1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/cpu.h> 9 #include <linux/prctl.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/sched/idle.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/init.h> 17 #include <linux/export.h> 18 #include <linux/pm.h> 19 #include <linux/tick.h> 20 #include <linux/random.h> 21 #include <linux/user-return-notifier.h> 22 #include <linux/dmi.h> 23 #include <linux/utsname.h> 24 #include <linux/stackprotector.h> 25 #include <linux/cpuidle.h> 26 #include <linux/acpi.h> 27 #include <linux/elf-randomize.h> 28 #include <linux/static_call.h> 29 #include <trace/events/power.h> 30 #include <linux/hw_breakpoint.h> 31 #include <linux/entry-common.h> 32 #include <asm/cpu.h> 33 #include <asm/apic.h> 34 #include <linux/uaccess.h> 35 #include <asm/mwait.h> 36 #include <asm/fpu/api.h> 37 #include <asm/fpu/sched.h> 38 #include <asm/fpu/xstate.h> 39 #include <asm/debugreg.h> 40 #include <asm/nmi.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mce.h> 43 #include <asm/vm86.h> 44 #include <asm/switch_to.h> 45 #include <asm/desc.h> 46 #include <asm/prctl.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/io_bitmap.h> 49 #include <asm/proto.h> 50 #include <asm/frame.h> 51 #include <asm/unwind.h> 52 #include <asm/tdx.h> 53 #include <asm/mmu_context.h> 54 55 #include "process.h" 56 57 /* 58 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 59 * no more per-task TSS's. The TSS size is kept cacheline-aligned 60 * so they are allowed to end up in the .data..cacheline_aligned 61 * section. Since TSS's are completely CPU-local, we want them 62 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 63 */ 64 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 65 .x86_tss = { 66 /* 67 * .sp0 is only used when entering ring 0 from a lower 68 * privilege level. Since the init task never runs anything 69 * but ring 0 code, there is no need for a valid value here. 70 * Poison it. 71 */ 72 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 73 74 #ifdef CONFIG_X86_32 75 .sp1 = TOP_OF_INIT_STACK, 76 77 .ss0 = __KERNEL_DS, 78 .ss1 = __KERNEL_CS, 79 #endif 80 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 81 }, 82 }; 83 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 84 85 DEFINE_PER_CPU(bool, __tss_limit_invalid); 86 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 87 88 /* 89 * this gets called so that we can store lazy state into memory and copy the 90 * current task into the new thread. 91 */ 92 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 93 { 94 memcpy(dst, src, arch_task_struct_size); 95 #ifdef CONFIG_VM86 96 dst->thread.vm86 = NULL; 97 #endif 98 /* Drop the copied pointer to current's fpstate */ 99 dst->thread.fpu.fpstate = NULL; 100 101 return 0; 102 } 103 104 #ifdef CONFIG_X86_64 105 void arch_release_task_struct(struct task_struct *tsk) 106 { 107 if (fpu_state_size_dynamic()) 108 fpstate_free(&tsk->thread.fpu); 109 } 110 #endif 111 112 /* 113 * Free thread data structures etc.. 114 */ 115 void exit_thread(struct task_struct *tsk) 116 { 117 struct thread_struct *t = &tsk->thread; 118 struct fpu *fpu = &t->fpu; 119 120 if (test_thread_flag(TIF_IO_BITMAP)) 121 io_bitmap_exit(tsk); 122 123 free_vm86(t); 124 125 fpu__drop(fpu); 126 } 127 128 static int set_new_tls(struct task_struct *p, unsigned long tls) 129 { 130 struct user_desc __user *utls = (struct user_desc __user *)tls; 131 132 if (in_ia32_syscall()) 133 return do_set_thread_area(p, -1, utls, 0); 134 else 135 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 136 } 137 138 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs, 139 int (*fn)(void *), void *fn_arg) 140 { 141 schedule_tail(prev); 142 143 /* Is this a kernel thread? */ 144 if (unlikely(fn)) { 145 fn(fn_arg); 146 /* 147 * A kernel thread is allowed to return here after successfully 148 * calling kernel_execve(). Exit to userspace to complete the 149 * execve() syscall. 