xref: /openbmc/linux/arch/x86/kernel/process.c (revision 78c99ba1)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <trace/power.h>
13 #include <asm/system.h>
14 #include <asm/apic.h>
15 #include <asm/syscalls.h>
16 #include <asm/idle.h>
17 #include <asm/uaccess.h>
18 #include <asm/i387.h>
19 #include <asm/ds.h>
20 
21 unsigned long idle_halt;
22 EXPORT_SYMBOL(idle_halt);
23 unsigned long idle_nomwait;
24 EXPORT_SYMBOL(idle_nomwait);
25 
26 struct kmem_cache *task_xstate_cachep;
27 
28 DEFINE_TRACE(power_start);
29 DEFINE_TRACE(power_end);
30 
31 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
32 {
33 	*dst = *src;
34 	if (src->thread.xstate) {
35 		dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
36 						      GFP_KERNEL);
37 		if (!dst->thread.xstate)
38 			return -ENOMEM;
39 		WARN_ON((unsigned long)dst->thread.xstate & 15);
40 		memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
41 	}
42 	return 0;
43 }
44 
45 void free_thread_xstate(struct task_struct *tsk)
46 {
47 	if (tsk->thread.xstate) {
48 		kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
49 		tsk->thread.xstate = NULL;
50 	}
51 
52 	WARN(tsk->thread.ds_ctx, "leaking DS context\n");
53 }
54 
55 void free_thread_info(struct thread_info *ti)
56 {
57 	free_thread_xstate(ti->task);
58 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
59 }
60 
61 void arch_task_cache_init(void)
62 {
63         task_xstate_cachep =
64         	kmem_cache_create("task_xstate", xstate_size,
65 				  __alignof__(union thread_xstate),
66 				  SLAB_PANIC, NULL);
67 }
68 
69 /*
70  * Free current thread data structures etc..
71  */
72 void exit_thread(void)
73 {
74 	struct task_struct *me = current;
75 	struct thread_struct *t = &me->thread;
76 	unsigned long *bp = t->io_bitmap_ptr;
77 
78 	if (bp) {
79 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
80 
81 		t->io_bitmap_ptr = NULL;
82 		clear_thread_flag(TIF_IO_BITMAP);
83 		/*
84 		 * Careful, clear this in the TSS too:
85 		 */
86 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
87 		t->io_bitmap_max = 0;
88 		put_cpu();
89 		kfree(bp);
90 	}
91 }
92 
93 void flush_thread(void)
94 {
95 	struct task_struct *tsk = current;
96 
97 #ifdef CONFIG_X86_64
98 	if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
99 		clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
100 		if (test_tsk_thread_flag(tsk, TIF_IA32)) {
101 			clear_tsk_thread_flag(tsk, TIF_IA32);
102 		} else {
103 			set_tsk_thread_flag(tsk, TIF_IA32);
104 			current_thread_info()->status |= TS_COMPAT;
105 		}
106 	}
107 #endif
108 
109 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
110 
111 	tsk->thread.debugreg0 = 0;
112 	tsk->thread.debugreg1 = 0;
113 	tsk->thread.debugreg2 = 0;
114 	tsk->thread.debugreg3 = 0;
115 	tsk->thread.debugreg6 = 0;
116 	tsk->thread.debugreg7 = 0;
117 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
118 	/*
119 	 * Forget coprocessor state..
120 	 */
121 	tsk->fpu_counter = 0;
122 	clear_fpu(tsk);
123 	clear_used_math();
124 }
125 
126 static void hard_disable_TSC(void)
127 {
128 	write_cr4(read_cr4() | X86_CR4_TSD);
129 }
130 
131 void disable_TSC(void)
132 {
133 	preempt_disable();
134 	if (!test_and_set_thread_flag(TIF_NOTSC))
135 		/*
136 		 * Must flip the CPU state synchronously with
137 		 * TIF_NOTSC in the current running context.
138 		 */
139 		hard_disable_TSC();
140 	preempt_enable();
141 }
142 
143 static void hard_enable_TSC(void)
144 {
145 	write_cr4(read_cr4() & ~X86_CR4_TSD);
146 }
147 
148 static void enable_TSC(void)
149 {
150 	preempt_disable();
151 	if (test_and_clear_thread_flag(TIF_NOTSC))
152 		/*
153 		 * Must flip the CPU state synchronously with
154 		 * TIF_NOTSC in the current running context.
