xref: /openbmc/linux/arch/x86/kernel/process.c (revision 82e6fdd6)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41 
42 /*
43  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
44  * no more per-task TSS's. The TSS size is kept cacheline-aligned
45  * so they are allowed to end up in the .data..cacheline_aligned
46  * section. Since TSS's are completely CPU-local, we want them
47  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
48  */
49 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
50 	.x86_tss = {
51 		/*
52 		 * .sp0 is only used when entering ring 0 from a lower
53 		 * privilege level.  Since the init task never runs anything
54 		 * but ring 0 code, there is no need for a valid value here.
55 		 * Poison it.
56 		 */
57 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
58 
59 #ifdef CONFIG_X86_64
60 		/*
61 		 * .sp1 is cpu_current_top_of_stack.  The init task never
62 		 * runs user code, but cpu_current_top_of_stack should still
63 		 * be well defined before the first context switch.
64 		 */
65 		.sp1 = TOP_OF_INIT_STACK,
66 #endif
67 
68 #ifdef CONFIG_X86_32
69 		.ss0 = __KERNEL_DS,
70 		.ss1 = __KERNEL_CS,
71 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
72 #endif
73 	 },
74 #ifdef CONFIG_X86_32
75 	 /*
76 	  * Note that the .io_bitmap member must be extra-big. This is because
77 	  * the CPU will access an additional byte beyond the end of the IO
78 	  * permission bitmap. The extra byte must be all 1 bits, and must
79 	  * be within the limit.
80 	  */
81 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
82 #endif
83 };
84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
85 
86 DEFINE_PER_CPU(bool, __tss_limit_invalid);
87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
88 
89 /*
90  * this gets called so that we can store lazy state into memory and copy the
91  * current task into the new thread.
92  */
93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
94 {
95 	memcpy(dst, src, arch_task_struct_size);
96 #ifdef CONFIG_VM86
97 	dst->thread.vm86 = NULL;
98 #endif
99 
100 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
101 }
102 
103 /*
104  * Free current thread data structures etc..
105  */
106 void exit_thread(struct task_struct *tsk)
107 {
108 	struct thread_struct *t = &tsk->thread;
109 	unsigned long *bp = t->io_bitmap_ptr;
110 	struct fpu *fpu = &t->fpu;
111 
112 	if (bp) {
113 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
114 
115 		t->io_bitmap_ptr = NULL;
116 		clear_thread_flag(TIF_IO_BITMAP);
117 		/*
118 		 * Careful, clear this in the TSS too:
119 		 */
120 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
121 		t->io_bitmap_max = 0;
122 		put_cpu();
123 		kfree(bp);
124 	}
125 
126 	free_vm86(t);
127 
128 	fpu__drop(fpu);
129 }
130 
131 void flush_thread(void)
132 {
133 	struct task_struct *tsk = current;
134 
135 	flush_ptrace_hw_breakpoint(tsk);
136 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
137 
138 	fpu__clear(&tsk->thread.fpu);
139 }
140 
141 void disable_TSC(void)
142 {
143 	preempt_disable();
144 	if (!test_and_set_thread_flag(TIF_NOTSC))
145 		/*
146 		 * Must flip the CPU state synchronously with
147 		 * TIF_NOTSC in the current running context.
148 		 */
149 		cr4_set_bits(X86_CR4_TSD);
150 	preempt_enable();
151 }
152 
153 static void enable_TSC(void)
154 {
155 	preempt_disable();
156 	if (test_and_clear_thread_flag(TIF_NOTSC))
157 		/*
158 		 * Must flip the CPU state synchronously with
159 		 * TIF_NOTSC in the current running context.
