1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <trace/power.h> 13 #include <asm/system.h> 14 #include <asm/apic.h> 15 #include <asm/syscalls.h> 16 #include <asm/idle.h> 17 #include <asm/uaccess.h> 18 #include <asm/i387.h> 19 #include <asm/ds.h> 20 21 unsigned long idle_halt; 22 EXPORT_SYMBOL(idle_halt); 23 unsigned long idle_nomwait; 24 EXPORT_SYMBOL(idle_nomwait); 25 26 struct kmem_cache *task_xstate_cachep; 27 28 DEFINE_TRACE(power_start); 29 DEFINE_TRACE(power_end); 30 31 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 32 { 33 *dst = *src; 34 if (src->thread.xstate) { 35 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, 36 GFP_KERNEL); 37 if (!dst->thread.xstate) 38 return -ENOMEM; 39 WARN_ON((unsigned long)dst->thread.xstate & 15); 40 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); 41 } 42 return 0; 43 } 44 45 void free_thread_xstate(struct task_struct *tsk) 46 { 47 if (tsk->thread.xstate) { 48 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); 49 tsk->thread.xstate = NULL; 50 } 51 52 WARN(tsk->thread.ds_ctx, "leaking DS context\n"); 53 } 54 55 void free_thread_info(struct thread_info *ti) 56 { 57 free_thread_xstate(ti->task); 58 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 59 } 60 61 void arch_task_cache_init(void) 62 { 63 task_xstate_cachep = 64 kmem_cache_create("task_xstate", xstate_size, 65 __alignof__(union thread_xstate), 66 SLAB_PANIC, NULL); 67 } 68 69 /* 70 * Free current thread data structures etc.. 71 */ 72 void exit_thread(void) 73 { 74 struct task_struct *me = current; 75 struct thread_struct *t = &me->thread; 76 unsigned long *bp = t->io_bitmap_ptr; 77 78 if (bp) { 79 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 80 81 t->io_bitmap_ptr = NULL; 82 clear_thread_flag(TIF_IO_BITMAP); 83 /* 84 * Careful, clear this in the TSS too: 85 */ 86 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 87 t->io_bitmap_max = 0; 88 put_cpu(); 89 kfree(bp); 90 } 91 } 92 93 void flush_thread(void) 94 { 95 struct task_struct *tsk = current; 96 97 #ifdef CONFIG_X86_64 98 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) { 99 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING); 100 if (test_tsk_thread_flag(tsk, TIF_IA32)) { 101 clear_tsk_thread_flag(tsk, TIF_IA32); 102 } else { 103 set_tsk_thread_flag(tsk, TIF_IA32); 104 current_thread_info()->status |= TS_COMPAT; 105 } 106 } 107 #endif 108 109 clear_tsk_thread_flag(tsk, TIF_DEBUG); 110 111 tsk->thread.debugreg0 = 0; 112 tsk->thread.debugreg1 = 0; 113 tsk->thread.debugreg2 = 0; 114 tsk->thread.debugreg3 = 0; 115 tsk->thread.debugreg6 = 0; 116 tsk->thread.debugreg7 = 0; 117 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 118 /* 119 * Forget coprocessor state.. 120 */ 121 tsk->fpu_counter = 0; 122 clear_fpu(tsk); 123 clear_used_math(); 124 } 125 126 static void hard_disable_TSC(void) 127 { 128 write_cr4(read_cr4() | X86_CR4_TSD); 129 } 130 131 void disable_TSC(void) 132 { 133 preempt_disable(); 134 if (!test_and_set_thread_flag(TIF_NOTSC)) 135 /* 136 * Must flip the CPU state synchronously with 137 * TIF_NOTSC in the current running context. 138 */ 139 hard_disable_TSC(); 140 preempt_enable(); 141 } 142 143 static void hard_enable_TSC(void) 144 { 145 write_cr4(read_cr4() & ~X86_CR4_TSD); 146 } 147 148 static void enable_TSC(void) 149 { 150 preempt_disable(); 151 if (test_and_clear_thread_flag(TIF_NOTSC)) 152 /* 153 * Must flip the CPU state synchronously with 154 * TIF_NOTSC in the current running context. 