155 		 */
156 		hard_enable_TSC();
157 	preempt_enable();
158 }
159 
160 int get_tsc_mode(unsigned long adr)
161 {
162 	unsigned int val;
163 
164 	if (test_thread_flag(TIF_NOTSC))
165 		val = PR_TSC_SIGSEGV;
166 	else
167 		val = PR_TSC_ENABLE;
168 
169 	return put_user(val, (unsigned int __user *)adr);
170 }
171 
172 int set_tsc_mode(unsigned int val)
173 {
174 	if (val == PR_TSC_SIGSEGV)
175 		disable_TSC();
176 	else if (val == PR_TSC_ENABLE)
177 		enable_TSC();
178 	else
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 
184 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
185 		      struct tss_struct *tss)
186 {
187 	struct thread_struct *prev, *next;
188 
189 	prev = &prev_p->thread;
190 	next = &next_p->thread;
191 
192 	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
193 	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
194 		ds_switch_to(prev_p, next_p);
195 	else if (next->debugctlmsr != prev->debugctlmsr)
196 		update_debugctlmsr(next->debugctlmsr);
197 
198 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
199 		set_debugreg(next->debugreg0, 0);
200 		set_debugreg(next->debugreg1, 1);
201 		set_debugreg(next->debugreg2, 2);
202 		set_debugreg(next->debugreg3, 3);
203 		/* no 4 and 5 */
204 		set_debugreg(next->debugreg6, 6);
205 		set_debugreg(next->debugreg7, 7);
206 	}
207 
208 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
209 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
210 		/* prev and next are different */
211 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
212 			hard_disable_TSC();
213 		else
214 			hard_enable_TSC();
215 	}
216 
217 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
218 		/*
219 		 * Copy the relevant range of the IO bitmap.
220 		 * Normally this is 128 bytes or less:
221 		 */
222 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
223 		       max(prev->io_bitmap_max, next->io_bitmap_max));
224 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
225 		/*
226 		 * Clear any possible leftover bits:
227 		 */
228 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
229 	}
230 }
231 
232 int sys_fork(struct pt_regs *regs)
233 {
234 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
235 }
236 
237 /*
238  * This is trivial, and on the face of it looks like it
239  * could equally well be done in user mode.
240  *
241  * Not so, for quite unobvious reasons - register pressure.
242  * In user mode vfork() cannot have a stack frame, and if
243  * done by calling the "clone()" system call directly, you
244  * do not have enough call-clobbered registers to hold all
245  * the information you need.
246  */
247 int sys_vfork(struct pt_regs *regs)
248 {
249 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
250 		       NULL, NULL);
251 }
252 
253 
254 /*
255  * Idle related variables and functions
256  */
257 unsigned long boot_option_idle_override = 0;
258 EXPORT_SYMBOL(boot_option_idle_override);
259 
260 /*
261  * Powermanagement idle function, if any..
262  */
263 void (*pm_idle)(void);
264 EXPORT_SYMBOL(pm_idle);
265 
266 #ifdef CONFIG_X86_32
267 /*
268  * This halt magic was a workaround for ancient floppy DMA
269  * wreckage. It should be safe to remove.
270  */
271 static int hlt_counter;
272 void disable_hlt(void)
273 {
274 	hlt_counter++;
275 }
276 EXPORT_SYMBOL(disable_hlt);
277 
278 void enable_hlt(void)
279 {
280 	hlt_counter--;
281 }
282 EXPORT_SYMBOL(enable_hlt);
283 
284 static inline int hlt_use_halt(void)
285 {
286 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
287 }
288 #else
289 static inline int hlt_use_halt(void)
290 {
291 	return 1;
292 }
293 #endif
294 
295 /*
296  * We use this if we don't have any better
297  * idle routine..
298  */
299 void default_idle(void)
300 {
301 	if (hlt_use_halt()) {
302 		struct power_trace it;
303 
304 		trace_power_start(&it, POWER_CSTATE, 1);
305 		current_thread_info()->status &= ~TS_POLLING;
306 		/*
307 		 * TS_POLLING-cleared state must be visible before we
308 		 * test NEED_RESCHED:
309 		 */
310 		smp_mb();
311 
312 		if (!need_resched())
313 			safe_halt();	/* enables interrupts racelessly */
314 		else
315 			local_irq_enable();
316 		current_thread_info()->status |= TS_POLLING;
317 		trace_power_end(&it);
318 	} else {
319 		local_irq_enable();
320 		/* loop is done by the caller */
321 		cpu_relax();
322 	}
323 }
324 #ifdef CONFIG_APM_MODULE
325 EXPORT_SYMBOL(default_idle);
326 #endif
327 
328 void stop_this_cpu(void *dummy)
329 {
330 	local_irq_disable();
331 	/*
332 	 * Remove this CPU:
333 	 */
334 	set_cpu_online(smp_processor_id(), false);
335 	disable_local_APIC();
336 
337 	for (;;) {
338 		if (hlt_works(smp_processor_id()))
339 			halt();
340 	}
341 }
342 
343 static void do_nothing(void *unused)
344 {
345 }
346 
347 /*
348  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
349  * pm_idle and update to new pm_idle value. Required while changing pm_idle
350  * handler on SMP systems.