160 		 */
161 		cr4_clear_bits(X86_CR4_TSD);
162 	preempt_enable();
163 }
164 
165 int get_tsc_mode(unsigned long adr)
166 {
167 	unsigned int val;
168 
169 	if (test_thread_flag(TIF_NOTSC))
170 		val = PR_TSC_SIGSEGV;
171 	else
172 		val = PR_TSC_ENABLE;
173 
174 	return put_user(val, (unsigned int __user *)adr);
175 }
176 
177 int set_tsc_mode(unsigned int val)
178 {
179 	if (val == PR_TSC_SIGSEGV)
180 		disable_TSC();
181 	else if (val == PR_TSC_ENABLE)
182 		enable_TSC();
183 	else
184 		return -EINVAL;
185 
186 	return 0;
187 }
188 
189 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
190 
191 static void set_cpuid_faulting(bool on)
192 {
193 	u64 msrval;
194 
195 	msrval = this_cpu_read(msr_misc_features_shadow);
196 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
197 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
198 	this_cpu_write(msr_misc_features_shadow, msrval);
199 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
200 }
201 
202 static void disable_cpuid(void)
203 {
204 	preempt_disable();
205 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
206 		/*
207 		 * Must flip the CPU state synchronously with
208 		 * TIF_NOCPUID in the current running context.
209 		 */
210 		set_cpuid_faulting(true);
211 	}
212 	preempt_enable();
213 }
214 
215 static void enable_cpuid(void)
216 {
217 	preempt_disable();
218 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
219 		/*
220 		 * Must flip the CPU state synchronously with
221 		 * TIF_NOCPUID in the current running context.
222 		 */
223 		set_cpuid_faulting(false);
224 	}
225 	preempt_enable();
226 }
227 
228 static int get_cpuid_mode(void)
229 {
230 	return !test_thread_flag(TIF_NOCPUID);
231 }
232 
233 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
234 {
235 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
236 		return -ENODEV;
237 
238 	if (cpuid_enabled)
239 		enable_cpuid();
240 	else
241 		disable_cpuid();
242 
243 	return 0;
244 }
245 
246 /*
247  * Called immediately after a successful exec.
248  */
249 void arch_setup_new_exec(void)
250 {
251 	/* If cpuid was previously disabled for this task, re-enable it. */
252 	if (test_thread_flag(TIF_NOCPUID))
253 		enable_cpuid();
254 }
255 
256 static inline void switch_to_bitmap(struct tss_struct *tss,
257 				    struct thread_struct *prev,
258 				    struct thread_struct *next,
259 				    unsigned long tifp, unsigned long tifn)
260 {
261 	if (tifn & _TIF_IO_BITMAP) {
262 		/*
263 		 * Copy the relevant range of the IO bitmap.
264 		 * Normally this is 128 bytes or less:
265 		 */
266 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
267 		       max(prev->io_bitmap_max, next->io_bitmap_max));
268 		/*
269 		 * Make sure that the TSS limit is correct for the CPU
270 		 * to notice the IO bitmap.
271 		 */
272 		refresh_tss_limit();
273 	} else if (tifp & _TIF_IO_BITMAP) {
274 		/*
275 		 * Clear any possible leftover bits:
276 		 */
277 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
278 	}
279 }
280 
281 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
282 		      struct tss_struct *tss)
283 {
284 	struct thread_struct *prev, *next;
285 	unsigned long tifp, tifn;
286 
287 	prev = &prev_p->thread;
288 	next = &next_p->thread;
289 
290 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
291 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
292 	switch_to_bitmap(tss, prev, next, tifp, tifn);
293 
294 	propagate_user_return_notify(prev_p, next_p);
295 
296 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
297 	    arch_has_block_step()) {
298 		unsigned long debugctl, msk;
299 
300 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
301 		debugctl &= ~DEBUGCTLMSR_BTF;
302 		msk = tifn & _TIF_BLOCKSTEP;
303 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
304 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
305 	}
306 
307 	if ((tifp ^ tifn) & _TIF_NOTSC)
308 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
309 
310 	if ((tifp ^ tifn) & _TIF_NOCPUID)
311 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
312 }
313 
314 /*
315  * Idle related variables and functions
316  */
317 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
318 EXPORT_SYMBOL(boot_option_idle_override);
319 
320 static void (*x86_idle)(void);
321 
322 #ifndef CONFIG_SMP
323 static inline void play_dead(void)
324 {
325 	BUG();
326 }
327 #endif
328 
329 void arch_cpu_idle_enter(void)
330 {
331 	tsc_verify_tsc_adjust(false);
332 	local_touch_nmi();
333 }
334 
335 void arch_cpu_idle_dead(void)
336 {
337 	play_dead();
338 }
339 
340 /*
341  * Called from the generic idle code.
342  */
343 void arch_cpu_idle(void)
344 {
345 	x86_idle();
346 }
347 
348 /*
349  * We use this if we don't have any better idle routine..