150 */ 151 regs->ax = 0; 152 } 153 154 syscall_exit_to_user_mode(regs); 155 } 156 157 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 158 { 159 unsigned long clone_flags = args->flags; 160 unsigned long sp = args->stack; 161 unsigned long tls = args->tls; 162 struct inactive_task_frame *frame; 163 struct fork_frame *fork_frame; 164 struct pt_regs *childregs; 165 int ret = 0; 166 167 childregs = task_pt_regs(p); 168 fork_frame = container_of(childregs, struct fork_frame, regs); 169 frame = &fork_frame->frame; 170 171 frame->bp = encode_frame_pointer(childregs); 172 frame->ret_addr = (unsigned long) ret_from_fork_asm; 173 p->thread.sp = (unsigned long) fork_frame; 174 p->thread.io_bitmap = NULL; 175 p->thread.iopl_warn = 0; 176 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 177 178 #ifdef CONFIG_X86_64 179 current_save_fsgs(); 180 p->thread.fsindex = current->thread.fsindex; 181 p->thread.fsbase = current->thread.fsbase; 182 p->thread.gsindex = current->thread.gsindex; 183 p->thread.gsbase = current->thread.gsbase; 184 185 savesegment(es, p->thread.es); 186 savesegment(ds, p->thread.ds); 187 188 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM) 189 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags); 190 #else 191 p->thread.sp0 = (unsigned long) (childregs + 1); 192 savesegment(gs, p->thread.gs); 193 /* 194 * Clear all status flags including IF and set fixed bit. 64bit 195 * does not have this initialization as the frame does not contain 196 * flags. The flags consistency (especially vs. AC) is there 197 * ensured via objtool, which lacks 32bit support. 198 */ 199 frame->flags = X86_EFLAGS_FIXED; 200 #endif 201 202 fpu_clone(p, clone_flags, args->fn); 203 204 /* Kernel thread ? */ 205 if (unlikely(p->flags & PF_KTHREAD)) { 206 p->thread.pkru = pkru_get_init_value(); 207 memset(childregs, 0, sizeof(struct pt_regs)); 208 kthread_frame_init(frame, args->fn, args->fn_arg); 209 return 0; 210 } 211 212 /* 213 * Clone current's PKRU value from hardware. tsk->thread.pkru 214 * is only valid when scheduled out. 215 */ 216 p->thread.pkru = read_pkru(); 217 218 frame->bx = 0; 219 *childregs = *current_pt_regs(); 220 childregs->ax = 0; 221 if (sp) 222 childregs->sp = sp; 223 224 if (unlikely(args->fn)) { 225 /* 226 * A user space thread, but it doesn't return to 227 * ret_after_fork(). 228 * 229 * In order to indicate that to tools like gdb, 230 * we reset the stack and instruction pointers. 231 * 232 * It does the same kernel frame setup to return to a kernel 233 * function that a kernel thread does. 234 */ 235 childregs->sp = 0; 236 childregs->ip = 0; 237 kthread_frame_init(frame, args->fn, args->fn_arg); 238 return 0; 239 } 240 241 /* Set a new TLS for the child thread? */ 242 if (clone_flags & CLONE_SETTLS) 243 ret = set_new_tls(p, tls); 244 245 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 246 io_bitmap_share(p); 247 248 return ret; 249 } 250 251 static void pkru_flush_thread(void) 252 { 253 /* 254 * If PKRU is enabled the default PKRU value has to be loaded into 255 * the hardware right here (similar to context switch). 256 */ 257 pkru_write_default(); 258 } 259 260 void flush_thread(void) 261 { 262 struct task_struct *tsk = current; 263 264 flush_ptrace_hw_breakpoint(tsk); 265 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 266 267 fpu_flush_thread(); 268 pkru_flush_thread(); 269 } 270 271 void disable_TSC(void) 272 { 273 preempt_disable(); 274 if (!test_and_set_thread_flag(TIF_NOTSC)) 275 /* 276 * Must flip the CPU state synchronously with 277 * TIF_NOTSC in the current running context. 278 */ 279 cr4_set_bits(X86_CR4_TSD); 280 preempt_enable(); 281 } 282 283 static void enable_TSC(void) 284 { 285 preempt_disable(); 286 if (test_and_clear_thread_flag(TIF_NOTSC)) 287 /* 288 * Must flip the CPU state synchronously with 289 * TIF_NOTSC in the current running context. 