1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <trace/events/power.h> 26 #include <linux/hw_breakpoint.h> 27 #include <asm/cpu.h> 28 #include <asm/apic.h> 29 #include <asm/syscalls.h> 30 #include <linux/uaccess.h> 31 #include <asm/mwait.h> 32 #include <asm/fpu/internal.h> 33 #include <asm/debugreg.h> 34 #include <asm/nmi.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mce.h> 37 #include <asm/vm86.h> 38 #include <asm/switch_to.h> 39 #include <asm/desc.h> 40 #include <asm/prctl.h> 41 #include <asm/spec-ctrl.h> 42 43 /* 44 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 45 * no more per-task TSS's. The TSS size is kept cacheline-aligned 46 * so they are allowed to end up in the .data..cacheline_aligned 47 * section. Since TSS's are completely CPU-local, we want them 48 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 49 */ 50 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 51 .x86_tss = { 52 /* 53 * .sp0 is only used when entering ring 0 from a lower 54 * privilege level. Since the init task never runs anything 55 * but ring 0 code, there is no need for a valid value here. 56 * Poison it. 57 */ 58 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 59 60 /* 61 * .sp1 is cpu_current_top_of_stack. The init task never 62 * runs user code, but cpu_current_top_of_stack should still 63 * be well defined before the first context switch. 64 */ 65 .sp1 = TOP_OF_INIT_STACK, 66 67 #ifdef CONFIG_X86_32 68 .ss0 = __KERNEL_DS, 69 .ss1 = __KERNEL_CS, 70 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 71 #endif 72 }, 73 #ifdef CONFIG_X86_32 74 /* 75 * Note that the .io_bitmap member must be extra-big. This is because 76 * the CPU will access an additional byte beyond the end of the IO 77 * permission bitmap. The extra byte must be all 1 bits, and must 78 * be within the limit. 79 */ 80 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 81 #endif 82 }; 83 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 84 85 DEFINE_PER_CPU(bool, __tss_limit_invalid); 86 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 87 88 /* 89 * this gets called so that we can store lazy state into memory and copy the 90 * current task into the new thread. 91 */ 92 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 93 { 94 memcpy(dst, src, arch_task_struct_size); 95 #ifdef CONFIG_VM86 96 dst->thread.vm86 = NULL; 97 #endif 98 99 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 100 } 101 102 /* 103 * Free current thread data structures etc.. 104 */ 105 void exit_thread(struct task_struct *tsk) 106 { 107 struct thread_struct *t = &tsk->thread; 108 unsigned long *bp = t->io_bitmap_ptr; 109 struct fpu *fpu = &t->fpu; 110 111 if (bp) { 112 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); 113 114 t->io_bitmap_ptr = NULL; 115 clear_thread_flag(TIF_IO_BITMAP); 116 /* 117 * Careful, clear this in the TSS too: 118 */ 119 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 120 t->io_bitmap_max = 0; 121 put_cpu(); 122 kfree(bp); 123 } 124 125 free_vm86(t); 126 127 fpu__drop(fpu); 128 } 129 130 void flush_thread(void) 131 { 132 struct task_struct *tsk = current; 133 134 flush_ptrace_hw_breakpoint(tsk); 135 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 136 137 fpu__clear(&tsk->thread.fpu); 138 } 139 140 void disable_TSC(void) 141 { 142 preempt_disable(); 143 if (!test_and_set_thread_flag(TIF_NOTSC)) 144 /* 145 * Must flip the CPU state synchronously with 146 * TIF_NOTSC in the current running context. 147 */ 148 cr4_set_bits(X86_CR4_TSD); 149 preempt_enable(); 150 } 151 152 static void enable_TSC(void) 153 { 154 preempt_disable(); 155 if (test_and_clear_thread_flag(TIF_NOTSC)) 156 /* 157 * Must flip the CPU state synchronously with 158 * TIF_NOTSC in the current running context. 