1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/errno.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/smp.h> 7 #include <linux/prctl.h> 8 #include <linux/slab.h> 9 #include <linux/sched.h> 10 #include <linux/module.h> 11 #include <linux/pm.h> 12 #include <linux/clockchips.h> 13 #include <linux/random.h> 14 #include <linux/user-return-notifier.h> 15 #include <linux/dmi.h> 16 #include <linux/utsname.h> 17 #include <linux/stackprotector.h> 18 #include <linux/tick.h> 19 #include <linux/cpuidle.h> 20 #include <trace/events/power.h> 21 #include <linux/hw_breakpoint.h> 22 #include <asm/cpu.h> 23 #include <asm/apic.h> 24 #include <asm/syscalls.h> 25 #include <asm/idle.h> 26 #include <asm/uaccess.h> 27 #include <asm/i387.h> 28 #include <asm/fpu-internal.h> 29 #include <asm/debugreg.h> 30 #include <asm/nmi.h> 31 32 /* 33 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 34 * no more per-task TSS's. The TSS size is kept cacheline-aligned 35 * so they are allowed to end up in the .data..cacheline_aligned 36 * section. Since TSS's are completely CPU-local, we want them 37 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 38 */ 39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS; 40 41 #ifdef CONFIG_X86_64 42 static DEFINE_PER_CPU(unsigned char, is_idle); 43 static ATOMIC_NOTIFIER_HEAD(idle_notifier); 44 45 void idle_notifier_register(struct notifier_block *n) 46 { 47 atomic_notifier_chain_register(&idle_notifier, n); 48 } 49 EXPORT_SYMBOL_GPL(idle_notifier_register); 50 51 void idle_notifier_unregister(struct notifier_block *n) 52 { 53 atomic_notifier_chain_unregister(&idle_notifier, n); 54 } 55 EXPORT_SYMBOL_GPL(idle_notifier_unregister); 56 #endif 57 58 struct kmem_cache *task_xstate_cachep; 59 EXPORT_SYMBOL_GPL(task_xstate_cachep); 60 61 /* 62 * this gets called so that we can store lazy state into memory and copy the 63 * current task into the new thread. 64 */ 65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 66 { 67 int ret; 68 69 *dst = *src; 70 if (fpu_allocated(&src->thread.fpu)) { 71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 72 ret = fpu_alloc(&dst->thread.fpu); 73 if (ret) 74 return ret; 75 fpu_copy(dst, src); 76 } 77 return 0; 78 } 79 80 void free_thread_xstate(struct task_struct *tsk) 81 { 82 fpu_free(&tsk->thread.fpu); 83 } 84 85 void arch_release_task_struct(struct task_struct *tsk) 86 { 87 free_thread_xstate(tsk); 88 } 89 90 void arch_task_cache_init(void) 91 { 92 task_xstate_cachep = 93 kmem_cache_create("task_xstate", xstate_size, 94 __alignof__(union thread_xstate), 95 SLAB_PANIC | SLAB_NOTRACK, NULL); 96 } 97 98 /* 99 * Free current thread data structures etc.. 100 */ 101 void exit_thread(void) 102 { 103 struct task_struct *me = current; 104 struct thread_struct *t = &me->thread; 105 unsigned long *bp = t->io_bitmap_ptr; 106 107 if (bp) { 108 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 109 110 t->io_bitmap_ptr = NULL; 111 clear_thread_flag(TIF_IO_BITMAP); 112 /* 113 * Careful, clear this in the TSS too: 114 */ 115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 116 t->io_bitmap_max = 0; 117 put_cpu(); 118 kfree(bp); 119 } 120 121 drop_fpu(me); 122 } 123 124 void show_regs_common(void) 125 { 126 const char *vendor, *product, *board; 127 128 vendor = dmi_get_system_info(DMI_SYS_VENDOR); 129 if (!vendor) 130 vendor = ""; 131 product = dmi_get_system_info(DMI_PRODUCT_NAME); 132 if (!product) 133 product = ""; 134 135 /* Board Name is optional */ 136 board = dmi_get_system_info(DMI_BOARD_NAME); 137 138 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n", 139 current->pid, current->comm, print_tainted(), 140 init_utsname()->release, 141 (int)strcspn(init_utsname()->version, " "), 142 init_utsname()->version, 143 vendor, product, 144 board ? "/" : "", 145 board ? board : ""); 146 } 147 148 void flush_thread(void) 149 { 150 struct task_struct *tsk = current; 151 152 flush_ptrace_hw_breakpoint(tsk); 153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 154 drop_init_fpu(tsk); 155 /* 156 * Free the FPU state for non xsave platforms. They get reallocated 157 * lazily at the first use. 158 */ 159 if (!use_eager_fpu()) 160 free_thread_xstate(tsk); 161 } 162 163 static void hard_disable_TSC(void) 164 { 165 write_cr4(read_cr4() | X86_CR4_TSD); 166 } 167 168 void disable_TSC(void) 169 { 170 preempt_disable(); 171 if (!test_and_set_thread_flag(TIF_NOTSC)) 172 /* 173 * Must flip the CPU state synchronously with 174 * TIF_NOTSC in the current running context. 175 */ 176 hard_disable_TSC(); 177 preempt_enable(); 178 } 179 180 static void hard_enable_TSC(void) 181 { 182 write_cr4(read_cr4() & ~X86_CR4_TSD); 183 } 184 185 static void enable_TSC(void) 186 { 187 preempt_disable(); 188 if (test_and_clear_thread_flag(TIF_NOTSC)) 189 /* 190 * Must flip the CPU state synchronously with 191 * TIF_NOTSC in the current running context. 