290 */ 291 cr4_clear_bits(X86_CR4_TSD); 292 preempt_enable(); 293 } 294 295 int get_tsc_mode(unsigned long adr) 296 { 297 unsigned int val; 298 299 if (test_thread_flag(TIF_NOTSC)) 300 val = PR_TSC_SIGSEGV; 301 else 302 val = PR_TSC_ENABLE; 303 304 return put_user(val, (unsigned int __user *)adr); 305 } 306 307 int set_tsc_mode(unsigned int val) 308 { 309 if (val == PR_TSC_SIGSEGV) 310 disable_TSC(); 311 else if (val == PR_TSC_ENABLE) 312 enable_TSC(); 313 else 314 return -EINVAL; 315 316 return 0; 317 } 318 319 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 320 321 static void set_cpuid_faulting(bool on) 322 { 323 u64 msrval; 324 325 msrval = this_cpu_read(msr_misc_features_shadow); 326 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 327 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 328 this_cpu_write(msr_misc_features_shadow, msrval); 329 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 330 } 331 332 static void disable_cpuid(void) 333 { 334 preempt_disable(); 335 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 336 /* 337 * Must flip the CPU state synchronously with 338 * TIF_NOCPUID in the current running context. 339 */ 340 set_cpuid_faulting(true); 341 } 342 preempt_enable(); 343 } 344 345 static void enable_cpuid(void) 346 { 347 preempt_disable(); 348 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 349 /* 350 * Must flip the CPU state synchronously with 351 * TIF_NOCPUID in the current running context. 352 */ 353 set_cpuid_faulting(false); 354 } 355 preempt_enable(); 356 } 357 358 static int get_cpuid_mode(void) 359 { 360 return !test_thread_flag(TIF_NOCPUID); 361 } 362 363 static int set_cpuid_mode(unsigned long cpuid_enabled) 364 { 365 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 366 return -ENODEV; 367 368 if (cpuid_enabled) 369 enable_cpuid(); 370 else 371 disable_cpuid(); 372 373 return 0; 374 } 375 376 /* 377 * Called immediately after a successful exec. 378 */ 379 void arch_setup_new_exec(void) 380 { 381 /* If cpuid was previously disabled for this task, re-enable it. */ 382 if (test_thread_flag(TIF_NOCPUID)) 383 enable_cpuid(); 384 385 /* 386 * Don't inherit TIF_SSBD across exec boundary when 387 * PR_SPEC_DISABLE_NOEXEC is used. 388 */ 389 if (test_thread_flag(TIF_SSBD) && 390 task_spec_ssb_noexec(current)) { 391 clear_thread_flag(TIF_SSBD); 392 task_clear_spec_ssb_disable(current); 393 task_clear_spec_ssb_noexec(current); 394 speculation_ctrl_update(read_thread_flags()); 395 } 396 397 mm_reset_untag_mask(current->mm); 398 } 399 400 #ifdef CONFIG_X86_IOPL_IOPERM 401 static inline void switch_to_bitmap(unsigned long tifp) 402 { 403 /* 404 * Invalidate I/O bitmap if the previous task used it. This prevents 405 * any possible leakage of an active I/O bitmap. 406 * 407 * If the next task has an I/O bitmap it will handle it on exit to 408 * user mode. 409 */ 410 if (tifp & _TIF_IO_BITMAP) 411 tss_invalidate_io_bitmap(); 412 } 413 414 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 415 { 416 /* 417 * Copy at least the byte range of the incoming tasks bitmap which 418 * covers the permitted I/O ports. 419 * 420 * If the previous task which used an I/O bitmap had more bits 421 * permitted, then the copy needs to cover those as well so they 422 * get turned off. 423 */ 424 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 425 max(tss->io_bitmap.prev_max, iobm->max)); 426 427 /* 428 * Store the new max and the sequence number of this bitmap 429 * and a pointer to the bitmap itself. 430 */ 431 tss->io_bitmap.prev_max = iobm->max; 432 tss->io_bitmap.prev_sequence = iobm->sequence; 433 } 434 435 /** 436 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode 437 */ 438 void native_tss_update_io_bitmap(void) 439 { 440 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 441 struct thread_struct *t = ¤t->thread; 442 u16 *base = &tss->x86_tss.io_bitmap_base; 443 444 if (!test_thread_flag(TIF_IO_BITMAP)) { 445 native_tss_invalidate_io_bitmap(); 446 return; 447 } 448 449 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 450 *base = IO_BITMAP_OFFSET_VALID_ALL; 451 } else { 452 struct io_bitmap *iobm = t->io_bitmap; 453 454 /* 455 * Only copy bitmap data when the sequence number differs. The 456 * update time is accounted to the incoming task. 457 */ 458 if (tss->io_bitmap.prev_sequence != iobm->sequence) 459 tss_copy_io_bitmap(tss, iobm); 460 461 /* Enable the bitmap */ 462 *base = IO_BITMAP_OFFSET_VALID_MAP; 463 } 464 465 /* 466 * Make sure that the TSS limit is covering the IO bitmap. It might have 467 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 468 * access from user space to trigger a #GP because tbe bitmap is outside 469 * the TSS limit. 