159 */ 160 cr4_clear_bits(X86_CR4_TSD); 161 preempt_enable(); 162 } 163 164 int get_tsc_mode(unsigned long adr) 165 { 166 unsigned int val; 167 168 if (test_thread_flag(TIF_NOTSC)) 169 val = PR_TSC_SIGSEGV; 170 else 171 val = PR_TSC_ENABLE; 172 173 return put_user(val, (unsigned int __user *)adr); 174 } 175 176 int set_tsc_mode(unsigned int val) 177 { 178 if (val == PR_TSC_SIGSEGV) 179 disable_TSC(); 180 else if (val == PR_TSC_ENABLE) 181 enable_TSC(); 182 else 183 return -EINVAL; 184 185 return 0; 186 } 187 188 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 189 190 static void set_cpuid_faulting(bool on) 191 { 192 u64 msrval; 193 194 msrval = this_cpu_read(msr_misc_features_shadow); 195 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 196 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 197 this_cpu_write(msr_misc_features_shadow, msrval); 198 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 199 } 200 201 static void disable_cpuid(void) 202 { 203 preempt_disable(); 204 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 205 /* 206 * Must flip the CPU state synchronously with 207 * TIF_NOCPUID in the current running context. 208 */ 209 set_cpuid_faulting(true); 210 } 211 preempt_enable(); 212 } 213 214 static void enable_cpuid(void) 215 { 216 preempt_disable(); 217 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 218 /* 219 * Must flip the CPU state synchronously with 220 * TIF_NOCPUID in the current running context. 221 */ 222 set_cpuid_faulting(false); 223 } 224 preempt_enable(); 225 } 226 227 static int get_cpuid_mode(void) 228 { 229 return !test_thread_flag(TIF_NOCPUID); 230 } 231 232 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 233 { 234 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT)) 235 return -ENODEV; 236 237 if (cpuid_enabled) 238 enable_cpuid(); 239 else 240 disable_cpuid(); 241 242 return 0; 243 } 244 245 /* 246 * Called immediately after a successful exec. 247 */ 248 void arch_setup_new_exec(void) 249 { 250 /* If cpuid was previously disabled for this task, re-enable it. */ 251 if (test_thread_flag(TIF_NOCPUID)) 252 enable_cpuid(); 253 } 254 255 static inline void switch_to_bitmap(struct tss_struct *tss, 256 struct thread_struct *prev, 257 struct thread_struct *next, 258 unsigned long tifp, unsigned long tifn) 259 { 260 if (tifn & _TIF_IO_BITMAP) { 261 /* 262 * Copy the relevant range of the IO bitmap. 263 * Normally this is 128 bytes or less: 264 */ 265 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 266 max(prev->io_bitmap_max, next->io_bitmap_max)); 267 /* 268 * Make sure that the TSS limit is correct for the CPU 269 * to notice the IO bitmap. 270 */ 271 refresh_tss_limit(); 272 } else if (tifp & _TIF_IO_BITMAP) { 273 /* 274 * Clear any possible leftover bits: 275 */ 276 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 277 } 278 } 279 280 #ifdef CONFIG_SMP 281 282 struct ssb_state { 283 struct ssb_state *shared_state; 284 raw_spinlock_t lock; 285 unsigned int disable_state; 286 unsigned long local_state; 287 }; 288 289 #define LSTATE_SSB 0 290 291 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 292 293 void speculative_store_bypass_ht_init(void) 294 { 295 struct ssb_state *st = this_cpu_ptr(&ssb_state); 296 unsigned int this_cpu = smp_processor_id(); 297 unsigned int cpu; 298 299 st->local_state = 0; 300 301 /* 302 * Shared state setup happens once on the first bringup 303 * of the CPU. It's not destroyed on CPU hotunplug. 304 */ 305 if (st->shared_state) 306 return; 307 308 raw_spin_lock_init(&st->lock); 309 310 /* 311 * Go over HT siblings and check whether one of them has set up the 312 * shared state pointer already. 313 */ 314 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 315 if (cpu == this_cpu) 316 continue; 317 318 if (!per_cpu(ssb_state, cpu).shared_state) 319 continue; 320 321 /* Link it to the state of the sibling: */ 322 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 323 return; 324 } 325 326 /* 327 * First HT sibling to come up on the core. Link shared state of 328 * the first HT sibling to itself. The siblings on the same core 329 * which come up later will see the shared state pointer and link 330 * themself to the state of this CPU. 331 */ 332 st->shared_state = st; 333 } 334 335 /* 336 * Logic is: First HT sibling enables SSBD for both siblings in the core 337 * and last sibling to disable it, disables it for the whole core. This how 338 * MSR_SPEC_CTRL works in "hardware": 339 * 340 