xref: /openbmc/linux/arch/x86/kernel/process.c (revision 7dd65feb)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/ds.h>
24 #include <asm/debugreg.h>
25 
26 unsigned long idle_halt;
27 EXPORT_SYMBOL(idle_halt);
28 unsigned long idle_nomwait;
29 EXPORT_SYMBOL(idle_nomwait);
30 
31 struct kmem_cache *task_xstate_cachep;
32 
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 	*dst = *src;
36 	if (src->thread.xstate) {
37 		dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
38 						      GFP_KERNEL);
39 		if (!dst->thread.xstate)
40 			return -ENOMEM;
41 		WARN_ON((unsigned long)dst->thread.xstate & 15);
42 		memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
43 	}
44 	return 0;
45 }
46 
47 void free_thread_xstate(struct task_struct *tsk)
48 {
49 	if (tsk->thread.xstate) {
50 		kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
51 		tsk->thread.xstate = NULL;
52 	}
53 
54 	WARN(tsk->thread.ds_ctx, "leaking DS context\n");
55 }
56 
57 void free_thread_info(struct thread_info *ti)
58 {
59 	free_thread_xstate(ti->task);
60 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
61 }
62 
63 void arch_task_cache_init(void)
64 {
65         task_xstate_cachep =
66         	kmem_cache_create("task_xstate", xstate_size,
67 				  __alignof__(union thread_xstate),
68 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
69 }
70 
71 /*
72  * Free current thread data structures etc..
73  */
74 void exit_thread(void)
75 {
76 	struct task_struct *me = current;
77 	struct thread_struct *t = &me->thread;
78 	unsigned long *bp = t->io_bitmap_ptr;
79 
80 	if (bp) {
81 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
82 
83 		t->io_bitmap_ptr = NULL;
84 		clear_thread_flag(TIF_IO_BITMAP);
85 		/*
86 		 * Careful, clear this in the TSS too:
87 		 */
88 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
89 		t->io_bitmap_max = 0;
90 		put_cpu();
91 		kfree(bp);
92 	}
93 }
94 
95 void show_regs_common(void)
96 {
97 	const char *board, *product;
98 
99 	board = dmi_get_system_info(DMI_BOARD_NAME);
100 	if (!board)
101 		board = "";
102 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
103 	if (!product)
104 		product = "";
105 
106 	printk(KERN_CONT "\n");
107 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
108 		current->pid, current->comm, print_tainted(),
109 		init_utsname()->release,
110 		(int)strcspn(init_utsname()->version, " "),
111 		init_utsname()->version, board, product);
112 }
113 
114 void flush_thread(void)
115 {
116 	struct task_struct *tsk = current;
117 
118 #ifdef CONFIG_X86_64
119 	if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
120 		clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
121 		if (test_tsk_thread_flag(tsk, TIF_IA32)) {
122 			clear_tsk_thread_flag(tsk, TIF_IA32);
123 		} else {
124 			set_tsk_thread_flag(tsk, TIF_IA32);
125 			current_thread_info()->status |= TS_COMPAT;
126 		}
127 	}
128 #endif
129 
130 	flush_ptrace_hw_breakpoint(tsk);
131 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
132 	/*
133 	 * Forget coprocessor state..
134 	 */
135 	tsk->fpu_counter = 0;
136 	clear_fpu(tsk);
137 	clear_used_math();
138 }
139 
140 static void hard_disable_TSC(void)
141 {
142 	write_cr4(read_cr4() | X86_CR4_TSD);
143 }
144 
145 void disable_TSC(void)
146 {
147 	preempt_disable();
148 	if (!test_and_set_thread_flag(TIF_NOTSC))
149 		/*
150 		 * Must flip the CPU state synchronously with
151 		 * TIF_NOTSC in the current running context.
152 		 */
153 		hard_disable_TSC();
154 	preempt_enable();
155 }
156 
157 static void hard_enable_TSC(void)
158 {
159 	write_cr4(read_cr4() & ~X86_CR4_TSD);
160 }
161 
162 static void enable_TSC(void)
163 {
164 	preempt_disable();
165 	if (test_and_clear_thread_flag(TIF_NOTSC))
166 		/*
167 		 * Must flip the CPU state synchronously with
168 		 * TIF_NOTSC in the current running context.
