xref: /openbmc/linux/arch/x86/kernel/process.c (revision 7bcae826)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <linux/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34 #include <asm/switch_to.h>
35 #include <asm/desc.h>
36 
37 /*
38  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
39  * no more per-task TSS's. The TSS size is kept cacheline-aligned
40  * so they are allowed to end up in the .data..cacheline_aligned
41  * section. Since TSS's are completely CPU-local, we want them
42  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
43  */
44 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
45 	.x86_tss = {
46 		.sp0 = TOP_OF_INIT_STACK,
47 #ifdef CONFIG_X86_32
48 		.ss0 = __KERNEL_DS,
49 		.ss1 = __KERNEL_CS,
50 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
51 #endif
52 	 },
53 #ifdef CONFIG_X86_32
54 	 /*
55 	  * Note that the .io_bitmap member must be extra-big. This is because
56 	  * the CPU will access an additional byte beyond the end of the IO
57 	  * permission bitmap. The extra byte must be all 1 bits, and must
58 	  * be within the limit.
59 	  */
60 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
61 #endif
62 #ifdef CONFIG_X86_32
63 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
64 #endif
65 };
66 EXPORT_PER_CPU_SYMBOL(cpu_tss);
67 
68 DEFINE_PER_CPU(bool, need_tr_refresh);
69 EXPORT_PER_CPU_SYMBOL_GPL(need_tr_refresh);
70 
71 /*
72  * this gets called so that we can store lazy state into memory and copy the
73  * current task into the new thread.
74  */
75 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
76 {
77 	memcpy(dst, src, arch_task_struct_size);
78 #ifdef CONFIG_VM86
79 	dst->thread.vm86 = NULL;
80 #endif
81 
82 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
83 }
84 
85 /*
86  * Free current thread data structures etc..
87  */
88 void exit_thread(struct task_struct *tsk)
89 {
90 	struct thread_struct *t = &tsk->thread;
91 	unsigned long *bp = t->io_bitmap_ptr;
92 	struct fpu *fpu = &t->fpu;
93 
94 	if (bp) {
95 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
96 
97 		t->io_bitmap_ptr = NULL;
98 		clear_thread_flag(TIF_IO_BITMAP);
99 		/*
100 		 * Careful, clear this in the TSS too:
101 		 */
102 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
103 		t->io_bitmap_max = 0;
104 		put_cpu();
105 		kfree(bp);
106 	}
107 
108 	free_vm86(t);
109 
110 	fpu__drop(fpu);
111 }
112 
113 void flush_thread(void)
114 {
115 	struct task_struct *tsk = current;
116 
117 	flush_ptrace_hw_breakpoint(tsk);
118 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
119 
120 	fpu__clear(&tsk->thread.fpu);
121 }
122 
123 static void hard_disable_TSC(void)
124 {
125 	cr4_set_bits(X86_CR4_TSD);
126 }
127 
128 void disable_TSC(void)
129 {
130 	preempt_disable();
131 	if (!test_and_set_thread_flag(TIF_NOTSC))
132 		/*
133 		 * Must flip the CPU state synchronously with
134 		 * TIF_NOTSC in the current running context.
135 		 */
136 		hard_disable_TSC();
137 	preempt_enable();
138 }
139 
140 static void hard_enable_TSC(void)
141 {
142 	cr4_clear_bits(X86_CR4_TSD);
143 }
144 
145 static void enable_TSC(void)
146 {
147 	preempt_disable();
148 	if (test_and_clear_thread_flag(TIF_NOTSC))
149 		/*
150 		 * Must flip the CPU state synchronously with
151 		 * TIF_NOTSC in the current running context.
152 		 */
153 		hard_enable_TSC();
154 	preempt_enable();
155 }
156 
157 int get_tsc_mode(unsigned long adr)
158 {
159 	unsigned int val;
160 
161 	if (test_thread_flag(TIF_NOTSC))
162 		val = PR_TSC_SIGSEGV;
163 	else
164 		val = PR_TSC_ENABLE;
165 
166 	return put_user(val, (unsigned int __user *)adr);
167 }
168 
169 int set_tsc_mode(unsigned int val)
170 {
171 	if (val == PR_TSC_SIGSEGV)
172 		disable_TSC();
173 	else if (val == PR_TSC_ENABLE)
174 		enable_TSC();
175 	else
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 
181 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
182 		      struct tss_struct *tss)
183 {
184 	struct thread_struct *prev, *next;
185 
186 	prev = &prev_p->thread;
187 	next = &next_p->thread;
188 
189 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
190 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
191 		unsigned long debugctl = get_debugctlmsr();
192 
193 		debugctl &= ~DEBUGCTLMSR_BTF;
194 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
195 			debugctl |= DEBUGCTLMSR_BTF;
196 
197 		update_debugctlmsr(debugctl);
198 	}
199 
200 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
201 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
202 		/* prev and next are different */
203 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
204 			hard_disable_TSC();
205 		else
206 			hard_enable_TSC();
207 	}
208 
209 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
210 		/*
211 		 * Copy the relevant range of the IO bitmap.