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 341 */ 342 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 343 { 344 struct ssb_state *st = this_cpu_ptr(&ssb_state); 345 u64 msr = x86_amd_ls_cfg_base; 346 347 if (!static_cpu_has(X86_FEATURE_ZEN)) { 348 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 349 wrmsrl(MSR_AMD64_LS_CFG, msr); 350 return; 351 } 352 353 if (tifn & _TIF_SSBD) { 354 /* 355 * Since this can race with prctl(), block reentry on the 356 * same CPU. 357 */ 358 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 359 return; 360 361 msr |= x86_amd_ls_cfg_ssbd_mask; 362 363 raw_spin_lock(&st->shared_state->lock); 364 /* First sibling enables SSBD: */ 365 if (!st->shared_state->disable_state) 366 wrmsrl(MSR_AMD64_LS_CFG, msr); 367 st->shared_state->disable_state++; 368 raw_spin_unlock(&st->shared_state->lock); 369 } else { 370 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 371 return; 372 373 raw_spin_lock(&st->shared_state->lock); 374 st->shared_state->disable_state--; 375 if (!st->shared_state->disable_state) 376 wrmsrl(MSR_AMD64_LS_CFG, msr); 377 raw_spin_unlock(&st->shared_state->lock); 378 } 379 } 380 #else 381 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 382 { 383 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 384 385 wrmsrl(MSR_AMD64_LS_CFG, msr); 386 } 387 #endif 388 389 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 390 { 391 /* 392 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 393 * so ssbd_tif_to_spec_ctrl() just works. 394 */ 395 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 396 } 397 398 static __always_inline void intel_set_ssb_state(unsigned long tifn) 399 { 400 u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn); 401 402 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 403 } 404 405 static __always_inline void __speculative_store_bypass_update(unsigned long tifn) 406 { 407 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) 408 amd_set_ssb_virt_state(tifn); 409 else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) 410 amd_set_core_ssb_state(tifn); 411 else 412 intel_set_ssb_state(tifn); 413 } 414 415 void speculative_store_bypass_update(unsigned long tif) 416 { 417 preempt_disable(); 418 __speculative_store_bypass_update(tif); 419 preempt_enable(); 420 } 421 422 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 423 struct tss_struct *tss) 424 { 425 struct thread_struct *prev, *next; 426 unsigned long tifp, tifn; 427 428 prev = &prev_p->thread; 429 next = &next_p->thread; 430 431 tifn = READ_ONCE(task_thread_info(next_p)->flags); 432 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 433 switch_to_bitmap(tss, prev, next, tifp, tifn); 434 435 propagate_user_return_notify(prev_p, next_p); 436 437 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 438 arch_has_block_step()) { 439 unsigned long debugctl, msk; 440 441 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 442 debugctl &= ~DEBUGCTLMSR_BTF; 443 msk = tifn & _TIF_BLOCKSTEP; 444 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 445 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 446 } 447 448 if ((tifp ^ tifn) & _TIF_NOTSC) 449 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 450 451 if ((tifp ^ tifn) & _TIF_NOCPUID) 452 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 453 454 if ((tifp ^ tifn) & _TIF_SSBD) 455 __speculative_store_bypass_update(tifn); 456 } 457 458 /* 459 * Idle related variables and functions 460 */ 461 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 462 EXPORT_SYMBOL(boot_option_idle_override); 463 464 static void (*x86_idle)(void); 465 466 #ifndef CONFIG_SMP 467 static inline void play_dead(void) 468 { 469 BUG(); 470 } 471 #endif 472 473 void arch_cpu_idle_enter(void) 474 { 475 tsc_verify_tsc_adjust(false); 476 local_touch_nmi(); 477 } 478 479 void arch_cpu_idle_dead(void) 480 { 481 play_dead(); 482 } 483 484 /* 485 * Called from the generic idle code. 486 */ 487 void arch_cpu_idle(void) 488 { 489 x86_idle(); 490 } 491 492 /* 493 * We use this if we don't have any better idle routine.. 