1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/system.h> 18 #include <asm/apic.h> 19 #include <asm/syscalls.h> 20 #include <asm/idle.h> 21 #include <asm/uaccess.h> 22 #include <asm/i387.h> 23 #include <asm/ds.h> 24 #include <asm/debugreg.h> 25 26 unsigned long idle_halt; 27 EXPORT_SYMBOL(idle_halt); 28 unsigned long idle_nomwait; 29 EXPORT_SYMBOL(idle_nomwait); 30 31 struct kmem_cache *task_xstate_cachep; 32 33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 34 { 35 *dst = *src; 36 if (src->thread.xstate) { 37 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, 38 GFP_KERNEL); 39 if (!dst->thread.xstate) 40 return -ENOMEM; 41 WARN_ON((unsigned long)dst->thread.xstate & 15); 42 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); 43 } 44 return 0; 45 } 46 47 void free_thread_xstate(struct task_struct *tsk) 48 { 49 if (tsk->thread.xstate) { 50 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); 51 tsk->thread.xstate = NULL; 52 } 53 54 WARN(tsk->thread.ds_ctx, "leaking DS context\n"); 55 } 56 57 void free_thread_info(struct thread_info *ti) 58 { 59 free_thread_xstate(ti->task); 60 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 61 } 62 63 void arch_task_cache_init(void) 64 { 65 task_xstate_cachep = 66 kmem_cache_create("task_xstate", xstate_size, 67 __alignof__(union thread_xstate), 68 SLAB_PANIC | SLAB_NOTRACK, NULL); 69 } 70 71 /* 72 * Free current thread data structures etc.. 73 */ 74 void exit_thread(void) 75 { 76 struct task_struct *me = current; 77 struct thread_struct *t = &me->thread; 78 unsigned long *bp = t->io_bitmap_ptr; 79 80 if (bp) { 81 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 82 83 t->io_bitmap_ptr = NULL; 84 clear_thread_flag(TIF_IO_BITMAP); 85 /* 86 * Careful, clear this in the TSS too: 87 */ 88 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 89 t->io_bitmap_max = 0; 90 put_cpu(); 91 kfree(bp); 92 } 93 } 94 95 void show_regs_common(void) 96 { 97 const char *board, *product; 98 99 board = dmi_get_system_info(DMI_BOARD_NAME); 100 if (!board) 101 board = ""; 102 product = dmi_get_system_info(DMI_PRODUCT_NAME); 103 if (!product) 104 product = ""; 105 106 printk(KERN_CONT "\n"); 107 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 108 current->pid, current->comm, print_tainted(), 109 init_utsname()->release, 110 (int)strcspn(init_utsname()->version, " "), 111 init_utsname()->version, board, product); 112 } 113 114 void flush_thread(void) 115 { 116 struct task_struct *tsk = current; 117 118 #ifdef CONFIG_X86_64 119 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) { 120 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING); 121 if (test_tsk_thread_flag(tsk, TIF_IA32)) { 122 clear_tsk_thread_flag(tsk, TIF_IA32); 123 } else { 124 set_tsk_thread_flag(tsk, TIF_IA32); 125 current_thread_info()->status |= TS_COMPAT; 126 } 127 } 128 #endif 129 130 flush_ptrace_hw_breakpoint(tsk); 131 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 132 /* 133 * Forget coprocessor state.. 134 */ 135 tsk->fpu_counter = 0; 136 clear_fpu(tsk); 137 clear_used_math(); 138 } 139 140 static void hard_disable_TSC(void) 141 { 142 write_cr4(read_cr4() | X86_CR4_TSD); 143 } 144 145 void disable_TSC(void) 146 { 147 preempt_disable(); 148 if (!test_and_set_thread_flag(TIF_NOTSC)) 149 /* 150 * Must flip the CPU state synchronously with 151 * TIF_NOTSC in the current running context. 152 */ 153 hard_disable_TSC(); 154 preempt_enable(); 155 } 156 157 static void hard_enable_TSC(void) 158 { 159 write_cr4(read_cr4() & ~X86_CR4_TSD); 160 } 161 162 static void enable_TSC(void) 163 { 164 preempt_disable(); 165 if (test_and_clear_thread_flag(TIF_NOTSC)) 166 /* 167 * Must flip the CPU state synchronously with 168 * TIF_NOTSC in the current running context. 