TIF_NOCPUID);
232 }
233 
234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235 {
236 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 		return -ENODEV;
238 
239 	if (cpuid_enabled)
240 		enable_cpuid();
241 	else
242 		disable_cpuid();
243 
244 	return 0;
245 }
246 
247 /*
248  * Called immediately after a successful exec.
249  */
250 void arch_setup_new_exec(void)
251 {
252 	/* If cpuid was previously disabled for this task, re-enable it. */
253 	if (test_thread_flag(TIF_NOCPUID))
254 		enable_cpuid();
255 }
256 
257 static inline void switch_to_bitmap(struct tss_struct *tss,
258 				    struct thread_struct *prev,
259 				    struct thread_struct *next,
260 				    unsigned long tifp, unsigned long tifn)
261 {
262 	if (tifn & _TIF_IO_BITMAP) {
263 		/*
264 		 * Copy the relevant range of the IO bitmap.
265 		 * Normally this is 128 bytes or less:
266 		 */
267 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268 		       max(prev->io_bitmap_max, next->io_bitmap_max));
269 		/*
270 		 * Make sure that the TSS limit is correct for the CPU
271 		 * to notice the IO bitmap.
272 		 */
273 		refresh_tss_limit();
274 	} else if (tifp & _TIF_IO_BITMAP) {
275 		/*
276 		 * Clear any possible leftover bits:
277 		 */
278 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
279 	}
280 }
281 
282 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
283 		      struct tss_struct *tss)
284 {
285 	struct thread_struct *prev, *next;
286 	unsigned long tifp, tifn;
287 
288 	prev = &prev_p->thread;
289 	next = &next_p->thread;
290 
291 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
292 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
293 	switch_to_bitmap(tss, prev, next, tifp, tifn);
294 
295 	propagate_user_return_notify(prev_p, next_p);
296 
297 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
298 	    arch_has_block_step()) {
299 		unsigned long debugctl, msk;
300 
301 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
302 		debugctl &= ~DEBUGCTLMSR_BTF;
303 		msk = tifn & _TIF_BLOCKSTEP;
304 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
305 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
306 	}
307 
308 	if ((tifp ^ tifn) & _TIF_NOTSC)
309 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
310 
311 	if ((tifp ^ tifn) & _TIF_NOCPUID)
312 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
313 }
314 
315 /*
316  * Idle related variables and functions
317  */
318 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
319 EXPORT_SYMBOL(boot_option_idle_override);
320 
321 static void (*x86_idle)(void);
322 
323 #ifndef CONFIG_SMP
324 static inline void play_dead(void)
325 {
326 	BUG();
327 }
328 #endif
329 
330 void arch_cpu_idle_enter(void)
331 {
332 	tsc_verify_tsc_adjust(false);
333 	local_touch_nmi();
334 }
335 
336 void arch_cpu_idle_dead(void)
337 {
338 	play_dead();
339 }
340 
341 /*
342  * Called from the generic idle code.
343  */
344 void arch_cpu_idle(void)
345 {
346 	x86_idle();
347 }
348 
349 /*
350  * We use this if we don't have any better idle routine..
351  */
352 void __cpuidle default_idle(void)
353 {
354 	trace_cpu_idle_rcuidle(1, smp_processor_id());
355 	safe_halt();
356 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
357 }
358 #ifdef CONFIG_APM_MODULE
359 EXPORT_SYMBOL(default_idle);
360 #endif
361 
362 #ifdef CONFIG_XEN
363 bool xen_set_default_idle(void)
364 {
365 	bool ret = !!x86_idle;
366 
367 	x86_idle = default_idle;
368 
369 	return ret;
370 }
371 #endif
372 
373 void stop_this_cpu(void *dummy)
374 {
375 	local_irq_disable();
376 	/*
377 	 * Remove this CPU:
378 	 */
379 	set_cpu_online(smp_processor_id(), false);
380 	disable_local_APIC();
381 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
382 
383 	for (;;) {
384 		/*
385 		 * Use wbinvd followed by hlt to stop the processor. This
386 		 * provides support for kexec on a processor that supports
387 		 * SME. With kexec, going from SME inactive to SME active
388 		 * requires clearing cache entries so that addresses without
389 		 * the encryption bit set don't corrupt the same physical
390 		 * address that has the encryption bit set when caches are
391 		 * flushed. To achieve this a wbinvd is performed followed by
392 		 * a hlt. Even if the processor is not in the kexec/SME
393 		 * scenario this only adds a wbinvd to a halting processor.
394 		 */
395 		asm volatile("wbinvd; hlt" : : : "memory");
396 	}
397 }
398 
399 /*
400  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
401  * states (local apic timer and TSC stop).
402  */
403 static void amd_e400_idle(void)
404 {
405 	/*
406 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
407 	 * gets set after static_cpu_has() places have been converted via
408 	 * alternatives.
409 	 */
410 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
411 		default_idle();
412 		return;
413 	}
414 
415 	tick_broadcast_enter();
416 
417 	default_idle();
418 
419 	/*
420 	 * The switch back from broadcast mode needs to be called with
421 	 * interrupts disabled.
422 	 */
423 	local_irq_disable();
424 	tick_broadcast_exit();
425 	local_irq_enable();
426 }
427 
428 /*
429  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
430  * We can't rely on cpuidle installing MWAIT, because it will not load
431  * on systems that support only C1 -- so the boot default must be MWAIT.
432  *
433  * Some AMD machines are the opposite, they depend on using HALT.
434  *
435  * So for default C1, which is used during boot until cpuidle loads,
436  * use MWAIT-C1 on Intel HW that has it, else use HALT.