192 */ 193 hard_enable_TSC(); 194 preempt_enable(); 195 } 196 197 int get_tsc_mode(unsigned long adr) 198 { 199 unsigned int val; 200 201 if (test_thread_flag(TIF_NOTSC)) 202 val = PR_TSC_SIGSEGV; 203 else 204 val = PR_TSC_ENABLE; 205 206 return put_user(val, (unsigned int __user *)adr); 207 } 208 209 int set_tsc_mode(unsigned int val) 210 { 211 if (val == PR_TSC_SIGSEGV) 212 disable_TSC(); 213 else if (val == PR_TSC_ENABLE) 214 enable_TSC(); 215 else 216 return -EINVAL; 217 218 return 0; 219 } 220 221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 222 struct tss_struct *tss) 223 { 224 struct thread_struct *prev, *next; 225 226 prev = &prev_p->thread; 227 next = &next_p->thread; 228 229 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 230 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 231 unsigned long debugctl = get_debugctlmsr(); 232 233 debugctl &= ~DEBUGCTLMSR_BTF; 234 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 235 debugctl |= DEBUGCTLMSR_BTF; 236 237 update_debugctlmsr(debugctl); 238 } 239 240 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 241 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 242 /* prev and next are different */ 243 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 244 hard_disable_TSC(); 245 else 246 hard_enable_TSC(); 247 } 248 249 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 250 /* 251 * Copy the relevant range of the IO bitmap. 252 * Normally this is 128 bytes or less: 253 */ 254 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 255 max(prev->io_bitmap_max, next->io_bitmap_max)); 256 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 257 /* 258 * Clear any possible leftover bits: 259 */ 260 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 261 } 262 propagate_user_return_notify(prev_p, next_p); 263 } 264 265 /* 266 * Idle related variables and functions 267 */ 268 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 269 EXPORT_SYMBOL(boot_option_idle_override); 270 271 static void (*x86_idle)(void); 272 273 #ifndef CONFIG_SMP 274 static inline void play_dead(void) 275 { 276 BUG(); 277 } 278 #endif 279 280 #ifdef CONFIG_X86_64 281 void enter_idle(void) 282 { 283 this_cpu_write(is_idle, 1); 284 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); 285 } 286 287 static void __exit_idle(void) 288 { 289 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) 290 return; 291 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); 292 } 293 294 /* Called from interrupts to signify idle end */ 295 void exit_idle(void) 296 { 297 /* idle loop has pid 0 */ 298 if (current->pid) 299 return; 300 __exit_idle(); 301 } 302 #endif 303 304 /* 305 * The idle thread. There's no useful work to be 306 * done, so just try to conserve power and have a 307 * low exit latency (ie sit in a loop waiting for 308 * somebody to say that they'd like to reschedule) 309 */ 310 void cpu_idle(void) 311 { 312 /* 313 * If we're the non-boot CPU, nothing set the stack canary up 314 * for us. CPU0 already has it initialized but no harm in 315 * doing it again. This is a good place for updating it, as 316 * we wont ever return from this function (so the invalid 317 * canaries already on the stack wont ever trigger). 318 */ 319 boot_init_stack_canary(); 320 current_thread_info()->status |= TS_POLLING; 321 322 while (1) { 323 tick_nohz_idle_enter(); 324 325 while (!need_resched()) { 326 rmb(); 327 328 if (cpu_is_offline(smp_processor_id())) 329 play_dead(); 330 331 /* 332 * Idle routines should keep interrupts disabled 333 * from here on, until they go to idle. 334 * Otherwise, idle callbacks can misfire. 335 */ 336 local_touch_nmi(); 337 local_irq_disable(); 338 339 enter_idle(); 340 341 /* Don't trace irqs off for idle */ 342 stop_critical_timings(); 343 344 /* enter_idle() needs rcu for notifiers */ 345 rcu_idle_enter(); 346 347 if (cpuidle_idle_call()) 348 x86_idle(); 349 350 rcu_idle_exit(); 351 start_critical_timings(); 352 353 /* In many cases the interrupt that ended idle 354 has already called exit_idle. But some idle 355 loops can be woken up without interrupt. */ 356 __exit_idle(); 357 } 358 359 tick_nohz_idle_exit(); 360 preempt_enable_no_resched(); 361 schedule(); 362 preempt_disable(); 363 } 364 } 365 366 /* 367 * We use this if we don't have any better 368 * idle routine.. 