155 */ 156 hard_enable_TSC(); 157 preempt_enable(); 158 } 159 160 int get_tsc_mode(unsigned long adr) 161 { 162 unsigned int val; 163 164 if (test_thread_flag(TIF_NOTSC)) 165 val = PR_TSC_SIGSEGV; 166 else 167 val = PR_TSC_ENABLE; 168 169 return put_user(val, (unsigned int __user *)adr); 170 } 171 172 int set_tsc_mode(unsigned int val) 173 { 174 if (val == PR_TSC_SIGSEGV) 175 disable_TSC(); 176 else if (val == PR_TSC_ENABLE) 177 enable_TSC(); 178 else 179 return -EINVAL; 180 181 return 0; 182 } 183 184 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 185 struct tss_struct *tss) 186 { 187 struct thread_struct *prev, *next; 188 189 prev = &prev_p->thread; 190 next = &next_p->thread; 191 192 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 193 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 194 ds_switch_to(prev_p, next_p); 195 else if (next->debugctlmsr != prev->debugctlmsr) 196 update_debugctlmsr(next->debugctlmsr); 197 198 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 199 set_debugreg(next->debugreg0, 0); 200 set_debugreg(next->debugreg1, 1); 201 set_debugreg(next->debugreg2, 2); 202 set_debugreg(next->debugreg3, 3); 203 /* no 4 and 5 */ 204 set_debugreg(next->debugreg6, 6); 205 set_debugreg(next->debugreg7, 7); 206 } 207 208 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 209 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 210 /* prev and next are different */ 211 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 212 hard_disable_TSC(); 213 else 214 hard_enable_TSC(); 215 } 216 217 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 218 /* 219 * Copy the relevant range of the IO bitmap. 220 * Normally this is 128 bytes or less: 221 */ 222 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 223 max(prev->io_bitmap_max, next->io_bitmap_max)); 224 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 225 /* 226 * Clear any possible leftover bits: 227 */ 228 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 229 } 230 } 231 232 int sys_fork(struct pt_regs *regs) 233 { 234 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 235 } 236 237 /* 238 * This is trivial, and on the face of it looks like it 239 * could equally well be done in user mode. 240 * 241 * Not so, for quite unobvious reasons - register pressure. 242 * In user mode vfork() cannot have a stack frame, and if 243 * done by calling the "clone()" system call directly, you 244 * do not have enough call-clobbered registers to hold all 245 * the information you need. 246 */ 247 int sys_vfork(struct pt_regs *regs) 248 { 249 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 250 NULL, NULL); 251 } 252 253 254 /* 255 * Idle related variables and functions 256 */ 257 unsigned long boot_option_idle_override = 0; 258 EXPORT_SYMBOL(boot_option_idle_override); 259 260 /* 261 * Powermanagement idle function, if any.. 262 */ 263 void (*pm_idle)(void); 264 EXPORT_SYMBOL(pm_idle); 265 266 #ifdef CONFIG_X86_32 267 /* 268 * This halt magic was a workaround for ancient floppy DMA 269 * wreckage. It should be safe to remove. 270 */ 271 static int hlt_counter; 272 void disable_hlt(void) 273 { 274 hlt_counter++; 275 } 276 EXPORT_SYMBOL(disable_hlt); 277 278 void enable_hlt(void) 279 { 280 hlt_counter--; 281 } 282 EXPORT_SYMBOL(enable_hlt); 283 284 static inline int hlt_use_halt(void) 285 { 286 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 287 } 288 #else 289 static inline int hlt_use_halt(void) 290 { 291 return 1; 292 } 293 #endif 294 295 /* 296 * We use this if we don't have any better 297 * idle routine.. 298 */ 299 void default_idle(void) 300 { 301 if (hlt_use_halt()) { 302 struct power_trace it; 303 304 trace_power_start(&it, POWER_CSTATE, 1); 305 current_thread_info()->status &= ~TS_POLLING; 306 /* 307 * TS_POLLING-cleared state must be visible before we 308 * test NEED_RESCHED: 309 */ 310 smp_mb(); 311 312 if (!need_resched()) 313 safe_halt(); /* enables interrupts racelessly */ 314 else 315 local_irq_enable(); 316 current_thread_info()->status |= TS_POLLING; 317 trace_power_end(&it); 318 } else { 319 local_irq_enable(); 320 /* loop is done by the caller */ 321 cpu_relax(); 322 } 323 } 324 #ifdef CONFIG_APM_MODULE 325 EXPORT_SYMBOL(default_idle); 326 #endif 327 328 void stop_this_cpu(void *dummy) 329 { 330 local_irq_disable(); 331 /* 332 * Remove this CPU: 333 */ 334 set_cpu_online(smp_processor_id(), false); 335 disable_local_APIC(); 336 337 for (;;) { 338 if (hlt_works(smp_processor_id())) 339 halt(); 340 } 341 } 342 343 static void do_nothing(void *unused) 344 { 345 } 346 347 /* 348 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 349 * pm_idle and update to new pm_idle value. Required while changing pm_idle 350 * handler on SMP systems. 