351  *
352  * Caller must have changed pm_idle to the new value before the call. Old
353  * pm_idle value will not be used by any CPU after the return of this function.
354  */
355 void cpu_idle_wait(void)
356 {
357 	smp_mb();
358 	/* kick all the CPUs so that they exit out of pm_idle */
359 	smp_call_function(do_nothing, NULL, 1);
360 }
361 EXPORT_SYMBOL_GPL(cpu_idle_wait);
362 
363 /*
364  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
365  * which can obviate IPI to trigger checking of need_resched.
366  * We execute MONITOR against need_resched and enter optimized wait state
367  * through MWAIT. Whenever someone changes need_resched, we would be woken
368  * up from MWAIT (without an IPI).
369  *
370  * New with Core Duo processors, MWAIT can take some hints based on CPU
371  * capability.
372  */
373 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
374 {
375 	struct power_trace it;
376 
377 	trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
378 	if (!need_resched()) {
379 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
380 			clflush((void *)&current_thread_info()->flags);
381 
382 		__monitor((void *)&current_thread_info()->flags, 0, 0);
383 		smp_mb();
384 		if (!need_resched())
385 			__mwait(ax, cx);
386 	}
387 	trace_power_end(&it);
388 }
389 
390 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
391 static void mwait_idle(void)
392 {
393 	struct power_trace it;
394 	if (!need_resched()) {
395 		trace_power_start(&it, POWER_CSTATE, 1);
396 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
397 			clflush((void *)&current_thread_info()->flags);
398 
399 		__monitor((void *)&current_thread_info()->flags, 0, 0);
400 		smp_mb();
401 		if (!need_resched())
402 			__sti_mwait(0, 0);
403 		else
404 			local_irq_enable();
405 		trace_power_end(&it);
406 	} else
407 		local_irq_enable();
408 }
409 
410 /*
411  * On SMP it's slightly faster (but much more power-consuming!)
412  * to poll the ->work.need_resched flag instead of waiting for the
413  * cross-CPU IPI to arrive. Use this option with caution.
414  */
415 static void poll_idle(void)
416 {
417 	struct power_trace it;
418 
419 	trace_power_start(&it, POWER_CSTATE, 0);
420 	local_irq_enable();
421 	while (!need_resched())
422 		cpu_relax();
423 	trace_power_end(&it);
424 }
425 
426 /*
427  * mwait selection logic:
428  *
429  * It depends on the CPU. For AMD CPUs that support MWAIT this is
430  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
431  * then depend on a clock divisor and current Pstate of the core. If
432  * all cores of a processor are in halt state (C1) the processor can
433  * enter the C1E (C1 enhanced) state. If mwait is used this will never
434  * happen.
435  *
436  * idle=mwait overrides this decision and forces the usage of mwait.
