1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/module.h> 8 #include <linux/pm.h> 9 #include <linux/clockchips.h> 10 #include <asm/system.h> 11 12 unsigned long idle_halt; 13 EXPORT_SYMBOL(idle_halt); 14 unsigned long idle_nomwait; 15 EXPORT_SYMBOL(idle_nomwait); 16 17 struct kmem_cache *task_xstate_cachep; 18 19 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 20 { 21 *dst = *src; 22 if (src->thread.xstate) { 23 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, 24 GFP_KERNEL); 25 if (!dst->thread.xstate) 26 return -ENOMEM; 27 WARN_ON((unsigned long)dst->thread.xstate & 15); 28 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); 29 } 30 return 0; 31 } 32 33 void free_thread_xstate(struct task_struct *tsk) 34 { 35 if (tsk->thread.xstate) { 36 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); 37 tsk->thread.xstate = NULL; 38 } 39 } 40 41 void free_thread_info(struct thread_info *ti) 42 { 43 free_thread_xstate(ti->task); 44 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 45 } 46 47 void arch_task_cache_init(void) 48 { 49 task_xstate_cachep = 50 kmem_cache_create("task_xstate", xstate_size, 51 __alignof__(union thread_xstate), 52 SLAB_PANIC, NULL); 53 } 54 55 /* 56 * Idle related variables and functions 57 */ 58 unsigned long boot_option_idle_override = 0; 59 EXPORT_SYMBOL(boot_option_idle_override); 60 61 /* 62 * Powermanagement idle function, if any.. 63 */ 64 void (*pm_idle)(void); 65 EXPORT_SYMBOL(pm_idle); 66 67 #ifdef CONFIG_X86_32 68 /* 69 * This halt magic was a workaround for ancient floppy DMA 70 * wreckage. It should be safe to remove. 71 */ 72 static int hlt_counter; 73 void disable_hlt(void) 74 { 75 hlt_counter++; 76 } 77 EXPORT_SYMBOL(disable_hlt); 78 79 void enable_hlt(void) 80 { 81 hlt_counter--; 82 } 83 EXPORT_SYMBOL(enable_hlt); 84 85 static inline int hlt_use_halt(void) 86 { 87 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 88 } 89 #else 90 static inline int hlt_use_halt(void) 91 { 92 return 1; 93 } 94 #endif 95 96 /* 97 * We use this if we don't have any better 98 * idle routine.. 99 */ 100 void default_idle(void) 101 { 102 if (hlt_use_halt()) { 103 current_thread_info()->status &= ~TS_POLLING; 104 /* 105 * TS_POLLING-cleared state must be visible before we 106 * test NEED_RESCHED: 107 */ 108 smp_mb(); 109 110 if (!need_resched()) 111 safe_halt(); /* enables interrupts racelessly */ 112 else 113 local_irq_enable(); 114 current_thread_info()->status |= TS_POLLING; 115 } else { 116 local_irq_enable(); 117 /* loop is done by the caller */ 118 cpu_relax(); 119 } 120 } 121 #ifdef CONFIG_APM_MODULE 122 EXPORT_SYMBOL(default_idle); 123 #endif 124 125 static void do_nothing(void *unused) 126 { 127 } 128 129 /* 130 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 131 * pm_idle and update to new pm_idle value. Required while changing pm_idle 132 * handler on SMP systems. 133 * 134 * Caller must have changed pm_idle to the new value before the call. Old 135 * pm_idle value will not be used by any CPU after the return of this function. 136 */ 137 void cpu_idle_wait(void) 138 { 139 smp_mb(); 140 /* kick all the CPUs so that they exit out of pm_idle */ 141 smp_call_function(do_nothing, NULL, 1); 142 } 143 EXPORT_SYMBOL_GPL(cpu_idle_wait); 144 145 /* 146 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 147 * which can obviate IPI to trigger checking of need_resched. 148 * We execute MONITOR against need_resched and enter optimized wait state 149 * through MWAIT. Whenever someone changes need_resched, we would be woken 150 * up from MWAIT (without an IPI). 151 * 152 * New with Core Duo processors, MWAIT can take some hints based on CPU 153 * capability. 154 */ 155 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 156 { 157 if (!need_resched()) { 158 __monitor((void *)¤t_thread_info()->flags, 0, 0); 159 smp_mb(); 160 if (!need_resched()) 161 __mwait(ax, cx); 162 } 163 } 164 165 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 166 static void mwait_idle(void) 167 { 168 if (!need_resched()) { 169 __monitor((void *)¤t_thread_info()->flags, 0, 0); 170 smp_mb(); 171 if (!need_resched()) 172 __sti_mwait(0, 0); 173 else 174 local_irq_enable(); 175 } else 176 local_irq_enable(); 177 } 178 179 /* 180 * On SMP it's slightly faster (but much more power-consuming!) 181 * to poll the ->work.need_resched flag instead of waiting for the 182 * cross-CPU IPI to arrive. Use this option with caution. 183 */ 184 static void poll_idle(void) 185 { 186 local_irq_enable(); 187 while (!need_resched()) 188 cpu_relax(); 189 } 190 191 /* 192 * mwait selection logic: 193 * 194 * It depends on the CPU. For AMD CPUs that support MWAIT this is 195 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 196 * then depend on a clock divisor and current Pstate of the core. If 197 * all cores of a processor are in halt state (C1) the processor can 198 * enter the C1E (C1 enhanced) state. If mwait is used this will never 199 * happen. 