xref: /openbmc/linux/arch/x86/kernel/process.c (revision 9d749629)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 
32 /*
33  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34  * no more per-task TSS's. The TSS size is kept cacheline-aligned
35  * so they are allowed to end up in the .data..cacheline_aligned
36  * section. Since TSS's are completely CPU-local, we want them
37  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38  */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40 
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44 
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 	atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50 
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 	atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57 
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60 
61 /*
62  * this gets called so that we can store lazy state into memory and copy the
63  * current task into the new thread.
64  */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 	int ret;
68 
69 	*dst = *src;
70 	if (fpu_allocated(&src->thread.fpu)) {
71 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 		ret = fpu_alloc(&dst->thread.fpu);
73 		if (ret)
74 			return ret;
75 		fpu_copy(dst, src);
76 	}
77 	return 0;
78 }
79 
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 	fpu_free(&tsk->thread.fpu);
83 }
84 
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 	free_thread_xstate(tsk);
88 }
89 
90 void arch_task_cache_init(void)
91 {
92         task_xstate_cachep =
93         	kmem_cache_create("task_xstate", xstate_size,
94 				  __alignof__(union thread_xstate),
95 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
96 }
97 
98 /*
99  * Free current thread data structures etc..
100  */
101 void exit_thread(void)
102 {
103 	struct task_struct *me = current;
104 	struct thread_struct *t = &me->thread;
105 	unsigned long *bp = t->io_bitmap_ptr;
106 
107 	if (bp) {
108 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109 
110 		t->io_bitmap_ptr = NULL;
111 		clear_thread_flag(TIF_IO_BITMAP);
112 		/*
113 		 * Careful, clear this in the TSS too:
114 		 */
115 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 		t->io_bitmap_max = 0;
117 		put_cpu();
118 		kfree(bp);
119 	}
120 
121 	drop_fpu(me);
122 }
123 
124 void show_regs_common(void)
125 {
126 	const char *vendor, *product, *board;
127 
128 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 	if (!vendor)
130 		vendor = "";
131 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
132 	if (!product)
133 		product = "";
134 
135 	/* Board Name is optional */
136 	board = dmi_get_system_info(DMI_BOARD_NAME);
137 
138 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
139 	       current->pid, current->comm, print_tainted(),
140 	       init_utsname()->release,
141 	       (int)strcspn(init_utsname()->version, " "),
142 	       init_utsname()->version,
143 	       vendor, product,
144 	       board ? "/" : "",
145 	       board ? board : "");
146 }
147 
148 void flush_thread(void)
149 {
150 	struct task_struct *tsk = current;
151 
152 	flush_ptrace_hw_breakpoint(tsk);
153 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 	drop_init_fpu(tsk);
155 	/*
156 	 * Free the FPU state for non xsave platforms. They get reallocated
157 	 * lazily at the first use.
158 	 */
159 	if (!use_eager_fpu())
160 		free_thread_xstate(tsk);
161 }
162 
163 static void hard_disable_TSC(void)
164 {
165 	write_cr4(read_cr4() | X86_CR4_TSD);
166 }
167 
168 void disable_TSC(void)
169 {
170 	preempt_disable();
171 	if (!test_and_set_thread_flag(TIF_NOTSC))
172 		/*
173 		 * Must flip the CPU state synchronously with
174 		 * TIF_NOTSC in the current running context.
175 		 */
176 		hard_disable_TSC();
177 	preempt_enable();
178 }
179 
180 static void hard_enable_TSC(void)
181 {
182 	write_cr4(read_cr4() & ~X86_CR4_TSD);
183 }
184 
185 static void enable_TSC(void)
186 {
187 	preempt_disable();
188 	if (test_and_clear_thread_flag(TIF_NOTSC))
189 		/*
190 		 * Must flip the CPU state synchronously with
191 		 * TIF_NOTSC in the current running context.
192 		 */
193 		hard_enable_TSC();
194 	preempt_enable();
195 }
196 
197 int get_tsc_mode(unsigned long adr)
198 {
199 	unsigned int val;
200 
201 	if (test_thread_flag(TIF_NOTSC))
202 		val = PR_TSC_SIGSEGV;
203 	else
204 		val = PR_TSC_ENABLE;
205 
206 	return put_user(val, (unsigned int __user *)adr);
207 }
208 
209 int set_tsc_mode(unsigned int val)
210 {
211 	if (val == PR_TSC_SIGSEGV)
212 		disable_TSC();
213 	else if (val == PR_TSC_ENABLE)
214 		enable_TSC();
215 	else
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 		      struct tss_struct *tss)
223 {
224 	struct thread_struct *prev, *next;
225 
226 	prev = &prev_p->thread;
227 	next = &next_p->thread;
228 
229 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 		unsigned long debugctl = get_debugctlmsr();
232 
233 		debugctl &= ~DEBUGCTLMSR_BTF;
234 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 			debugctl |= DEBUGCTLMSR_BTF;
236 
237 		update_debugctlmsr(debugctl);
238 	}
239 
240 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 		/* prev and next are different */
243 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 			hard_disable_TSC();
245 		else
246 			hard_enable_TSC();
247 	}
248 
249 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
250 		/*
251 		 * Copy the relevant range of the IO bitmap.