169 		 */
170 		hard_enable_TSC();
171 	preempt_enable();
172 }
173 
174 int get_tsc_mode(unsigned long adr)
175 {
176 	unsigned int val;
177 
178 	if (test_thread_flag(TIF_NOTSC))
179 		val = PR_TSC_SIGSEGV;
180 	else
181 		val = PR_TSC_ENABLE;
182 
183 	return put_user(val, (unsigned int __user *)adr);
184 }
185 
186 int set_tsc_mode(unsigned int val)
187 {
188 	if (val == PR_TSC_SIGSEGV)
189 		disable_TSC();
190 	else if (val == PR_TSC_ENABLE)
191 		enable_TSC();
192 	else
193 		return -EINVAL;
194 
195 	return 0;
196 }
197 
198 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
199 		      struct tss_struct *tss)
200 {
201 	struct thread_struct *prev, *next;
202 
203 	prev = &prev_p->thread;
204 	next = &next_p->thread;
205 
206 	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
207 	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
208 		ds_switch_to(prev_p, next_p);
209 	else if (next->debugctlmsr != prev->debugctlmsr)
210 		update_debugctlmsr(next->debugctlmsr);
211 
212 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
213 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
214 		/* prev and next are different */
215 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
216 			hard_disable_TSC();
217 		else
218 			hard_enable_TSC();
219 	}
220 
221 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
222 		/*
223 		 * Copy the relevant range of the IO bitmap.
224 		 * Normally this is 128 bytes or less:
225 		 */
226 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
227 		       max(prev->io_bitmap_max, next->io_bitmap_max));
228 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
229 		/*
230 		 * Clear any possible leftover bits:
231 		 */
232 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
233 	}
234 	propagate_user_return_notify(prev_p, next_p);
235 }
236 
237 int sys_fork(struct pt_regs *regs)
238 {
239 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
240 }
241 
242 /*
243  * This is trivial, and on the face of it looks like it
244  * could equally well be done in user mode.
245  *
246  * Not so, for quite unobvious reasons - register pressure.
247  * In user mode vfork() cannot have a stack frame, and if
248  * done by calling the "clone()" system call directly, you
249  * do not have enough call-clobbered registers to hold all
250  * the information you need.
251  */
252 int sys_vfork(struct pt_regs *regs)
253 {
254 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
255 		       NULL, NULL);
256 }
257 
258 long
259 sys_clone(unsigned long clone_flags, unsigned long newsp,
260 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
261 {
262 	if (!newsp)
263 		newsp = regs->sp;
264 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
265 }
266 
267 /*
268  * This gets run with %si containing the
269  * function to call, and %di containing
270  * the "args".
271  */
272 extern void kernel_thread_helper(void);
273 
274 /*
275  * Create a kernel thread
276  */
277 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
278 {
279 	struct pt_regs regs;
280 
281 	memset(&regs, 0, sizeof(regs));
282 
283 	regs.si = (unsigned long) fn;
284 	regs.di = (unsigned long) arg;
285 
286 #ifdef CONFIG_X86_32
287 	regs.ds = __USER_DS;
288 	regs.es = __USER_DS;
289 	regs.fs = __KERNEL_PERCPU;
290 	regs.gs = __KERNEL_STACK_CANARY;
291 #endif
292 
293 	regs.orig_ax = -1;
294 	regs.ip = (unsigned long) kernel_thread_helper;
295 	regs.cs = __KERNEL_CS | get_kernel_rpl();
296 	regs.flags = X86_EFLAGS_IF | 0x2;
297 
298 	/* Ok, create the new process.. */
299 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
300 }
301 EXPORT_SYMBOL(kernel_thread);
302 
303 /*
304  * sys_execve() executes a new program.
305  */
306 long sys_execve(char __user *name, char __user * __user *argv,
307 		char __user * __user *envp, struct pt_regs *regs)
308 {
309 	long error;
310 	char *filename;
311 
312 	filename = getname(name);
313 	error = PTR_ERR(filename);
314 	if (IS_ERR(filename))
315 		return error;
316 	error = do_execve(filename, argv, envp, regs);
317 
318 #ifdef CONFIG_X86_32
319 	if (error == 0) {
320 		/* Make sure we don't return using sysenter.. */
321                 set_thread_flag(TIF_IRET);
322         }
323 #endif
324 
325 	putname(filename);
326 	return error;
327 }
328 
329 /*
330  * Idle related variables and functions
331  */
332 unsigned long boot_option_idle_override = 0;
333 EXPORT_SYMBOL(boot_option_idle_override);
334 
335 /*
336  * Powermanagement idle function, if any..
337  */
338 void (*pm_idle)(void);
339 EXPORT_SYMBOL(pm_idle);
340 
341 #ifdef CONFIG_X86_32
342 /*
343  * This halt magic was a workaround for ancient floppy DMA
344  * wreckage. It should be safe to remove.
345  */
346 static int hlt_counter;
347 void disable_hlt(void)
348 {
349 	hlt_counter++;
350 }
351 EXPORT_SYMBOL(disable_hlt);
352 
353 void enable_hlt(void)
354 {
355 	hlt_counter--;
356 }
357 EXPORT_SYMBOL(enable_hlt);
358 
359 static inline int hlt_use_halt(void)
360 {
361 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
362 }
363 #else
364 static inline int hlt_use_halt(void)
365 {
366 	return 1;
367 }
368 #endif
369 
370 /*
371  * We use this if we don't have any better
372  * idle routine..