169 */ 170 hard_enable_TSC(); 171 preempt_enable(); 172 } 173 174 int get_tsc_mode(unsigned long adr) 175 { 176 unsigned int val; 177 178 if (test_thread_flag(TIF_NOTSC)) 179 val = PR_TSC_SIGSEGV; 180 else 181 val = PR_TSC_ENABLE; 182 183 return put_user(val, (unsigned int __user *)adr); 184 } 185 186 int set_tsc_mode(unsigned int val) 187 { 188 if (val == PR_TSC_SIGSEGV) 189 disable_TSC(); 190 else if (val == PR_TSC_ENABLE) 191 enable_TSC(); 192 else 193 return -EINVAL; 194 195 return 0; 196 } 197 198 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 199 struct tss_struct *tss) 200 { 201 struct thread_struct *prev, *next; 202 203 prev = &prev_p->thread; 204 next = &next_p->thread; 205 206 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 207 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 208 ds_switch_to(prev_p, next_p); 209 else if (next->debugctlmsr != prev->debugctlmsr) 210 update_debugctlmsr(next->debugctlmsr); 211 212 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 213 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 214 /* prev and next are different */ 215 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 216 hard_disable_TSC(); 217 else 218 hard_enable_TSC(); 219 } 220 221 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 222 /* 223 * Copy the relevant range of the IO bitmap. 224 * Normally this is 128 bytes or less: 225 */ 226 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 227 max(prev->io_bitmap_max, next->io_bitmap_max)); 228 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 229 /* 230 * Clear any possible leftover bits: 231 */ 232 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 233 } 234 propagate_user_return_notify(prev_p, next_p); 235 } 236 237 int sys_fork(struct pt_regs *regs) 238 { 239 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 240 } 241 242 /* 243 * This is trivial, and on the face of it looks like it 244 * could equally well be done in user mode. 245 * 246 * Not so, for quite unobvious reasons - register pressure. 247 * In user mode vfork() cannot have a stack frame, and if 248 * done by calling the "clone()" system call directly, you 249 * do not have enough call-clobbered registers to hold all 250 * the information you need. 251 */ 252 int sys_vfork(struct pt_regs *regs) 253 { 254 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 255 NULL, NULL); 256 } 257 258 long 259 sys_clone(unsigned long clone_flags, unsigned long newsp, 260 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 261 { 262 if (!newsp) 263 newsp = regs->sp; 264 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 265 } 266 267 /* 268 * This gets run with %si containing the 269 * function to call, and %di containing 270 * the "args". 271 */ 272 extern void kernel_thread_helper(void); 273 274 /* 275 * Create a kernel thread 276 */ 277 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 278 { 279 struct pt_regs regs; 280 281 memset(®s, 0, sizeof(regs)); 282 283 regs.si = (unsigned long) fn; 284 regs.di = (unsigned long) arg; 285 286 #ifdef CONFIG_X86_32 287 regs.ds = __USER_DS; 288 regs.es = __USER_DS; 289 regs.fs = __KERNEL_PERCPU; 290 regs.gs = __KERNEL_STACK_CANARY; 291 #endif 292 293 regs.orig_ax = -1; 294 regs.ip = (unsigned long) kernel_thread_helper; 295 regs.cs = __KERNEL_CS | get_kernel_rpl(); 296 regs.flags = X86_EFLAGS_IF | 0x2; 297 298 /* Ok, create the new process.. */ 299 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 300 } 301 EXPORT_SYMBOL(kernel_thread); 302 303 /* 304 * sys_execve() executes a new program. 305 */ 306 long sys_execve(char __user *name, char __user * __user *argv, 307 char __user * __user *envp, struct pt_regs *regs) 308 { 309 long error; 310 char *filename; 311 312 filename = getname(name); 313 error = PTR_ERR(filename); 314 if (IS_ERR(filename)) 315 return error; 316 error = do_execve(filename, argv, envp, regs); 317 318 #ifdef CONFIG_X86_32 319 if (error == 0) { 320 /* Make sure we don't return using sysenter.. */ 321 set_thread_flag(TIF_IRET); 322 } 323 #endif 324 325 putname(filename); 326 return error; 327 } 328 329 /* 330 * Idle related variables and functions 331 */ 332 unsigned long boot_option_idle_override = 0; 333 EXPORT_SYMBOL(boot_option_idle_override); 334 335 /* 336 * Powermanagement idle function, if any.. 337 */ 338 void (*pm_idle)(void); 339 EXPORT_SYMBOL(pm_idle); 340 341 #ifdef CONFIG_X86_32 342 /* 343 * This halt magic was a workaround for ancient floppy DMA 344 * wreckage. It should be safe to remove. 345 */ 346 static int hlt_counter; 347 void disable_hlt(void) 348 { 349 hlt_counter++; 350 } 351 EXPORT_SYMBOL(disable_hlt); 352 353 void enable_hlt(void) 354 { 355 hlt_counter--; 356 } 357 EXPORT_SYMBOL(enable_hlt); 358 359 static inline int hlt_use_halt(void) 360 { 361 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 362 } 363 #else 364 static inline int hlt_use_halt(void) 365 { 366 return 1; 367 } 368 #endif 369 370 /* 371 * We use this if we don't have any better 372 * idle routine.. 