494 */ 495 void __cpuidle default_idle(void) 496 { 497 trace_cpu_idle_rcuidle(1, smp_processor_id()); 498 safe_halt(); 499 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 500 } 501 #ifdef CONFIG_APM_MODULE 502 EXPORT_SYMBOL(default_idle); 503 #endif 504 505 #ifdef CONFIG_XEN 506 bool xen_set_default_idle(void) 507 { 508 bool ret = !!x86_idle; 509 510 x86_idle = default_idle; 511 512 return ret; 513 } 514 #endif 515 516 void stop_this_cpu(void *dummy) 517 { 518 local_irq_disable(); 519 /* 520 * Remove this CPU: 521 */ 522 set_cpu_online(smp_processor_id(), false); 523 disable_local_APIC(); 524 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 525 526 /* 527 * Use wbinvd on processors that support SME. This provides support 528 * for performing a successful kexec when going from SME inactive 529 * to SME active (or vice-versa). The cache must be cleared so that 530 * if there are entries with the same physical address, both with and 531 * without the encryption bit, they don't race each other when flushed 532 * and potentially end up with the wrong entry being committed to 533 * memory. 534 */ 535 if (boot_cpu_has(X86_FEATURE_SME)) 536 native_wbinvd(); 537 for (;;) { 538 /* 539 * Use native_halt() so that memory contents don't change 540 * (stack usage and variables) after possibly issuing the 541 * native_wbinvd() above. 542 */ 543 native_halt(); 544 } 545 } 546 547 /* 548 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 549 * states (local apic timer and TSC stop). 550 */ 551 static void amd_e400_idle(void) 552 { 553 /* 554 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 555 * gets set after static_cpu_has() places have been converted via 556 * alternatives. 557 */ 558 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 559 default_idle(); 560 return; 561 } 562 563 tick_broadcast_enter(); 564 565 default_idle(); 566 567 /* 568 * The switch back from broadcast mode needs to be called with 569 * interrupts disabled. 570 */ 571 local_irq_disable(); 572 tick_broadcast_exit(); 573 local_irq_enable(); 574 } 575 576 /* 577 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 578 * We can't rely on cpuidle installing MWAIT, because it will not load 579 * on systems that support only C1 -- so the boot default must be MWAIT. 580 * 581 * Some AMD machines are the opposite, they depend on using HALT. 582 * 583 * So for default C1, which is used during boot until cpuidle loads, 584 * use MWAIT-C1 on Intel HW that has it, else use HALT. 585 */ 586 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 587 { 588 if (c->x86_vendor != X86_VENDOR_INTEL) 589 return 0; 590 591 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 592 return 0; 593 594 return 1; 595 } 596 597 /* 598 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 599 * with interrupts enabled and no flags, which is backwards compatible with the 600 * original MWAIT implementation. 601 */ 602 static __cpuidle void mwait_idle(void) 603 { 604 if (!current_set_polling_and_test()) { 605 trace_cpu_idle_rcuidle(1, smp_processor_id()); 606 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 607 mb(); /* quirk */ 608 clflush((void *)¤t_thread_info()->flags); 609 mb(); /* quirk */ 610 } 611 612 __monitor((void *)¤t_thread_info()->flags, 0, 0); 613 if (!need_resched()) 614 __sti_mwait(0, 0); 615 else 616 local_irq_enable(); 617 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 618 } else { 619 local_irq_enable(); 620 } 621 __current_clr_polling(); 622 } 623 624 void select_idle_routine(const struct cpuinfo_x86 *c) 625 { 626 #ifdef CONFIG_SMP 627 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 628 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 629 #endif 630 if (x86_idle || boot_option_idle_override == IDLE_POLL) 631 return; 632 633 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 634 pr_info("using AMD E400 aware idle routine\n"); 635 x86_idle = amd_e400_idle; 636 } else if (prefer_mwait_c1_over_halt(c)) { 637 pr_info("using mwait in idle threads\n"); 638 x86_idle = mwait_idle; 639 } else 640 x86_idle = default_idle; 641 } 642 643 void amd_e400_c1e_apic_setup(void) 644 { 645 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 