373  */
374 void default_idle(void)
375 {
376 	if (hlt_use_halt()) {
377 		trace_power_start(POWER_CSTATE, 1);
378 		current_thread_info()->status &= ~TS_POLLING;
379 		/*
380 		 * TS_POLLING-cleared state must be visible before we
381 		 * test NEED_RESCHED:
382 		 */
383 		smp_mb();
384 
385 		if (!need_resched())
386 			safe_halt();	/* enables interrupts racelessly */
387 		else
388 			local_irq_enable();
389 		current_thread_info()->status |= TS_POLLING;
390 	} else {
391 		local_irq_enable();
392 		/* loop is done by the caller */
393 		cpu_relax();
394 	}
395 }
396 #ifdef CONFIG_APM_MODULE
397 EXPORT_SYMBOL(default_idle);
398 #endif
399 
400 void stop_this_cpu(void *dummy)
401 {
402 	local_irq_disable();
403 	/*
404 	 * Remove this CPU:
405 	 */
406 	set_cpu_online(smp_processor_id(), false);
407 	disable_local_APIC();
408 
409 	for (;;) {
410 		if (hlt_works(smp_processor_id()))
411 			halt();
412 	}
413 }
414 
415 static void do_nothing(void *unused)
416 {
417 }
418 
419 /*
420  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
421  * pm_idle and update to new pm_idle value. Required while changing pm_idle
422  * handler on SMP systems.
423  *
424  * Caller must have changed pm_idle to the new value before the call. Old
425  * pm_idle value will not be used by any CPU after the return of this function.
426  */
427 void cpu_idle_wait(void)
428 {
429 	smp_mb();
430 	/* kick all the CPUs so that they exit out of pm_idle */
431 	smp_call_function(do_nothing, NULL, 1);
432 }
433 EXPORT_SYMBOL_GPL(cpu_idle_wait);
434 
435 /*
436  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
437  * which can obviate IPI to trigger checking of need_resched.
438  * We execute MONITOR against need_resched and enter optimized wait state
439  * through MWAIT. Whenever someone changes need_resched, we would be woken
440  * up from MWAIT (without an IPI).
441  *
442  * New with Core Duo processors, MWAIT can take some hints based on CPU
443  * capability.
444  */
445 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
446 {
447 	trace_power_start(POWER_CSTATE, (ax>>4)+1);
448 	if (!need_resched()) {
449 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
450 			clflush((void *)&current_thread_info()->flags);
451 
452 		__monitor((void *)&current_thread_info()->flags, 0, 0);
453 		smp_mb();
454 		if (!need_resched())
455 			__mwait(ax, cx);
456 	}
457 }
458 
459 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
460 static void mwait_idle(void)
461 {
462 	if (!need_resched()) {
463 		trace_power_start(POWER_CSTATE, 1);
464 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
465 			clflush((void *)&current_thread_info()->flags);
466 
467 		__monitor((void *)&current_thread_info()->flags, 0, 0);
468 		smp_mb();
469 		if (!need_resched())
470 			__sti_mwait(0, 0);
471 		else
472 			local_irq_enable();
473 	} else
474 		local_irq_enable();
475 }
476 
477 /*
478  * On SMP it's slightly faster (but much more power-consuming!)
479  * to poll the ->work.need_resched flag instead of waiting for the
480  * cross-CPU IPI to arrive. Use this option with caution.
481  */
482 static void poll_idle(void)
483 {
484 	trace_power_start(POWER_CSTATE, 0);
485 	local_irq_enable();
486 	while (!need_resched())
487 		cpu_relax();
488 	trace_power_end(0);
489 }
490 
491 /*
492  * mwait selection logic:
493  *
494  * It depends on the CPU. For AMD CPUs that support MWAIT this is
495  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
496  * then depend on a clock divisor and current Pstate of the core. If
497  * all cores of a processor are in halt state (C1) the processor can
498  * enter the C1E (C1 enhanced) state. If mwait is used this will never
499  * happen.
500  *
501  * idle=mwait overrides this decision and forces the usage of mwait.