252 		 * Normally this is 128 bytes or less:
253 		 */
254 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 		       max(prev->io_bitmap_max, next->io_bitmap_max));
256 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
257 		/*
258 		 * Clear any possible leftover bits:
259 		 */
260 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
261 	}
262 	propagate_user_return_notify(prev_p, next_p);
263 }
264 
265 /*
266  * Idle related variables and functions
267  */
268 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
269 EXPORT_SYMBOL(boot_option_idle_override);
270 
271 static void (*x86_idle)(void);
272 
273 #ifndef CONFIG_SMP
274 static inline void play_dead(void)
275 {
276 	BUG();
277 }
278 #endif
279 
280 #ifdef CONFIG_X86_64
281 void enter_idle(void)
282 {
283 	this_cpu_write(is_idle, 1);
284 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
285 }
286 
287 static void __exit_idle(void)
288 {
289 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
290 		return;
291 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
292 }
293 
294 /* Called from interrupts to signify idle end */
295 void exit_idle(void)
296 {
297 	/* idle loop has pid 0 */
298 	if (current->pid)
299 		return;
300 	__exit_idle();
301 }
302 #endif
303 
304 /*
305  * The idle thread. There's no useful work to be
306  * done, so just try to conserve power and have a
307  * low exit latency (ie sit in a loop waiting for
308  * somebody to say that they'd like to reschedule)
309  */
310 void cpu_idle(void)
311 {
312 	/*
313 	 * If we're the non-boot CPU, nothing set the stack canary up
314 	 * for us.  CPU0 already has it initialized but no harm in
315 	 * doing it again.  This is a good place for updating it, as
316 	 * we wont ever return from this function (so the invalid
317 	 * canaries already on the stack wont ever trigger).
318 	 */
319 	boot_init_stack_canary();
320 	current_thread_info()->status |= TS_POLLING;
321 
322 	while (1) {
323 		tick_nohz_idle_enter();
324 
325 		while (!need_resched()) {
326 			rmb();
327 
328 			if (cpu_is_offline(smp_processor_id()))
329 				play_dead();
330 
331 			/*
332 			 * Idle routines should keep interrupts disabled
333 			 * from here on, until they go to idle.
334 			 * Otherwise, idle callbacks can misfire.
335 			 */
336 			local_touch_nmi();
337 			local_irq_disable();
338 
339 			enter_idle();
340 
341 			/* Don't trace irqs off for idle */
342 			stop_critical_timings();
343 
344 			/* enter_idle() needs rcu for notifiers */
345 			rcu_idle_enter();
346 
347 			if (cpuidle_idle_call())
348 				x86_idle();
349 
350 			rcu_idle_exit();
351 			start_critical_timings();
352 
353 			/* In many cases the interrupt that ended idle
354 			   has already called exit_idle. But some idle
355 			   loops can be woken up without interrupt. */
356 			__exit_idle();
357 		}
358 
359 		tick_nohz_idle_exit();
360 		preempt_enable_no_resched();
361 		schedule();
362 		preempt_disable();
363 	}
364 }
365 
366 /*
367  * We use this if we don't have any better
368  * idle routine..
369  */
370 void default_idle(void)
371 {
372 	trace_cpu_idle_rcuidle(1, smp_processor_id());
373 	current_thread_info()->status &= ~TS_POLLING;
374 	/*
375 	 * TS_POLLING-cleared state must be visible before we
376 	 * test NEED_RESCHED:
377 	 */
378 	smp_mb();
379 
380 	if (!need_resched())
381 		safe_halt();	/* enables interrupts racelessly */
382 	else
383 		local_irq_enable();
384 	current_thread_info()->status |= TS_POLLING;
385 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
386 }
387 #ifdef CONFIG_APM_MODULE
388 EXPORT_SYMBOL(default_idle);
389 #endif
390 
391 #ifdef CONFIG_XEN
392 bool xen_set_default_idle(void)
393 {
394 	bool ret = !!x86_idle;
395 
396 	x86_idle = default_idle;
397 
398 	return ret;
399 }
400 #endif
401 void stop_this_cpu(void *dummy)
402 {
403 	local_irq_disable();
404 	/*
405 	 * Remove this CPU:
406 	 */
407 	set_cpu_online(smp_processor_id(), false);
408 	disable_local_APIC();
409 
410 	for (;;)
411 		halt();
412 }
413 
414 /*
415  * On SMP it's slightly faster (but much more power-consuming!)