373 */ 374 void default_idle(void) 375 { 376 if (hlt_use_halt()) { 377 trace_power_start(POWER_CSTATE, 1); 378 current_thread_info()->status &= ~TS_POLLING; 379 /* 380 * TS_POLLING-cleared state must be visible before we 381 * test NEED_RESCHED: 382 */ 383 smp_mb(); 384 385 if (!need_resched()) 386 safe_halt(); /* enables interrupts racelessly */ 387 else 388 local_irq_enable(); 389 current_thread_info()->status |= TS_POLLING; 390 } else { 391 local_irq_enable(); 392 /* loop is done by the caller */ 393 cpu_relax(); 394 } 395 } 396 #ifdef CONFIG_APM_MODULE 397 EXPORT_SYMBOL(default_idle); 398 #endif 399 400 void stop_this_cpu(void *dummy) 401 { 402 local_irq_disable(); 403 /* 404 * Remove this CPU: 405 */ 406 set_cpu_online(smp_processor_id(), false); 407 disable_local_APIC(); 408 409 for (;;) { 410 if (hlt_works(smp_processor_id())) 411 halt(); 412 } 413 } 414 415 static void do_nothing(void *unused) 416 { 417 } 418 419 /* 420 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 421 * pm_idle and update to new pm_idle value. Required while changing pm_idle 422 * handler on SMP systems. 423 * 424 * Caller must have changed pm_idle to the new value before the call. Old 425 * pm_idle value will not be used by any CPU after the return of this function. 426 */ 427 void cpu_idle_wait(void) 428 { 429 smp_mb(); 430 /* kick all the CPUs so that they exit out of pm_idle */ 431 smp_call_function(do_nothing, NULL, 1); 432 } 433 EXPORT_SYMBOL_GPL(cpu_idle_wait); 434 435 /* 436 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 437 * which can obviate IPI to trigger checking of need_resched. 438 * We execute MONITOR against need_resched and enter optimized wait state 439 * through MWAIT. Whenever someone changes need_resched, we would be woken 440 * up from MWAIT (without an IPI). 441 * 442 * New with Core Duo processors, MWAIT can take some hints based on CPU 443 * capability. 444 */ 445 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 446 { 447 trace_power_start(POWER_CSTATE, (ax>>4)+1); 448 if (!need_resched()) { 449 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 450 clflush((void *)¤t_thread_info()->flags); 451 452 __monitor((void *)¤t_thread_info()->flags, 0, 0); 453 smp_mb(); 454 if (!need_resched()) 455 __mwait(ax, cx); 456 } 457 } 458 459 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 460 static void mwait_idle(void) 461 { 462 if (!need_resched()) { 463 trace_power_start(POWER_CSTATE, 1); 464 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 465 clflush((void *)¤t_thread_info()->flags); 466 467 __monitor((void *)¤t_thread_info()->flags, 0, 0); 468 smp_mb(); 469 if (!need_resched()) 470 __sti_mwait(0, 0); 471 else 472 local_irq_enable(); 473 } else 474 local_irq_enable(); 475 } 476 477 /* 478 * On SMP it's slightly faster (but much more power-consuming!) 479 * to poll the ->work.need_resched flag instead of waiting for the 480 * cross-CPU IPI to arrive. Use this option with caution. 481 */ 482 static void poll_idle(void) 483 { 484 trace_power_start(POWER_CSTATE, 0); 485 local_irq_enable(); 486 while (!need_resched()) 487 cpu_relax(); 488 trace_power_end(0); 489 } 490 491 /* 492 * mwait selection logic: 493 * 494 * It depends on the CPU. For AMD CPUs that support MWAIT this is 495 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 496 * then depend on a clock divisor and current Pstate of the core. If 497 * all cores of a processor are in halt state (C1) the processor can 498 * enter the C1E (C1 enhanced) state. If mwait is used this will never 499 * happen. 500 * 501 * idle=mwait overrides this decision and forces the usage of mwait. 