502  */
503 static int __cpuinitdata force_mwait;
504 
505 #define MWAIT_INFO			0x05
506 #define MWAIT_ECX_EXTENDED_INFO		0x01
507 #define MWAIT_EDX_C1			0xf0
508 
509 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
510 {
511 	u32 eax, ebx, ecx, edx;
512 
513 	if (force_mwait)
514 		return 1;
515 
516 	if (c->cpuid_level < MWAIT_INFO)
517 		return 0;
518 
519 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
520 	/* Check, whether EDX has extended info about MWAIT */
521 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
522 		return 1;
523 
524 	/*
525 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
526 	 * C1  supports MWAIT
527 	 */
528 	return (edx & MWAIT_EDX_C1);
529 }
530 
531 /*
532  * Check for AMD CPUs, which have potentially C1E support
533  */
534 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
535 {
536 	if (c->x86_vendor != X86_VENDOR_AMD)
537 		return 0;
538 
539 	if (c->x86 < 0x0F)
540 		return 0;
541 
542 	/* Family 0x0f models < rev F do not have C1E */
543 	if (c->x86 == 0x0f && c->x86_model < 0x40)
544 		return 0;
545 
546 	return 1;
547 }
548 
549 static cpumask_var_t c1e_mask;
550 static int c1e_detected;
551 
552 void c1e_remove_cpu(int cpu)
553 {
554 	if (c1e_mask != NULL)
555 		cpumask_clear_cpu(cpu, c1e_mask);
556 }
557 
558 /*
559  * C1E aware idle routine. We check for C1E active in the interrupt
560  * pending message MSR. If we detect C1E, then we handle it the same
561  * way as C3 power states (local apic timer and TSC stop)
562  */
563 static void c1e_idle(void)
564 {
565 	if (need_resched())
566 		return;
567 
568 	if (!c1e_detected) {
569 		u32 lo, hi;
570 
571 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
572 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
573 			c1e_detected = 1;
574 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
575 				mark_tsc_unstable("TSC halt in AMD C1E");
576 			printk(KERN_INFO "System has AMD C1E enabled\n");
577 			set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
578 		}
579 	}
580 
581 	if (c1e_detected) {
582 		int cpu = smp_processor_id();
583 
584 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
585 			cpumask_set_cpu(cpu, c1e_mask);
586 			/*
587 			 * Force broadcast so ACPI can not interfere.
588 			 */
589 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
590 					   &cpu);
591 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
592 			       cpu);
593 		}
594 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
595 
596 		default_idle();
597 
598 		/*
599 		 * The switch back from broadcast mode needs to be
600 		 * called with interrupts disabled.
601 		 */
602 		 local_irq_disable();
603 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
604 		 local_irq_enable();
605 	} else
606 		default_idle();
607 }
608 
609 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
610 {
611 #ifdef CONFIG_SMP
612 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
613 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
614 			" performance may degrade.\n");
615 	}
616 #endif
617 	if (pm_idle)
618 		return;
619 
620 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
621 		/*
622 		 * One CPU supports mwait => All CPUs supports mwait
623 		 */
624 		printk(KERN_INFO "using mwait in idle threads.\n");
625 		pm_idle = mwait_idle;
626 	} else if (check_c1e_idle(c)) {
627 		printk(KERN_INFO "using C1E aware idle routine\n");
628 		pm_idle = c1e_idle;
629 	} else
630 		pm_idle = default_idle;
631 }
632 
633 void __init init_c1e_mask(void)
634 {
635 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
636 	if (pm_idle == c1e_idle)
637 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
638 }
639 
640 static int __init idle_setup(char *str)
641 {
642 	if (!str)
643 		return -EINVAL;
644 
645 	if (!strcmp(str, "poll")) {
646 		printk("using polling idle threads.\n");
647 		pm_idle = poll_idle;
648 	} else if (!strcmp(str, "mwait"))
649 		force_mwait = 1;
650 	else if (!strcmp(str, "halt")) {
651 		/*
652 		 * When the boot option of idle=halt is added, halt is
653 		 * forced to be used for CPU idle. In such case CPU C2/C3
654 		 * won't be used again.
655 		 * To continue to load the CPU idle driver, don't touch
656 		 * the boot_option_idle_override.
657 		 */
658 		pm_idle = default_idle;
659 		idle_halt = 1;
660 		return 0;
661 	} else if (!strcmp(str, "nomwait")) {
662 		/*
663 		 * If the boot option of "idle=nomwait" is added,
664 		 * it means that mwait will be disabled for CPU C2/C3
665 		 * states. In such case it won't touch the variable
666 		 * of boot_option_idle_override.
667 		 */
668 		idle_nomwait = 1;
669 		return 0;
670 	} else
671 		return -1;
672 
673 	boot_option_idle_override = 1;
674 	return 0;
675 }
676 early_param("idle", idle_setup);
677 
678 unsigned long arch_align_stack(unsigned long sp)
679 {
680 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
681 		sp -= get_random_int() % 8192;
682 	return sp & ~0xf;
683 }
684 
685 unsigned long arch_randomize_brk(struct mm_struct *mm)
686 {
687 	unsigned long range_end = mm->brk + 0x02000000;
688 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
689 }
690 
691