350  */
351 void __cpuidle default_idle(void)
352 {
353 	trace_cpu_idle_rcuidle(1, smp_processor_id());
354 	safe_halt();
355 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
356 }
357 #ifdef CONFIG_APM_MODULE
358 EXPORT_SYMBOL(default_idle);
359 #endif
360 
361 #ifdef CONFIG_XEN
362 bool xen_set_default_idle(void)
363 {
364 	bool ret = !!x86_idle;
365 
366 	x86_idle = default_idle;
367 
368 	return ret;
369 }
370 #endif
371 
372 void stop_this_cpu(void *dummy)
373 {
374 	local_irq_disable();
375 	/*
376 	 * Remove this CPU:
377 	 */
378 	set_cpu_online(smp_processor_id(), false);
379 	disable_local_APIC();
380 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
381 
382 	/*
383 	 * Use wbinvd on processors that support SME. This provides support
384 	 * for performing a successful kexec when going from SME inactive
385 	 * to SME active (or vice-versa). The cache must be cleared so that
386 	 * if there are entries with the same physical address, both with and
387 	 * without the encryption bit, they don't race each other when flushed
388 	 * and potentially end up with the wrong entry being committed to
389 	 * memory.
390 	 */
391 	if (boot_cpu_has(X86_FEATURE_SME))
392 		native_wbinvd();
393 	for (;;) {
394 		/*
395 		 * Use native_halt() so that memory contents don't change
396 		 * (stack usage and variables) after possibly issuing the
397 		 * native_wbinvd() above.
398 		 */
399 		native_halt();
400 	}
401 }
402 
403 /*
404  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
405  * states (local apic timer and TSC stop).
406  */
407 static void amd_e400_idle(void)
408 {
409 	/*
410 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
411 	 * gets set after static_cpu_has() places have been converted via
412 	 * alternatives.
413 	 */
414 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
415 		default_idle();
416 		return;
417 	}
418 
419 	tick_broadcast_enter();
420 
421 	default_idle();
422 
423 	/*
424 	 * The switch back from broadcast mode needs to be called with
425 	 * interrupts disabled.
426 	 */
427 	local_irq_disable();
428 	tick_broadcast_exit();
429 	local_irq_enable();
430 }
431 
432 /*
433  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
434  * We can't rely on cpuidle installing MWAIT, because it will not load
435  * on systems that support only C1 -- so the boot default must be MWAIT.
436  *
437  * Some AMD machines are the opposite, they depend on using HALT.
438  *
439  * So for default C1, which is used during boot until cpuidle loads,
440  * use MWAIT-C1 on Intel HW that has it, else use HALT.
441  */
442 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
443 {
444 	if (c->x86_vendor != X86_VENDOR_INTEL)
445 		return 0;
446 
447 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
448 		return 0;
449 
450 	return 1;
451 }
452 
453 /*
454  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
455  * with interrupts enabled and no flags, which is backwards compatible with the
456  * original MWAIT implementation.
457  */
458 static __cpuidle void mwait_idle(void)
459 {
460 	if (!current_set_polling_and_test()) {
461 		trace_cpu_idle_rcuidle(1, smp_processor_id());
462 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
463 			mb(); /* quirk */
464 			clflush((void *)&current_thread_info()->flags);
465 			mb(); /* quirk */
466 		}
467 
468 		__monitor((void *)&current_thread_info()->flags, 0, 0);
469 		if (!need_resched())
470 			__sti_mwait(0, 0);
471 		else
472 			local_irq_enable();
473 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
474 	} else {
475 		local_irq_enable();
476 	}
477 	__current_clr_polling();
478 }
479 
480 void select_idle_routine(const struct cpuinfo_x86 *c)
481 {
482 #ifdef CONFIG_SMP
483 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
484 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
485 #endif
486 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
487 		return;
488 
489 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
490 		pr_info("using AMD E400 aware idle routine\n");
491 		x86_idle = amd_e400_idle;
492 	} else if (prefer_mwait_c1_over_halt(c)) {
493 		pr_info("using mwait in idle threads\n");
494 		x86_idle = mwait_idle;
495 	} else
496 		x86_idle = default_idle;
497 }
498 
499 void amd_e400_c1e_apic_setup(void)
500 {
501 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
502 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
503 		local_irq_disable();
504 		tick_broadcast_force();
505 		local_irq_enable();
506 	}
507 }
508 
509 void __init arch_post_acpi_subsys_init(void)
510 {
511 	u32 lo, hi;
512 
513 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
514 		return;
515 
516 	/*
517 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
518 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
519 	 * MSR_K8_INT_PENDING_MSG.