416  * to poll the ->work.need_resched flag instead of waiting for the
417  * cross-CPU IPI to arrive. Use this option with caution.
418  */
419 static void poll_idle(void)
420 {
421 	trace_cpu_idle_rcuidle(0, smp_processor_id());
422 	local_irq_enable();
423 	while (!need_resched())
424 		cpu_relax();
425 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
426 }
427 
428 bool amd_e400_c1e_detected;
429 EXPORT_SYMBOL(amd_e400_c1e_detected);
430 
431 static cpumask_var_t amd_e400_c1e_mask;
432 
433 void amd_e400_remove_cpu(int cpu)
434 {
435 	if (amd_e400_c1e_mask != NULL)
436 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
437 }
438 
439 /*
440  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
441  * pending message MSR. If we detect C1E, then we handle it the same
442  * way as C3 power states (local apic timer and TSC stop)
443  */
444 static void amd_e400_idle(void)
445 {
446 	if (need_resched())
447 		return;
448 
449 	if (!amd_e400_c1e_detected) {
450 		u32 lo, hi;
451 
452 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
453 
454 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
455 			amd_e400_c1e_detected = true;
456 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
457 				mark_tsc_unstable("TSC halt in AMD C1E");
458 			pr_info("System has AMD C1E enabled\n");
459 		}
460 	}
461 
462 	if (amd_e400_c1e_detected) {
463 		int cpu = smp_processor_id();
464 
465 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
466 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
467 			/*
468 			 * Force broadcast so ACPI can not interfere.
469 			 */
470 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
471 					   &cpu);
472 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
473 		}
474 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
475 
476 		default_idle();
477 
478 		/*
479 		 * The switch back from broadcast mode needs to be
480 		 * called with interrupts disabled.
481 		 */
482 		 local_irq_disable();
483 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
484 		 local_irq_enable();
485 	} else
486 		default_idle();
487 }
488 
489 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
490 {
491 #ifdef CONFIG_SMP
492 	if (x86_idle == poll_idle && smp_num_siblings > 1)
493 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
494 #endif
495 	if (x86_idle)
496 		return;
497 
498 	if (cpu_has_amd_erratum(amd_erratum_400)) {
499 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
500 		pr_info("using AMD E400 aware idle routine\n");
501 		x86_idle = amd_e400_idle;
502 	} else
503 		x86_idle = default_idle;
504 }
505 
506 void __init init_amd_e400_c1e_mask(void)
507 {
508 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
509 	if (x86_idle == amd_e400_idle)
510 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
511 }
512 
513 static int __init idle_setup(char *str)
514 {
515 	if (!str)
516 		return -EINVAL;
517 
518 	if (!strcmp(str, "poll")) {
519 		pr_info("using polling idle threads\n");
520 		x86_idle = poll_idle;
521 		boot_option_idle_override = IDLE_POLL;
522 	} else if (!strcmp(str, "halt")) {
523 		/*
524 		 * When the boot option of idle=halt is added, halt is
525 		 * forced to be used for CPU idle. In such case CPU C2/C3
526 		 * won't be used again.
527 		 * To continue to load the CPU idle driver, don't touch
528 		 * the boot_option_idle_override.
529 		 */
530 		x86_idle = default_idle;
531 		boot_option_idle_override = IDLE_HALT;
532 	} else if (!strcmp(str, "nomwait")) {
533 		/*
534 		 * If the boot option of "idle=nomwait" is added,
535 		 * it means that mwait will be disabled for CPU C2/C3
536 		 * states. In such case it won't touch the variable
537 		 * of boot_option_idle_override.
538 		 */
539 		boot_option_idle_override = IDLE_NOMWAIT;
540 	} else
541 		return -1;
542 
543 	return 0;
544 }
545 early_param("idle", idle_setup);
546 
547 unsigned long arch_align_stack(unsigned long sp)
548 {
549 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
550 		sp -= get_random_int() % 8192;
551 	return sp & ~0xf;
552 }
553 
554 unsigned long arch_randomize_brk(struct mm_struct *mm)
555 {
556 	unsigned long range_end = mm->brk + 0x02000000;
557 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
558 }
559 
560