200 * 201 * idle=mwait overrides this decision and forces the usage of mwait. 202 */ 203 static int __cpuinitdata force_mwait; 204 205 #define MWAIT_INFO 0x05 206 #define MWAIT_ECX_EXTENDED_INFO 0x01 207 #define MWAIT_EDX_C1 0xf0 208 209 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 210 { 211 u32 eax, ebx, ecx, edx; 212 213 if (force_mwait) 214 return 1; 215 216 if (c->cpuid_level < MWAIT_INFO) 217 return 0; 218 219 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 220 /* Check, whether EDX has extended info about MWAIT */ 221 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 222 return 1; 223 224 /* 225 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 226 * C1 supports MWAIT 227 */ 228 return (edx & MWAIT_EDX_C1); 229 } 230 231 /* 232 * Check for AMD CPUs, which have potentially C1E support 233 */ 234 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) 235 { 236 if (c->x86_vendor != X86_VENDOR_AMD) 237 return 0; 238 239 if (c->x86 < 0x0F) 240 return 0; 241 242 /* Family 0x0f models < rev F do not have C1E */ 243 if (c->x86 == 0x0f && c->x86_model < 0x40) 244 return 0; 245 246 return 1; 247 } 248 249 static cpumask_t c1e_mask = CPU_MASK_NONE; 250 static int c1e_detected; 251 252 void c1e_remove_cpu(int cpu) 253 { 254 cpu_clear(cpu, c1e_mask); 255 } 256 257 /* 258 * C1E aware idle routine. We check for C1E active in the interrupt 259 * pending message MSR. If we detect C1E, then we handle it the same 260 * way as C3 power states (local apic timer and TSC stop) 261 */ 262 static void c1e_idle(void) 263 { 264 if (need_resched()) 265 return; 266 267 if (!c1e_detected) { 268 u32 lo, hi; 269 270 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 271 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 272 c1e_detected = 1; 273 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 274 mark_tsc_unstable("TSC halt in AMD C1E"); 275 printk(KERN_INFO "System has AMD C1E enabled\n"); 276 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); 277 } 278 } 279 280 if (c1e_detected) { 281 int cpu = smp_processor_id(); 282 283 if (!cpu_isset(cpu, c1e_mask)) { 284 cpu_set(cpu, c1e_mask); 285 /* 286 * Force broadcast so ACPI can not interfere. Needs 287 * to run with interrupts enabled as it uses 288 * smp_function_call. 289 */ 290 local_irq_enable(); 291 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 292 &cpu); 293 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 294 cpu); 295 local_irq_disable(); 296 } 297 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 298 299 default_idle(); 300 301 /* 302 * The switch back from broadcast mode needs to be 303 * called with interrupts disabled. 304 */ 305 local_irq_disable(); 306 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 307 local_irq_enable(); 308 } else 309 default_idle(); 310 } 311 312 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 313 { 314 #ifdef CONFIG_X86_SMP 315 if (pm_idle == poll_idle && smp_num_siblings > 1) { 316 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 317 " performance may degrade.\n"); 318 } 319 #endif 320 if (pm_idle) 321 return; 322 323 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 324 /* 325 * One CPU supports mwait => All CPUs supports mwait 326 */ 327 printk(KERN_INFO "using mwait in idle threads.\n"); 328 pm_idle = mwait_idle; 329 } else if (check_c1e_idle(c)) { 330 printk(KERN_INFO "using C1E aware idle routine\n"); 331 pm_idle = c1e_idle; 332 } else 333 pm_idle = default_idle; 334 } 335 336 static int __init idle_setup(char *str) 337 { 338 if (!str) 339 return -EINVAL; 340 341 if (!strcmp(str, "poll")) { 342 printk("using polling idle threads.\n"); 343 pm_idle = poll_idle; 344 } else if (!strcmp(str, "mwait")) 345 force_mwait = 1; 346 else if (!strcmp(str, "halt")) { 347 /* 348 * When the boot option of idle=halt is added, halt is 349 * forced to be used for CPU idle. In such case CPU C2/C3 350 * won't be used again. 351 * To continue to load the CPU idle driver, don't touch 352 * the boot_option_idle_override. 353 */ 354 pm_idle = default_idle; 355 idle_halt = 1; 356 return 0; 357 } else if (!strcmp(str, "nomwait")) { 358 /* 359 * If the boot option of "idle=nomwait" is added, 360 * it means that mwait will be disabled for CPU C2/C3 361 * states. In such case it won't touch the variable 362 * of boot_option_idle_override. 363 */ 364 idle_nomwait = 1; 365 return 0; 366 } else 367 return -1; 368 369 boot_option_idle_override = 1; 370 return 0; 371 } 372 early_param("idle", idle_setup); 373 374