212 		 * Normally this is 128 bytes or less:
213 		 */
214 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
215 		       max(prev->io_bitmap_max, next->io_bitmap_max));
216 
217 		/*
218 		 * Make sure that the TSS limit is correct for the CPU
219 		 * to notice the IO bitmap.
220 		 */
221 		refresh_TR();
222 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
223 		/*
224 		 * Clear any possible leftover bits:
225 		 */
226 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
227 	}
228 	propagate_user_return_notify(prev_p, next_p);
229 }
230 
231 /*
232  * Idle related variables and functions
233  */
234 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
235 EXPORT_SYMBOL(boot_option_idle_override);
236 
237 static void (*x86_idle)(void);
238 
239 #ifndef CONFIG_SMP
240 static inline void play_dead(void)
241 {
242 	BUG();
243 }
244 #endif
245 
246 void arch_cpu_idle_enter(void)
247 {
248 	tsc_verify_tsc_adjust(false);
249 	local_touch_nmi();
250 }
251 
252 void arch_cpu_idle_dead(void)
253 {
254 	play_dead();
255 }
256 
257 /*
258  * Called from the generic idle code.
259  */
260 void arch_cpu_idle(void)
261 {
262 	x86_idle();
263 }
264 
265 /*
266  * We use this if we don't have any better idle routine..
267  */
268 void __cpuidle default_idle(void)
269 {
270 	trace_cpu_idle_rcuidle(1, smp_processor_id());
271 	safe_halt();
272 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
273 }
274 #ifdef CONFIG_APM_MODULE
275 EXPORT_SYMBOL(default_idle);
276 #endif
277 
278 #ifdef CONFIG_XEN
279 bool xen_set_default_idle(void)
280 {
281 	bool ret = !!x86_idle;
282 
283 	x86_idle = default_idle;
284 
285 	return ret;
286 }
287 #endif
288 void stop_this_cpu(void *dummy)
289 {
290 	local_irq_disable();
291 	/*
292 	 * Remove this CPU:
293 	 */
294 	set_cpu_online(smp_processor_id(), false);
295 	disable_local_APIC();
296 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
297 
298 	for (;;)
299 		halt();
300 }
301 
302 /*
303  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
304  * states (local apic timer and TSC stop).
305  */
306 static void amd_e400_idle(void)
307 {
308 	/*
309 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
310 	 * gets set after static_cpu_has() places have been converted via
311 	 * alternatives.
312 	 */
313 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
314 		default_idle();
315 		return;
316 	}
317 
318 	tick_broadcast_enter();
319 
320 	default_idle();
321 
322 	/*
323 	 * The switch back from broadcast mode needs to be called with
324 	 * interrupts disabled.
325 	 */
326 	local_irq_disable();
327 	tick_broadcast_exit();
328 	local_irq_enable();
329 }
330 
331 /*
332  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
333  * We can't rely on cpuidle installing MWAIT, because it will not load
334  * on systems that support only C1 -- so the boot default must be MWAIT.
335  *
336  * Some AMD machines are the opposite, they depend on using HALT.
337  *
338  * So for default C1, which is used during boot until cpuidle loads,
339  * use MWAIT-C1 on Intel HW that has it, else use HALT.
340  */
341 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
342 {
343 	if (c->x86_vendor != X86_VENDOR_INTEL)
344 		return 0;
345 
346 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
347 		return 0;
348 
349 	return 1;
350 }
351 
352 /*
353  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
354  * with interrupts enabled and no flags, which is backwards compatible with the
355  * original MWAIT implementation.