351 * 352 * Caller must have changed pm_idle to the new value before the call. Old 353 * pm_idle value will not be used by any CPU after the return of this function. 354 */ 355 void cpu_idle_wait(void) 356 { 357 smp_mb(); 358 /* kick all the CPUs so that they exit out of pm_idle */ 359 smp_call_function(do_nothing, NULL, 1); 360 } 361 EXPORT_SYMBOL_GPL(cpu_idle_wait); 362 363 /* 364 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 365 * which can obviate IPI to trigger checking of need_resched. 366 * We execute MONITOR against need_resched and enter optimized wait state 367 * through MWAIT. Whenever someone changes need_resched, we would be woken 368 * up from MWAIT (without an IPI). 369 * 370 * New with Core Duo processors, MWAIT can take some hints based on CPU 371 * capability. 372 */ 373 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 374 { 375 struct power_trace it; 376 377 trace_power_start(&it, POWER_CSTATE, (ax>>4)+1); 378 if (!need_resched()) { 379 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 380 clflush((void *)¤t_thread_info()->flags); 381 382 __monitor((void *)¤t_thread_info()->flags, 0, 0); 383 smp_mb(); 384 if (!need_resched()) 385 __mwait(ax, cx); 386 } 387 trace_power_end(&it); 388 } 389 390 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 391 static void mwait_idle(void) 392 { 393 struct power_trace it; 394 if (!need_resched()) { 395 trace_power_start(&it, POWER_CSTATE, 1); 396 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 397 clflush((void *)¤t_thread_info()->flags); 398 399 __monitor((void *)¤t_thread_info()->flags, 0, 0); 400 smp_mb(); 401 if (!need_resched()) 402 __sti_mwait(0, 0); 403 else 404 local_irq_enable(); 405 trace_power_end(&it); 406 } else 407 local_irq_enable(); 408 } 409 410 /* 411 * On SMP it's slightly faster (but much more power-consuming!) 412 * to poll the ->work.need_resched flag instead of waiting for the 413 * cross-CPU IPI to arrive. Use this option with caution. 414 */ 415 static void poll_idle(void) 416 { 417 struct power_trace it; 418 419 trace_power_start(&it, POWER_CSTATE, 0); 420 local_irq_enable(); 421 while (!need_resched()) 422 cpu_relax(); 423 trace_power_end(&it); 424 } 425 426 /* 427 * mwait selection logic: 428 * 429 * It depends on the CPU. For AMD CPUs that support MWAIT this is 430 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 431 * then depend on a clock divisor and current Pstate of the core. If 432 * all cores of a processor are in halt state (C1) the processor can 433 * enter the C1E (C1 enhanced) state. If mwait is used this will never 434 * happen. 435 * 436 * idle=mwait overrides this decision and forces the usage of mwait. 437 */ 438 static int __cpuinitdata force_mwait; 439 440 #define MWAIT_INFO 0x05 441 #define MWAIT_ECX_EXTENDED_INFO 0x01 442 #define MWAIT_EDX_C1 0xf0 443 444 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 445 { 446 u32 eax, ebx, ecx, edx; 447 448 if (force_mwait) 449 return 1; 450 451 if (c->cpuid_level < MWAIT_INFO) 452 return 0; 453 454 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 455 /* Check, whether EDX has extended info about MWAIT */ 456 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 457 return 1; 458 459 /* 460 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 461 * C1 supports MWAIT 462 */ 463 return (edx & MWAIT_EDX_C1); 464 } 465 466 /* 467 * Check for AMD CPUs, which have potentially C1E support 468 */ 469 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) 470 { 471 if (c->x86_vendor != X86_VENDOR_AMD) 472 return 0; 473 474 if (c->x86 < 0x0F) 475 return 0; 476 477 /* Family 0x0f models < rev F do not have C1E */ 478 if (c->x86 == 0x0f && c->x86_model < 0x40) 479 return 0; 480 481 return 1; 482 } 483 484 