520 	 */
521 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
522 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
523 		return;
524 
525 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
526 
527 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
528 		mark_tsc_unstable("TSC halt in AMD C1E");
529 	pr_info("System has AMD C1E enabled\n");
530 }
531 
532 static int __init idle_setup(char *str)
533 {
534 	if (!str)
535 		return -EINVAL;
536 
537 	if (!strcmp(str, "poll")) {
538 		pr_info("using polling idle threads\n");
539 		boot_option_idle_override = IDLE_POLL;
540 		cpu_idle_poll_ctrl(true);
541 	} else if (!strcmp(str, "halt")) {
542 		/*
543 		 * When the boot option of idle=halt is added, halt is
544 		 * forced to be used for CPU idle. In such case CPU C2/C3
545 		 * won't be used again.
546 		 * To continue to load the CPU idle driver, don't touch
547 		 * the boot_option_idle_override.
548 		 */
549 		x86_idle = default_idle;
550 		boot_option_idle_override = IDLE_HALT;
551 	} else if (!strcmp(str, "nomwait")) {
552 		/*
553 		 * If the boot option of "idle=nomwait" is added,
554 		 * it means that mwait will be disabled for CPU C2/C3
555 		 * states. In such case it won't touch the variable
556 		 * of boot_option_idle_override.
557 		 */
558 		boot_option_idle_override = IDLE_NOMWAIT;
559 	} else
560 		return -1;
561 
562 	return 0;
563 }
564 early_param("idle", idle_setup);
565 
566 unsigned long arch_align_stack(unsigned long sp)
567 {
568 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
569 		sp -= get_random_int() % 8192;
570 	return sp & ~0xf;
571 }
572 
573 unsigned long arch_randomize_brk(struct mm_struct *mm)
574 {
575 	return randomize_page(mm->brk, 0x02000000);
576 }
577 
578 /*
579  * Called from fs/proc with a reference on @p to find the function
580  * which called into schedule(). This needs to be done carefully
581  * because the task might wake up and we might look at a stack
582  * changing under us.
583  */
584 unsigned long get_wchan(struct task_struct *p)
585 {
586 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
587 	int count = 0;
588 
589 	if (!p || p == current || p->state == TASK_RUNNING)
590 		return 0;
591 
592 	if (!try_get_task_stack(p))
593 		return 0;
594 
595 	start = (unsigned long)task_stack_page(p);
596 	if (!start)
597 		goto out;
598 
599 	/*
600 	 * Layout of the stack page:
601 	 *
602 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
603 	 * PADDING
604 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
605 	 * stack
606 	 * ----------- bottom = start
607 	 *
608 	 * The tasks stack pointer points at the location where the
609 	 * framepointer is stored. The data on the stack is:
610 	 * ... IP FP ... IP FP
611 	 *
612 	 * We need to read FP and IP, so we need to adjust the upper
613 	 * bound by another unsigned long.
614 	 */
615 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
616 	top -= 2 * sizeof(unsigned long);
617 	bottom = start;
618 
619 	sp = READ_ONCE(p->thread.sp);
620 	if (sp < bottom || sp > top)
621 		goto out;
622 
623 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
624 	do {
625 		if (fp < bottom || fp > top)
626 			goto out;
627 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
628 		if (!in_sched_functions(ip)) {
629 			ret = ip;
630 			goto out;
631 		}
632 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
633 	} while (count++ < 16 && p->state != TASK_RUNNING);
634 
635 out:
636 	put_task_stack(p);
637 	return ret;
638 }
639 
640 long do_arch_prctl_common(struct task_struct *task, int option,
641 			  unsigned long cpuid_enabled)
642 {
643 	switch (option) {
644 	case ARCH_GET_CPUID:
645 		return get_cpuid_mode();
646 	case ARCH_SET_CPUID:
647 		return set_cpuid_mode(task, cpuid_enabled);
648 	}
649 
650 	return -EINVAL;
651 }
652