470 */ 471 refresh_tss_limit(); 472 } 473 #else /* CONFIG_X86_IOPL_IOPERM */ 474 static inline void switch_to_bitmap(unsigned long tifp) { } 475 #endif 476 477 #ifdef CONFIG_SMP 478 479 struct ssb_state { 480 struct ssb_state *shared_state; 481 raw_spinlock_t lock; 482 unsigned int disable_state; 483 unsigned long local_state; 484 }; 485 486 #define LSTATE_SSB 0 487 488 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 489 490 void speculative_store_bypass_ht_init(void) 491 { 492 struct ssb_state *st = this_cpu_ptr(&ssb_state); 493 unsigned int this_cpu = smp_processor_id(); 494 unsigned int cpu; 495 496 st->local_state = 0; 497 498 /* 499 * Shared state setup happens once on the first bringup 500 * of the CPU. It's not destroyed on CPU hotunplug. 501 */ 502 if (st->shared_state) 503 return; 504 505 raw_spin_lock_init(&st->lock); 506 507 /* 508 * Go over HT siblings and check whether one of them has set up the 509 * shared state pointer already. 510 */ 511 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 512 if (cpu == this_cpu) 513 continue; 514 515 if (!per_cpu(ssb_state, cpu).shared_state) 516 continue; 517 518 /* Link it to the state of the sibling: */ 519 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 520 return; 521 } 522 523 /* 524 * First HT sibling to come up on the core. Link shared state of 525 * the first HT sibling to itself. The siblings on the same core 526 * which come up later will see the shared state pointer and link 527 * themselves to the state of this CPU. 528 */ 529 st->shared_state = st; 530 } 531 532 /* 533 * Logic is: First HT sibling enables SSBD for both siblings in the core 534 * and last sibling to disable it, disables it for the whole core. This how 535 * MSR_SPEC_CTRL works in "hardware": 536 * 537 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 538 */ 539 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 540 { 541 struct ssb_state *st = this_cpu_ptr(&ssb_state); 542 u64 msr = x86_amd_ls_cfg_base; 543 544 if (!static_cpu_has(X86_FEATURE_ZEN)) { 545 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 546 wrmsrl(MSR_AMD64_LS_CFG, msr); 547 return; 548 } 549 550 if (tifn & _TIF_SSBD) { 551 /* 552 * Since this can race with prctl(), block reentry on the 553 * same CPU. 554 */ 555 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 556 return; 557 558 msr |= x86_amd_ls_cfg_ssbd_mask; 559 560 raw_spin_lock(&st->shared_state->lock); 561 /* First sibling enables SSBD: */ 562 if (!st->shared_state->disable_state) 563 wrmsrl(MSR_AMD64_LS_CFG, msr); 564 st->shared_state->disable_state++; 565 raw_spin_unlock(&st->shared_state->lock); 566 } else { 567 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 568 return; 569 570 raw_spin_lock(&st->shared_state->lock); 571 st->shared_state->disable_state--; 572 if (!st->shared_state->disable_state) 573 wrmsrl(MSR_AMD64_LS_CFG, msr); 574 raw_spin_unlock(&st->shared_state->lock); 575 } 576 } 577 #else 578 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 579 { 580 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 581 582 wrmsrl(MSR_AMD64_LS_CFG, msr); 583 } 584 #endif 585 586 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 587 { 588 /* 589 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 590 * so ssbd_tif_to_spec_ctrl() just works. 591 */ 592 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 593 } 594 595 /* 596 * Update the MSRs managing speculation control, during context switch. 597 * 598 * tifp: Previous task's thread flags 599 * tifn: Next task's thread flags 600 */ 601 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 602 unsigned long tifn) 603 { 604 unsigned long tif_diff = tifp ^ tifn; 605 u64 msr = x86_spec_ctrl_base; 606 bool updmsr = false; 607 608 lockdep_assert_irqs_disabled(); 609 610 /* Handle change of TIF_SSBD depending on the mitigation method. */ 611 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 612 if (tif_diff & _TIF_SSBD) 613 amd_set_ssb_virt_state(tifn); 614 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 615 if (tif_diff & _TIF_SSBD) 616 amd_set_core_ssb_state(tifn); 617 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 618 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 619 updmsr |= !!