437  */
438 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
439 {
440 	if (c->x86_vendor != X86_VENDOR_INTEL)
441 		return 0;
442 
443 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
444 		return 0;
445 
446 	return 1;
447 }
448 
449 /*
450  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
451  * with interrupts enabled and no flags, which is backwards compatible with the
452  * original MWAIT implementation.
453  */
454 static __cpuidle void mwait_idle(void)
455 {
456 	if (!current_set_polling_and_test()) {
457 		trace_cpu_idle_rcuidle(1, smp_processor_id());
458 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
459 			mb(); /* quirk */
460 			clflush((void *)&current_thread_info()->flags);
461 			mb(); /* quirk */
462 		}
463 
464 		__monitor((void *)&current_thread_info()->flags, 0, 0);
465 		if (!need_resched())
466 			__sti_mwait(0, 0);
467 		else
468 			local_irq_enable();
469 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
470 	} else {
471 		local_irq_enable();
472 	}
473 	__current_clr_polling();
474 }
475 
476 void select_idle_routine(const struct cpuinfo_x86 *c)
477 {
478 #ifdef CONFIG_SMP
479 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
480 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
481 #endif
482 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
483 		return;
484 
485 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
486 		pr_info("using AMD E400 aware idle routine\n");
487 		x86_idle = amd_e400_idle;
488 	} else if (prefer_mwait_c1_over_halt(c)) {
489 		pr_info("using mwait in idle threads\n");
490 		x86_idle = mwait_idle;
491 	} else
492 		x86_idle = default_idle;
493 }
494 
495 void amd_e400_c1e_apic_setup(void)
496 {
497 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
498 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
499 		local_irq_disable();
500 		tick_broadcast_force();
501 		local_irq_enable();
502 	}
503 }
504 
505 void __init arch_post_acpi_subsys_init(void)
506 {
507 	u32 lo, hi;
508 
509 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
510 		return;
511 
512 	/*
513 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
514 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
515 	 * MSR_K8_INT_PENDING_MSG.
516 	 */
517 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
518 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
519 		return;
520 
521 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
522 
523 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
524 		mark_tsc_unstable("TSC halt in AMD C1E");
525 	pr_info("System has AMD C1E enabled\n");
526 }
527 
528 static int __init idle_setup(char *str)
529 {
530 	if (!str)
531 		return -EINVAL;
532 
533 	if (!strcmp(str, "poll")) {
534 		pr_info("using polling idle threads\n");
535 		boot_option_idle_override = IDLE_POLL;
536 		cpu_idle_poll_ctrl(true);
537 	} else if (!strcmp(str, "halt")) {
538 		/*
539 		 * When the boot option of idle=halt is added, halt is
540 		 * forced to be used for CPU idle. In such case CPU C2/C3
541 		 * won't be used again.
542 		 * To continue to load the CPU idle driver, don't touch
543 		 * the boot_option_idle_override.
544 		 */
545 		x86_idle = default_idle;
546 		boot_option_idle_override = IDLE_HALT;
547 	} else if (!strcmp(str, "nomwait")) {
548 		/*
549 		 * If the boot option of "idle=nomwait" is added,
550 		 * it means that mwait will be disabled for CPU C2/C3
551 		 * states. In such case it won't touch the variable
552 		 * of boot_option_idle_override.
553 		 */
554 		boot_option_idle_override = IDLE_NOMWAIT;
555 	} else
556 		return -1;
557 
558 	return 0;
559 }
560 early_param("idle", idle_setup);
561 
562 unsigned long arch_align_stack(unsigned long sp)
563 {
564 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
565 		sp -= get_random_int() % 8192;
566 	return sp & ~0xf;
567 }
568 
569 unsigned long arch_randomize_brk(struct mm_struct *mm)
570 {
571 	return randomize_page(mm->brk, 0x02000000);
572 }
573 
574 /*
575  * Called from fs/proc with a reference on @p to find the function
576  * which called into schedule(). This needs to be done carefully
577  * because the task might wake up and we might look at a stack
578  * changing under us.
579  */
580 unsigned long get_wchan(struct task_struct *p)
581 {
582 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
583 	int count = 0;
584 
585 	if (!p || p == current || p->state == TASK_RUNNING)
586 		return 0;
587 
588 	if (!try_get_task_stack(p))
589 		return 0;
590 
591 	start = (unsigned long)task_stack_page(p);
592 	if (!start)
593 		goto out;
594 
595 	/*
596 	 * Layout of the stack page:
597 	 *
598 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
599 	 * PADDING
600 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
601 	 * stack
602 	 * ----------- bottom = start
603 	 *
604 	 * The tasks stack pointer points at the location where the
605 	 * framepointer is stored. The data on the stack is:
606 	 * ... IP FP ... IP FP
607 	 *
608 	 * We need to read FP and IP, so we need to adjust the upper
609 	 * bound by another unsigned long.
610 	 */
611 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
612 	top -= 2 * sizeof(unsigned long);
613 	bottom = start;
614 
615 	sp = READ_ONCE(p->thread.sp);
616 	if (sp < bottom || sp > top)
617 		goto out;
618 
619 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
620 	do {
621 		if (fp < bottom || fp > top)
622 			goto out;
623 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
624 		if (!in_sched_functions(ip)) {
625 			ret = ip;
626 			goto out;
627 		}
628 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
629 	} while (count++ < 16 && p->state != TASK_RUNNING);
630 
631 out:
632 	put_task_stack(p);
633 	return ret;
634 }
635 
636 long do_arch_prctl_common(struct task_struct *task, int option,
637 			  unsigned long cpuid_enabled)
638 {
639 	switch (option) {
640 	case ARCH_GET_CPUID:
641 		return get_cpuid_mode();
642 	case ARCH_SET_CPUID:
643 		return set_cpuid_mode(task, cpuid_enabled);
644 	}
645 
646 	return -EINVAL;
647 }
648