502 */ 503 static int __cpuinitdata force_mwait; 504 505 #define MWAIT_INFO 0x05 506 #define MWAIT_ECX_EXTENDED_INFO 0x01 507 #define MWAIT_EDX_C1 0xf0 508 509 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 510 { 511 u32 eax, ebx, ecx, edx; 512 513 if (force_mwait) 514 return 1; 515 516 if (c->cpuid_level < MWAIT_INFO) 517 return 0; 518 519 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 520 /* Check, whether EDX has extended info about MWAIT */ 521 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 522 return 1; 523 524 /* 525 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 526 * C1 supports MWAIT 527 */ 528 return (edx & MWAIT_EDX_C1); 529 } 530 531 /* 532 * Check for AMD CPUs, which have potentially C1E support 533 */ 534 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) 535 { 536 if (c->x86_vendor != X86_VENDOR_AMD) 537 return 0; 538 539 if (c->x86 < 0x0F) 540 return 0; 541 542 /* Family 0x0f models < rev F do not have C1E */ 543 if (c->x86 == 0x0f && c->x86_model < 0x40) 544 return 0; 545 546 return 1; 547 } 548 549 static cpumask_var_t c1e_mask; 550 static int c1e_detected; 551 552 void c1e_remove_cpu(int cpu) 553 { 554 if (c1e_mask != NULL) 555 cpumask_clear_cpu(cpu, c1e_mask); 556 } 557 558 /* 559 * C1E aware idle routine. We check for C1E active in the interrupt 560 * pending message MSR. If we detect C1E, then we handle it the same 561 * way as C3 power states (local apic timer and TSC stop) 562 */ 563 static void c1e_idle(void) 564 { 565 if (need_resched()) 566 return; 567 568 if (!c1e_detected) { 569 u32 lo, hi; 570 571 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 572 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 573 c1e_detected = 1; 574 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 575 mark_tsc_unstable("TSC halt in AMD C1E"); 576 printk(KERN_INFO "System has AMD C1E enabled\n"); 577 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); 578 } 579 } 580 581 if (c1e_detected) { 582 int cpu = smp_processor_id(); 583 584 if (!cpumask_test_cpu(cpu, c1e_mask)) { 585 cpumask_set_cpu(cpu, c1e_mask); 586 /* 587 * Force broadcast so ACPI can not interfere. 588 */ 589 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 590 &cpu); 591 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 592 cpu); 593 } 594 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 595 596 default_idle(); 597 598 /* 599 * The switch back from broadcast mode needs to be 600 * called with interrupts disabled. 601 */ 602 local_irq_disable(); 603 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 604 local_irq_enable(); 605 } else 606 default_idle(); 607 } 608 609 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 610 { 611 #ifdef CONFIG_SMP 612 if (pm_idle == poll_idle && smp_num_siblings > 1) { 613 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 614 " performance may degrade.\n"); 615 } 616 #endif 617 if (pm_idle) 618 return; 619 620 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 621 /* 622 * One CPU supports mwait => All CPUs supports mwait 623 */ 624 printk(KERN_INFO "using mwait in idle threads.\n"); 625 pm_idle = mwait_idle; 626 } else if (check_c1e_idle(c)) { 627 printk(KERN_INFO "using C1E aware idle routine\n"); 628 pm_idle = c1e_idle; 629 } else 630 pm_idle = default_idle; 631 } 632 633 void __init init_c1e_mask(void) 634 { 635 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 636 if (pm_idle == c1e_idle) 637 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 638 } 639 640 static int __init idle_setup(char *str) 641 { 642 if (!str) 643 return -EINVAL; 644 645 if (!strcmp(str, "poll")) { 646 printk("using polling idle threads.\n"); 647 pm_idle = poll_idle; 648 } else if (!strcmp(str, "mwait")) 649 force_mwait = 1; 650 else if (!strcmp(str, "halt")) { 651 /* 652 * When the boot option of idle=halt is added, halt is 653 * forced to be used for CPU idle. In such case CPU C2/C3 654 * won't be used again. 655 * To continue to load the CPU idle driver, don't touch 656 * the boot_option_idle_override. 657 */ 658 pm_idle = default_idle; 659 idle_halt = 1; 660 return 0; 661 } else if (!strcmp(str, "nomwait")) { 662 /* 663 * If the boot option of "idle=nomwait" is added, 664 * it means that mwait will be disabled for CPU C2/C3 665 * states. In such case it won't touch the variable 666 * of boot_option_idle_override. 667 */ 668 idle_nomwait = 1; 669 return 0; 670 } else 671 return -1; 672 673 boot_option_idle_override = 1; 674 return 0; 675 } 676 early_param("idle", idle_setup); 677 678 unsigned long arch_align_stack(unsigned long sp) 679 { 680 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 681 sp -= get_random_int() % 8192; 682 return sp & ~0xf; 683 } 684 685 unsigned long arch_randomize_brk(struct mm_struct *mm) 686 { 687 unsigned long range_end = mm->brk + 0x02000000; 688 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 689 } 690 691