(tif_diff & _TIF_SSBD); 620 msr |= ssbd_tif_to_spec_ctrl(tifn); 621 } 622 623 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 624 if (IS_ENABLED(CONFIG_SMP) && 625 static_branch_unlikely(&switch_to_cond_stibp)) { 626 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 627 msr |= stibp_tif_to_spec_ctrl(tifn); 628 } 629 630 if (updmsr) 631 update_spec_ctrl_cond(msr); 632 } 633 634 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 635 { 636 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 637 if (task_spec_ssb_disable(tsk)) 638 set_tsk_thread_flag(tsk, TIF_SSBD); 639 else 640 clear_tsk_thread_flag(tsk, TIF_SSBD); 641 642 if (task_spec_ib_disable(tsk)) 643 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 644 else 645 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 646 } 647 /* Return the updated threadinfo flags*/ 648 return read_task_thread_flags(tsk); 649 } 650 651 void speculation_ctrl_update(unsigned long tif) 652 { 653 unsigned long flags; 654 655 /* Forced update. Make sure all relevant TIF flags are different */ 656 local_irq_save(flags); 657 __speculation_ctrl_update(~tif, tif); 658 local_irq_restore(flags); 659 } 660 661 /* Called from seccomp/prctl update */ 662 void speculation_ctrl_update_current(void) 663 { 664 preempt_disable(); 665 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 666 preempt_enable(); 667 } 668 669 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 670 { 671 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 672 673 newval = cr4 ^ mask; 674 if (newval != cr4) { 675 this_cpu_write(cpu_tlbstate.cr4, newval); 676 __write_cr4(newval); 677 } 678 } 679 680 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 681 { 682 unsigned long tifp, tifn; 683 684 tifn = read_task_thread_flags(next_p); 685 tifp = read_task_thread_flags(prev_p); 686 687 switch_to_bitmap(tifp); 688 689 propagate_user_return_notify(prev_p, next_p); 690 691 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 692 arch_has_block_step()) { 693 unsigned long debugctl, msk; 694 695 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 696 debugctl &= ~DEBUGCTLMSR_BTF; 697 msk = tifn & _TIF_BLOCKSTEP; 698 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 699 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 700 } 701 702 if ((tifp ^ tifn) & _TIF_NOTSC) 703 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 704 705 if ((tifp ^ tifn) & _TIF_NOCPUID) 706 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 707 708 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 709 __speculation_ctrl_update(tifp, tifn); 710 } else { 711 speculation_ctrl_update_tif(prev_p); 712 tifn = speculation_ctrl_update_tif(next_p); 713 714 /* Enforce MSR update to ensure consistent state */ 715 __speculation_ctrl_update(~tifn, tifn); 716 } 717 } 718 719 /* 720 * Idle related variables and functions 721 */ 722 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 723 EXPORT_SYMBOL(boot_option_idle_override); 724 725 /* 726 * We use this if we don't have any better idle routine.. 727 */ 728 void __cpuidle default_idle(void) 729 { 730 raw_safe_halt(); 731 raw_local_irq_disable(); 732 } 733 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 734 EXPORT_SYMBOL(default_idle); 735 #endif 736 737 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle); 738 739 static bool x86_idle_set(void) 740 { 741 return !!static_call_query(x86_idle); 742 } 743 744 #ifndef CONFIG_SMP 745 static inline void __noreturn play_dead(void) 746 { 747 BUG(); 748 } 749 #endif 750 751 void arch_cpu_idle_enter(void) 752 { 753 tsc_verify_tsc_adjust(false); 754 local_touch_nmi(); 755 } 756 757 void __noreturn arch_cpu_idle_dead(void) 758 { 759 play_dead(); 760 } 761 762 /* 763 * Called from the generic idle code. 764 */ 765 void __cpuidle arch_cpu_idle(void) 766 { 767 static_call(x86_idle)(); 768 } 769 EXPORT_SYMBOL_GPL(arch_cpu_idle); 770 771 #ifdef CONFIG_XEN 772 bool xen_set_default_idle(void) 773 { 774 bool ret = x86_idle_set(); 775 776 static_call_update(x86_idle, default_idle); 777 778 return ret; 779 } 780 #endif 781 782 struct cpumask cpus_stop_mask; 783 784 void __noreturn stop_this_cpu(void *dummy) 