356  */
357 static __cpuidle void mwait_idle(void)
358 {
359 	if (!current_set_polling_and_test()) {
360 		trace_cpu_idle_rcuidle(1, smp_processor_id());
361 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
362 			mb(); /* quirk */
363 			clflush((void *)&current_thread_info()->flags);
364 			mb(); /* quirk */
365 		}
366 
367 		__monitor((void *)&current_thread_info()->flags, 0, 0);
368 		if (!need_resched())
369 			__sti_mwait(0, 0);
370 		else
371 			local_irq_enable();
372 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
373 	} else {
374 		local_irq_enable();
375 	}
376 	__current_clr_polling();
377 }
378 
379 void select_idle_routine(const struct cpuinfo_x86 *c)
380 {
381 #ifdef CONFIG_SMP
382 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
383 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
384 #endif
385 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
386 		return;
387 
388 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
389 		pr_info("using AMD E400 aware idle routine\n");
390 		x86_idle = amd_e400_idle;
391 	} else if (prefer_mwait_c1_over_halt(c)) {
392 		pr_info("using mwait in idle threads\n");
393 		x86_idle = mwait_idle;
394 	} else
395 		x86_idle = default_idle;
396 }
397 
398 void amd_e400_c1e_apic_setup(void)
399 {
400 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
401 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
402 		local_irq_disable();
403 		tick_broadcast_force();
404 		local_irq_enable();
405 	}
406 }
407 
408 void __init arch_post_acpi_subsys_init(void)
409 {
410 	u32 lo, hi;
411 
412 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
413 		return;
414 
415 	/*
416 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
417 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
418 	 * MSR_K8_INT_PENDING_MSG.
419 	 */
420 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
421 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
422 		return;
423 
424 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
425 
426 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
427 		mark_tsc_unstable("TSC halt in AMD C1E");
428 	pr_info("System has AMD C1E enabled\n");
429 }
430 
431 static int __init idle_setup(char *str)
432 {
433 	if (!str)
434 		return -EINVAL;
435 
436 	if (!strcmp(str, "poll")) {
437 		pr_info("using polling idle threads\n");
438 		boot_option_idle_override = IDLE_POLL;
439 		cpu_idle_poll_ctrl(true);
440 	} else if (!strcmp(str, "halt")) {
441 		/*
442 		 * When the boot option of idle=halt is added, halt is
443 		 * forced to be used for CPU idle. In such case CPU C2/C3
444 		 * won't be used again.
445 		 * To continue to load the CPU idle driver, don't touch
446 		 * the boot_option_idle_override.
447 		 */
448 		x86_idle = default_idle;
449 		boot_option_idle_override = IDLE_HALT;
450 	} else if (!strcmp(str, "nomwait")) {
451 		/*
452 		 * If the boot option of "idle=nomwait" is added,
453 		 * it means that mwait will be disabled for CPU C2/C3
454 		 * states. In such case it won't touch the variable
455 		 * of boot_option_idle_override.
456 		 */
457 		boot_option_idle_override = IDLE_NOMWAIT;
458 	} else
459 		return -1;
460 
461 	return 0;
462 }
463 early_param("idle", idle_setup);
464 
465 unsigned long arch_align_stack(unsigned long sp)
466 {
467 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
468 		sp -= get_random_int() % 8192;
469 	return sp & ~0xf;
470 }
471 
472 unsigned long arch_randomize_brk(struct mm_struct *mm)
473 {
474 	return randomize_page(mm->brk, 0x02000000);
475 }
476 
477 /*
478  * Return saved PC of a blocked thread.
479  * What is this good for? it will be always the scheduler or ret_from_fork.
480  */
481 unsigned long thread_saved_pc(struct task_struct *tsk)
482 {
483 	struct inactive_task_frame *frame =
484 		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
485 	return READ_ONCE_NOCHECK(frame->ret_addr);
486 }
487 
488 /*
489  * Called from fs/proc with a reference on @p to find the function
490  * which called into schedule(). This needs to be done carefully
491  * because the task might wake up and we might look at a stack
492  * changing under us.
493  */
494 unsigned long get_wchan(struct task_struct *p)
495 {
496 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
497 	int count = 0;
498 
499 	if (!p || p == current || p->state == TASK_RUNNING)
500 		return 0;
501 
502 	if (!try_get_task_stack(p))
503 		return 0;
504 
505 	start = (unsigned long)task_stack_page(p);
506 	if (!start)
507 		goto out;
508 
509 	/*
510 	 * Layout of the stack page:
511 	 *
512 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
513 	 * PADDING
514 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
515 	 * stack
516 	 * ----------- bottom = start
517 	 *
518 	 * The tasks stack pointer points at the location where the
519 	 * framepointer is stored. The data on the stack is:
520 	 * ... IP FP ... IP FP
521 	 *
522 	 * We need to read FP and IP, so we need to adjust the upper
523 	 * bound by another unsigned long.
524 	 */
525 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
526 	top -= 2 * sizeof(unsigned long);
527 	bottom = start;
528 
529 	sp = READ_ONCE(p->thread.sp);
530 	if (sp < bottom || sp > top)
531 		goto out;
532 
533 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
534 	do {
535 		if (fp < bottom || fp > top)
536 			goto out;
537 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
538 		if (!in_sched_functions(ip)) {
539 			ret = ip;
540 			goto out;
541 		}
542 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
543 	} while (count++ < 16 && p->state != TASK_RUNNING);
544 
545 out:
546 	put_task_stack(p);
547 	return ret;
548 }
549