646 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 647 local_irq_disable(); 648 tick_broadcast_force(); 649 local_irq_enable(); 650 } 651 } 652 653 void __init arch_post_acpi_subsys_init(void) 654 { 655 u32 lo, hi; 656 657 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 658 return; 659 660 /* 661 * AMD E400 detection needs to happen after ACPI has been enabled. If 662 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 663 * MSR_K8_INT_PENDING_MSG. 664 */ 665 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 666 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 667 return; 668 669 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 670 671 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 672 mark_tsc_unstable("TSC halt in AMD C1E"); 673 pr_info("System has AMD C1E enabled\n"); 674 } 675 676 static int __init idle_setup(char *str) 677 { 678 if (!str) 679 return -EINVAL; 680 681 if (!strcmp(str, "poll")) { 682 pr_info("using polling idle threads\n"); 683 boot_option_idle_override = IDLE_POLL; 684 cpu_idle_poll_ctrl(true); 685 } else if (!strcmp(str, "halt")) { 686 /* 687 * When the boot option of idle=halt is added, halt is 688 * forced to be used for CPU idle. In such case CPU C2/C3 689 * won't be used again. 690 * To continue to load the CPU idle driver, don't touch 691 * the boot_option_idle_override. 692 */ 693 x86_idle = default_idle; 694 boot_option_idle_override = IDLE_HALT; 695 } else if (!strcmp(str, "nomwait")) { 696 /* 697 * If the boot option of "idle=nomwait" is added, 698 * it means that mwait will be disabled for CPU C2/C3 699 * states. In such case it won't touch the variable 700 * of boot_option_idle_override. 701 */ 702 boot_option_idle_override = IDLE_NOMWAIT; 703 } else 704 return -1; 705 706 return 0; 707 } 708 early_param("idle", idle_setup); 709 710 unsigned long arch_align_stack(unsigned long sp) 711 { 712 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 713 sp -= get_random_int() % 8192; 714 return sp & ~0xf; 715 } 716 717 unsigned long arch_randomize_brk(struct mm_struct *mm) 718 { 719 return randomize_page(mm->brk, 0x02000000); 720 } 721 722 /* 723 * Called from fs/proc with a reference on @p to find the function 724 * which called into schedule(). This needs to be done carefully 725 * because the task might wake up and we might look at a stack 726 * changing under us. 727 */ 728 unsigned long get_wchan(struct task_struct *p) 729 { 730 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 731 int count = 0; 732 733 if (!p || p == current || p->state == TASK_RUNNING) 734 return 0; 735 736 if (!try_get_task_stack(p)) 737 return 0; 738 739 start = (unsigned long)task_stack_page(p); 740 if (!start) 741 goto out; 742 743 /* 744 * Layout of the stack page: 745 * 746 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 747 * PADDING 748 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 749 * stack 750 * ----------- bottom = start 751 * 752 * The tasks stack pointer points at the location where the 753 * framepointer is stored. The data on the stack is: 754 * ... IP FP ... IP FP 755 * 756 * We need to read FP and IP, so we need to adjust the upper 757 * bound by another unsigned long. 758 */ 759 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 760 top -= 2 * sizeof(unsigned long); 761 bottom = start; 762 763 sp = READ_ONCE(p->thread.sp); 764 if (sp < bottom || sp > top) 765 goto out; 766 767 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 768 do { 769 if (fp < bottom || fp > top) 770 goto out; 771 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 772 if (!in_sched_functions(ip)) { 773 ret = ip; 774 goto out; 775 } 776 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 777 } while (count++ < 16 && p->state != TASK_RUNNING); 778 779 out: 780 put_task_stack(p); 781 return ret; 782 } 783 784 long do_arch_prctl_common(struct task_struct *task, int option, 785 unsigned long cpuid_enabled) 786 { 787 switch (option) { 788 case ARCH_GET_CPUID: 789 return get_cpuid_mode(); 790 case ARCH_SET_CPUID: 791 return set_cpuid_mode(task, cpuid_enabled); 792 } 793 794 return -EINVAL; 795 } 796