785 { 786 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info); 787 unsigned int cpu = smp_processor_id(); 788 789 local_irq_disable(); 790 791 /* 792 * Remove this CPU from the online mask and disable it 793 * unconditionally. This might be redundant in case that the reboot 794 * vector was handled late and stop_other_cpus() sent an NMI. 795 * 796 * According to SDM and APM NMIs can be accepted even after soft 797 * disabling the local APIC. 798 */ 799 set_cpu_online(cpu, false); 800 disable_local_APIC(); 801 mcheck_cpu_clear(c); 802 803 /* 804 * Use wbinvd on processors that support SME. This provides support 805 * for performing a successful kexec when going from SME inactive 806 * to SME active (or vice-versa). The cache must be cleared so that 807 * if there are entries with the same physical address, both with and 808 * without the encryption bit, they don't race each other when flushed 809 * and potentially end up with the wrong entry being committed to 810 * memory. 811 * 812 * Test the CPUID bit directly because the machine might've cleared 813 * X86_FEATURE_SME due to cmdline options. 814 */ 815 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0))) 816 native_wbinvd(); 817 818 /* 819 * This brings a cache line back and dirties it, but 820 * native_stop_other_cpus() will overwrite cpus_stop_mask after it 821 * observed that all CPUs reported stop. This write will invalidate 822 * the related cache line on this CPU. 823 */ 824 cpumask_clear_cpu(cpu, &cpus_stop_mask); 825 826 for (;;) { 827 /* 828 * Use native_halt() so that memory contents don't change 829 * (stack usage and variables) after possibly issuing the 830 * native_wbinvd() above. 831 */ 832 native_halt(); 833 } 834 } 835 836 /* 837 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 838 * states (local apic timer and TSC stop). 839 * 840 * XXX this function is completely buggered vs RCU and tracing. 841 */ 842 static void amd_e400_idle(void) 843 { 844 /* 845 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 846 * gets set after static_cpu_has() places have been converted via 847 * alternatives. 848 */ 849 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 850 default_idle(); 851 return; 852 } 853 854 tick_broadcast_enter(); 855 856 default_idle(); 857 858 tick_broadcast_exit(); 859 } 860 861 /* 862 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf 863 * exists and whenever MONITOR/MWAIT extensions are present there is at 864 * least one C1 substate. 865 * 866 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait 867 * is passed to kernel commandline parameter. 868 */ 869 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 870 { 871 u32 eax, ebx, ecx, edx; 872 873 /* User has disallowed the use of MWAIT. Fallback to HALT */ 874 if (boot_option_idle_override == IDLE_NOMWAIT) 875 return 0; 876 877 /* MWAIT is not supported on this platform. Fallback to HALT */ 878 if (!cpu_has(c, X86_FEATURE_MWAIT)) 879 return 0; 880 881 /* Monitor has a bug. Fallback to HALT */ 882 if (boot_cpu_has_bug(X86_BUG_MONITOR)) 883 return 0; 884 885 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); 886 887 /* 888 * If MWAIT extensions are not available, it is safe to use MWAIT 889 * with EAX=0, ECX=0. 890 */ 891 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) 892 return 1; 893 894 /* 895 * If MWAIT extensions are available, there should be at least one 896 * MWAIT C1 substate present. 897 */ 898 return (edx & MWAIT_C1_SUBSTATE_MASK); 899 } 900 901 /* 902 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 903 * with interrupts enabled and no flags, which is backwards compatible with the 904 * original MWAIT implementation. 