static cpumask_var_t c1e_mask; 485 static int c1e_detected; 486 487 void c1e_remove_cpu(int cpu) 488 { 489 if (c1e_mask != NULL) 490 cpumask_clear_cpu(cpu, c1e_mask); 491 } 492 493 /* 494 * C1E aware idle routine. We check for C1E active in the interrupt 495 * pending message MSR. If we detect C1E, then we handle it the same 496 * way as C3 power states (local apic timer and TSC stop) 497 */ 498 static void c1e_idle(void) 499 { 500 if (need_resched()) 501 return; 502 503 if (!c1e_detected) { 504 u32 lo, hi; 505 506 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 507 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 508 c1e_detected = 1; 509 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 510 mark_tsc_unstable("TSC halt in AMD C1E"); 511 printk(KERN_INFO "System has AMD C1E enabled\n"); 512 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); 513 } 514 } 515 516 if (c1e_detected) { 517 int cpu = smp_processor_id(); 518 519 if (!cpumask_test_cpu(cpu, c1e_mask)) { 520 cpumask_set_cpu(cpu, c1e_mask); 521 /* 522 * Force broadcast so ACPI can not interfere. Needs 523 * to run with interrupts enabled as it uses 524 * smp_function_call. 525 */ 526 local_irq_enable(); 527 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 528 &cpu); 529 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 530 cpu); 531 local_irq_disable(); 532 } 533 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 534 535 default_idle(); 536 537 /* 538 * The switch back from broadcast mode needs to be 539 * called with interrupts disabled. 540 */ 541 local_irq_disable(); 542 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 543 local_irq_enable(); 544 } else 545 default_idle(); 546 } 547 548 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 549 { 550 #ifdef CONFIG_SMP 551 if (pm_idle == poll_idle && smp_num_siblings > 1) { 552 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 553 " performance may degrade.\n"); 554 } 555 #endif 556 if (pm_idle) 557 return; 558 559 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 560 /* 561 * One CPU supports mwait => All CPUs supports mwait 562 */ 563 printk(KERN_INFO "using mwait in idle threads.\n"); 564 pm_idle = mwait_idle; 565 } else if (check_c1e_idle(c)) { 566 printk(KERN_INFO "using C1E aware idle routine\n"); 567 pm_idle = c1e_idle; 568 } else 569 pm_idle = default_idle; 570 } 571 572 void __init init_c1e_mask(void) 573 { 574 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 575 if (pm_idle == c1e_idle) { 576 alloc_cpumask_var(&c1e_mask, GFP_KERNEL); 577 cpumask_clear(c1e_mask); 578 } 579 } 580 581 static int __init idle_setup(char *str) 582 { 583 if (!str) 584 return -EINVAL; 585 586 if (!strcmp(str, "poll")) { 587 printk("using polling idle threads.\n"); 588 pm_idle = poll_idle; 589 } else if (!strcmp(str, "mwait")) 590 force_mwait = 1; 591 else if (!strcmp(str, "halt")) { 592 /* 593 * When the boot option of idle=halt is added, halt is 594 * forced to be used for CPU idle. In such case CPU C2/C3 595 * won't be used again. 596 * To continue to load the CPU idle driver, don't touch 597 * the boot_option_idle_override. 598 */ 599 pm_idle = default_idle; 600 idle_halt = 1; 601 return 0; 602 } else if (!strcmp(str, "nomwait")) { 603 /* 604 * If the boot option of "idle=nomwait" is added, 605 * it means that mwait will be disabled for CPU C2/C3 606 * states. In such case it won't touch the variable 607 * of boot_option_idle_override. 608 */ 609 idle_nomwait = 1; 610 return 0; 611 } else 612 return -1; 613 614 boot_option_idle_override = 1; 615 return 0; 616 } 617 early_param("idle", idle_setup); 618 619 unsigned long arch_align_stack(unsigned long sp) 620 { 621 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 622 sp -= get_random_int() % 8192; 623 return sp & ~0xf; 624 } 625 626 unsigned long arch_randomize_brk(struct mm_struct *mm) 627 { 628 unsigned long range_end = mm->brk + 0x02000000; 629 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 630 } 631 632