437  */
438 static int __cpuinitdata force_mwait;
439 
440 #define MWAIT_INFO			0x05
441 #define MWAIT_ECX_EXTENDED_INFO		0x01
442 #define MWAIT_EDX_C1			0xf0
443 
444 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
445 {
446 	u32 eax, ebx, ecx, edx;
447 
448 	if (force_mwait)
449 		return 1;
450 
451 	if (c->cpuid_level < MWAIT_INFO)
452 		return 0;
453 
454 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
455 	/* Check, whether EDX has extended info about MWAIT */
456 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
457 		return 1;
458 
459 	/*
460 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
461 	 * C1  supports MWAIT
462 	 */
463 	return (edx & MWAIT_EDX_C1);
464 }
465 
466 /*
467  * Check for AMD CPUs, which have potentially C1E support
468  */
469 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
470 {
471 	if (c->x86_vendor != X86_VENDOR_AMD)
472 		return 0;
473 
474 	if (c->x86 < 0x0F)
475 		return 0;
476 
477 	/* Family 0x0f models < rev F do not have C1E */
478 	if (c->x86 == 0x0f && c->x86_model < 0x40)
479 		return 0;
480 
481 	return 1;
482 }
483 
484 static cpumask_var_t c1e_mask;
485 static int c1e_detected;
486 
487 void c1e_remove_cpu(int cpu)
488 {
489 	if (c1e_mask != NULL)
490 		cpumask_clear_cpu(cpu, c1e_mask);
491 }
492 
493 /*
494  * C1E aware idle routine. We check for C1E active in the interrupt
495  * pending message MSR. If we detect C1E, then we handle it the same
496  * way as C3 power states (local apic timer and TSC stop)
497  */
498 static void c1e_idle(void)
499 {
500 	if (need_resched())
501 		return;
502 
503 	if (!c1e_detected) {
504 		u32 lo, hi;
505 
506 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
507 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
508 			c1e_detected = 1;
509 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
510 				mark_tsc_unstable("TSC halt in AMD C1E");
511 			printk(KERN_INFO "System has AMD C1E enabled\n");
512 			set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
513 		}
514 	}
515 
516 	if (c1e_detected) {
517 		int cpu = smp_processor_id();
518 
519 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
520 			cpumask_set_cpu(cpu, c1e_mask);
521 			/*
522 			 * Force broadcast so ACPI can not interfere. Needs
523 			 * to run with interrupts enabled as it uses
524 			 * smp_function_call.
525 			 */
526 			local_irq_enable();
527 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
528 					   &cpu);
529 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
530 			       cpu);
531 			local_irq_disable();
532 		}
533 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
534 
535 		default_idle();
536 
537 		/*
538 		 * The switch back from broadcast mode needs to be
539 		 * called with interrupts disabled.
540 		 */
541 		 local_irq_disable();
542 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
543 		 local_irq_enable();
544 	} else
545 		default_idle();
546 }
547 
548 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
549 {
550 #ifdef CONFIG_SMP
551 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
552 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
553 			" performance may degrade.\n");
554 	}
555 #endif
556 	if (pm_idle)
557 		return;
558 
559 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
560 		/*
561 		 * One CPU supports mwait => All CPUs supports mwait
562 		 */
563 		printk(KERN_INFO "using mwait in idle threads.\n");
564 		pm_idle = mwait_idle;
565 	} else if (check_c1e_idle(c)) {
566 		printk(KERN_INFO "using C1E aware idle routine\n");
567 		pm_idle = c1e_idle;
568 	} else
569 		pm_idle = default_idle;
570 }
571 
572 void __init init_c1e_mask(void)
573 {
574 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
575 	if (pm_idle == c1e_idle) {
576 		alloc_cpumask_var(&c1e_mask, GFP_KERNEL);
577 		cpumask_clear(c1e_mask);
578 	}
579 }
580 
581 static int __init idle_setup(char *str)
582 {
583 	if (!str)
584 		return -EINVAL;
585 
586 	if (!strcmp(str, "poll")) {
587 		printk("using polling idle threads.\n");
588 		pm_idle = poll_idle;
589 	} else if (!strcmp(str, "mwait"))
590 		force_mwait = 1;
591 	else if (!strcmp(str, "halt")) {
592 		/*
593 		 * When the boot option of idle=halt is added, halt is
594 		 * forced to be used for CPU idle. In such case CPU C2/C3
595 		 * won't be used again.
596 		 * To continue to load the CPU idle driver, don't touch
597 		 * the boot_option_idle_override.
598 		 */
599 		pm_idle = default_idle;
600 		idle_halt = 1;
601 		return 0;
602 	} else if (!strcmp(str, "nomwait")) {
603 		/*
604 		 * If the boot option of "idle=nomwait" is added,
605 		 * it means that mwait will be disabled for CPU C2/C3
606 		 * states. In such case it won't touch the variable
607 		 * of boot_option_idle_override.
608 		 */
609 		idle_nomwait = 1;
610 		return 0;
611 	} else
612 		return -1;
613 
614 	boot_option_idle_override = 1;
615 	return 0;
616 }
617 early_param("idle", idle_setup);
618 
619 unsigned long arch_align_stack(unsigned long sp)
620 {
621 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
622 		sp -= get_random_int() % 8192;
623 	return sp & ~0xf;
624 }
625 
626 unsigned long arch_randomize_brk(struct mm_struct *mm)
627 {
628 	unsigned long range_end = mm->brk + 0x02000000;
629 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
630 }
631 
632