905 */ 906 static __cpuidle void mwait_idle(void) 907 { 908 if (!current_set_polling_and_test()) { 909 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 910 mb(); /* quirk */ 911 clflush((void *)¤t_thread_info()->flags); 912 mb(); /* quirk */ 913 } 914 915 __monitor((void *)¤t_thread_info()->flags, 0, 0); 916 if (!need_resched()) { 917 __sti_mwait(0, 0); 918 raw_local_irq_disable(); 919 } 920 } 921 __current_clr_polling(); 922 } 923 924 void select_idle_routine(const struct cpuinfo_x86 *c) 925 { 926 #ifdef CONFIG_SMP 927 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 928 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 929 #endif 930 if (x86_idle_set() || boot_option_idle_override == IDLE_POLL) 931 return; 932 933 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 934 pr_info("using AMD E400 aware idle routine\n"); 935 static_call_update(x86_idle, amd_e400_idle); 936 } else if (prefer_mwait_c1_over_halt(c)) { 937 pr_info("using mwait in idle threads\n"); 938 static_call_update(x86_idle, mwait_idle); 939 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) { 940 pr_info("using TDX aware idle routine\n"); 941 static_call_update(x86_idle, tdx_safe_halt); 942 } else 943 static_call_update(x86_idle, default_idle); 944 } 945 946 void amd_e400_c1e_apic_setup(void) 947 { 948 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 949 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 950 local_irq_disable(); 951 tick_broadcast_force(); 952 local_irq_enable(); 953 } 954 } 955 956 void __init arch_post_acpi_subsys_init(void) 957 { 958 u32 lo, hi; 959 960 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 961 return; 962 963 /* 964 * AMD E400 detection needs to happen after ACPI has been enabled. If 965 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 966 * MSR_K8_INT_PENDING_MSG. 967 */ 968 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 969 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 970 return; 971 972 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 973 974 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 975 mark_tsc_unstable("TSC halt in AMD C1E"); 976 pr_info("System has AMD C1E enabled\n"); 977 } 978 979 static int __init idle_setup(char *str) 980 { 981 if (!str) 982 return -EINVAL; 983 984 if (!strcmp(str, "poll")) { 985 pr_info("using polling idle threads\n"); 986 boot_option_idle_override = IDLE_POLL; 987 cpu_idle_poll_ctrl(true); 988 } else if (!strcmp(str, "halt")) { 989 /* 990 * When the boot option of idle=halt is added, halt is 991 * forced to be used for CPU idle. In such case CPU C2/C3 992 * won't be used again. 993 * To continue to load the CPU idle driver, don't touch 994 * the boot_option_idle_override. 995 */ 996 static_call_update(x86_idle, default_idle); 997 boot_option_idle_override = IDLE_HALT; 998 } else if (!strcmp(str, "nomwait")) { 999 /* 1000 * If the boot option of "idle=nomwait" is added, 1001 * it means that mwait will be disabled for CPU C1/C2/C3 1002 * states. 1003 */ 1004 boot_option_idle_override = IDLE_NOMWAIT; 1005 } else 1006 return -1; 1007 1008 return 0; 1009 } 1010 early_param("idle", idle_setup); 1011 1012 unsigned long arch_align_stack(unsigned long sp) 1013 { 1014 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1015 sp -= get_random_u32_below(8192); 1016 return sp & ~0xf; 1017 } 1018 1019 unsigned long arch_randomize_brk(struct mm_struct *mm) 1020 { 1021 return randomize_page(mm->brk, 0x02000000); 1022 } 1023 1024 /* 1025 * Called from fs/proc with a reference on @p to find the function 1026 * which called into schedule(). This needs to be done carefully 1027 * because the task might wake up and we might look at a stack 1028 * changing under us. 1029 */ 1030 unsigned long __get_wchan(struct task_struct *p) 1031 { 1032 struct unwind_state state; 1033 unsigned long addr = 0; 1034 1035 if (!try_get_task_stack(p)) 1036 return 0; 1037 1038 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state); 1039 unwind_next_frame(&state)) { 1040 addr = unwind_get_return_address(&state); 1041 if (!addr) 1042 break; 1043 if (in_sched_functions(addr)) 1044 continue; 1045 break; 1046 } 1047 1048 put_task_stack(p); 1049 1050 return addr; 1051 } 1052 1053 long do_arch_prctl_common(int option, unsigned long arg2) 1054 { 1055 switch (option) { 1056 case ARCH_GET_CPUID: 1057 return get_cpuid_mode(); 1058 case ARCH_SET_CPUID: 1059 return set_cpuid_mode(arg2); 1060 case ARCH_GET_XCOMP_SUPP: 1061 case ARCH_GET_XCOMP_PERM: 1062 case ARCH_REQ_XCOMP_PERM: 1063 case ARCH_GET_XCOMP_GUEST_PERM: 1064 case ARCH_REQ_XCOMP_GUEST_PERM: 1065 return fpu_xstate_prctl(option, arg2); 1066 } 1067 1068 return -EINVAL; 1069 } 1070