369 */ 370 void default_idle(void) 371 { 372 trace_cpu_idle_rcuidle(1, smp_processor_id()); 373 current_thread_info()->status &= ~TS_POLLING; 374 /* 375 * TS_POLLING-cleared state must be visible before we 376 * test NEED_RESCHED: 377 */ 378 smp_mb(); 379 380 if (!need_resched()) 381 safe_halt(); /* enables interrupts racelessly */ 382 else 383 local_irq_enable(); 384 current_thread_info()->status |= TS_POLLING; 385 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 386 } 387 #ifdef CONFIG_APM_MODULE 388 EXPORT_SYMBOL(default_idle); 389 #endif 390 391 #ifdef CONFIG_XEN 392 bool xen_set_default_idle(void) 393 { 394 bool ret = !!x86_idle; 395 396 x86_idle = default_idle; 397 398 return ret; 399 } 400 #endif 401 void stop_this_cpu(void *dummy) 402 { 403 local_irq_disable(); 404 /* 405 * Remove this CPU: 406 */ 407 set_cpu_online(smp_processor_id(), false); 408 disable_local_APIC(); 409 410 for (;;) 411 halt(); 412 } 413 414 /* 415 * On SMP it's slightly faster (but much more power-consuming!) 416 * to poll the ->work.need_resched flag instead of waiting for the 417 * cross-CPU IPI to arrive. Use this option with caution. 418 */ 419 static void poll_idle(void) 420 { 421 trace_cpu_idle_rcuidle(0, smp_processor_id()); 422 local_irq_enable(); 423 while (!need_resched()) 424 cpu_relax(); 425 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 426 } 427 428 bool amd_e400_c1e_detected; 429 EXPORT_SYMBOL(amd_e400_c1e_detected); 430 431 static cpumask_var_t amd_e400_c1e_mask; 432 433 void amd_e400_remove_cpu(int cpu) 434 { 435 if (amd_e400_c1e_mask != NULL) 436 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 437 } 438 439 /* 440 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 441 * pending message MSR. If we detect C1E, then we handle it the same 442 * way as C3 power states (local apic timer and TSC stop) 443 */ 444 static void amd_e400_idle(void) 445 { 446 if (need_resched()) 447 return; 448 449 if (!amd_e400_c1e_detected) { 450 u32 lo, hi; 451 452 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 453 454 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 455 amd_e400_c1e_detected = true; 456 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 457 mark_tsc_unstable("TSC halt in AMD C1E"); 458 pr_info("System has AMD C1E enabled\n"); 459 } 460 } 461 462 if (amd_e400_c1e_detected) { 463 int cpu = smp_processor_id(); 464 465 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 466 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 467 /* 468 * Force broadcast so ACPI can not interfere. 469 */ 470 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 471 &cpu); 472 pr_info("Switch to broadcast mode on CPU%d\n", cpu); 473 } 474 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 475 476 default_idle(); 477 478 /* 479 * The switch back from broadcast mode needs to be 480 * called with interrupts disabled. 481 */ 482 local_irq_disable(); 483 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 484 local_irq_enable(); 485 } else 486 default_idle(); 487 } 488 489 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 490 { 491 #ifdef CONFIG_SMP 492 if (x86_idle == poll_idle && smp_num_siblings > 1) 493 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 494 #endif 495 if (x86_idle) 496 return; 497 498 if (cpu_has_amd_erratum(amd_erratum_400)) { 499 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 500 pr_info("using AMD E400 aware idle routine\n"); 501 x86_idle = amd_e400_idle; 502 } else 503 x86_idle = default_idle; 504 } 505 506 void __init init_amd_e400_c1e_mask(void) 507 { 508 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 509 if (x86_idle == amd_e400_idle) 510 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 511 } 512 513 static int __init idle_setup(char *str) 514 { 515 if (!str) 516 return -EINVAL; 517 518 if (!strcmp(str, "poll")) { 519 pr_info("using polling idle threads\n"); 520 x86_idle = poll_idle; 521 boot_option_idle_override = IDLE_POLL; 522 } else if (!strcmp(str, "halt")) { 523 /* 524 * When the boot option of idle=halt is added, halt is 525 * forced to be used for CPU idle. In such case CPU C2/C3 526 * won't be used again. 527 * To continue to load the CPU idle driver, don't touch 528 * the boot_option_idle_override. 529 */ 530 x86_idle = default_idle; 531 boot_option_idle_override = IDLE_HALT; 532 } else if (!strcmp(str, "nomwait")) { 533 /* 534 * If the boot option of "idle=nomwait" is added, 535 * it means that mwait will be disabled for CPU C2/C3 536 * states. In such case it won't touch the variable 537 * of boot_option_idle_override. 538 */ 539 boot_option_idle_override = IDLE_NOMWAIT; 540 } else 541 return -1; 542 543 return 0; 544 } 545 early_param("idle", idle_setup); 546 547 unsigned long arch_align_stack(unsigned long sp) 548 { 549 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 550 sp -= get_random_int() % 8192; 551 return sp & ~0xf; 552 } 553 554 unsigned long arch_randomize_brk(struct mm_struct *mm) 555 { 556 unsigned long range_end = mm->brk + 0x02000000; 557 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 558 } 559 560