xref: /openbmc/linux/arch/x86/kernel/process.c (revision 6aa7de05)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/sched/idle.h>
11 #include <linux/sched/debug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/pm.h>
17 #include <linux/tick.h>
18 #include <linux/random.h>
19 #include <linux/user-return-notifier.h>
20 #include <linux/dmi.h>
21 #include <linux/utsname.h>
22 #include <linux/stackprotector.h>
23 #include <linux/tick.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41 
42 /*
43  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
44  * no more per-task TSS's. The TSS size is kept cacheline-aligned
45  * so they are allowed to end up in the .data..cacheline_aligned
46  * section. Since TSS's are completely CPU-local, we want them
47  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
48  */
49 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
50 	.x86_tss = {
51 		.sp0 = TOP_OF_INIT_STACK,
52 #ifdef CONFIG_X86_32
53 		.ss0 = __KERNEL_DS,
54 		.ss1 = __KERNEL_CS,
55 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
56 #endif
57 	 },
58 #ifdef CONFIG_X86_32
59 	 /*
60 	  * Note that the .io_bitmap member must be extra-big. This is because
61 	  * the CPU will access an additional byte beyond the end of the IO
62 	  * permission bitmap. The extra byte must be all 1 bits, and must
63 	  * be within the limit.
64 	  */
65 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
66 #endif
67 #ifdef CONFIG_X86_32
68 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
69 #endif
70 };
71 EXPORT_PER_CPU_SYMBOL(cpu_tss);
72 
73 DEFINE_PER_CPU(bool, __tss_limit_invalid);
74 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
75 
76 /*
77  * this gets called so that we can store lazy state into memory and copy the
78  * current task into the new thread.
79  */
80 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
81 {
82 	memcpy(dst, src, arch_task_struct_size);
83 #ifdef CONFIG_VM86
84 	dst->thread.vm86 = NULL;
85 #endif
86 
87 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
88 }
89 
90 /*
91  * Free current thread data structures etc..
92  */
93 void exit_thread(struct task_struct *tsk)
94 {
95 	struct thread_struct *t = &tsk->thread;
96 	unsigned long *bp = t->io_bitmap_ptr;
97 	struct fpu *fpu = &t->fpu;
98 
99 	if (bp) {
100 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
101 
102 		t->io_bitmap_ptr = NULL;
103 		clear_thread_flag(TIF_IO_BITMAP);
104 		/*
105 		 * Careful, clear this in the TSS too:
106 		 */
107 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
108 		t->io_bitmap_max = 0;
109 		put_cpu();
110 		kfree(bp);
111 	}
112 
113 	free_vm86(t);
114 
115 	fpu__drop(fpu);
116 }
117 
118 void flush_thread(void)
119 {
120 	struct task_struct *tsk = current;
121 
122 	flush_ptrace_hw_breakpoint(tsk);
123 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
124 
125 	fpu__clear(&tsk->thread.fpu);
126 }
127 
128 void disable_TSC(void)
129 {
130 	preempt_disable();
131 	if (!test_and_set_thread_flag(TIF_NOTSC))
132 		/*
133 		 * Must flip the CPU state synchronously with
134 		 * TIF_NOTSC in the current running context.
135 		 */
136 		cr4_set_bits(X86_CR4_TSD);
137 	preempt_enable();
138 }
139 
140 static void enable_TSC(void)
141 {
142 	preempt_disable();
143 	if (test_and_clear_thread_flag(TIF_NOTSC))
144 		/*
145 		 * Must flip the CPU state synchronously with
146 		 * TIF_NOTSC in the current running context.
147 		 */
148 		cr4_clear_bits(X86_CR4_TSD);
149 	preempt_enable();
150 }
151 
152 int get_tsc_mode(unsigned long adr)
153 {
154 	unsigned int val;
155 
156 	if (test_thread_flag(TIF_NOTSC))
157 		val = PR_TSC_SIGSEGV;
158 	else
159 		val = PR_TSC_ENABLE;
160 
161 	return put_user(val, (unsigned int __user *)adr);
162 }
163 
164 int set_tsc_mode(unsigned int val)
165 {
166 	if (val == PR_TSC_SIGSEGV)
167 		disable_TSC();
168 	else if (val == PR_TSC_ENABLE)
169 		enable_TSC();
170 	else
171 		return -EINVAL;
172 
173 	return 0;
174 }
175 
176 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
177 
178 static void set_cpuid_faulting(bool on)
179 {
180 	u64 msrval;
181 
182 	msrval = this_cpu_read(msr_misc_features_shadow);
183 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
184 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
185 	this_cpu_write(msr_misc_features_shadow, msrval);
186 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
187 }
188 
189 static void disable_cpuid(void)
190 {
191 	preempt_disable();
192 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
193 		/*
194 		 * Must flip the CPU state synchronously with
195 		 * TIF_NOCPUID in the current running context.
196 		 */
197 		set_cpuid_faulting(true);
198 	}
199 	preempt_enable();
200 }
201 
202 static void enable_cpuid(void)
203 {
204 	preempt_disable();
205 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
206 		/*
207 		 * Must flip the CPU state synchronously with
208 		 * TIF_NOCPUID in the current running context.
209 		 */
210 		set_cpuid_faulting(false);
211 	}
212 	preempt_enable();
213 }
214 
215 static int get_cpuid_mode(void)
216 {
217 	return !test_thread_flag(TIF_NOCPUID);
218 }
219 
220 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
221 {
222 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
223 		return -ENODEV;
224 
225 	if (cpuid_enabled)
226 		enable_cpuid();
227 	else
228 		disable_cpuid();
229 
230 	return 0;
231 }
232 
233 /*
234  * Called immediately after a successful exec.
235  */
236 void arch_setup_new_exec(void)
237 {
238 	/* If cpuid was previously disabled for this task, re-enable it. */
239 	if (test_thread_flag(TIF_NOCPUID))
240 		enable_cpuid();
241 }
242 
243 static inline void switch_to_bitmap(struct tss_struct *tss,
244 				    struct thread_struct *prev,
245 				    struct thread_struct *next,
246 				    unsigned long tifp, unsigned long tifn)
247 {
248 	if (tifn & _TIF_IO_BITMAP) {
249 		/*
250 		 * Copy the relevant range of the IO bitmap.
251 		 * Normally this is 128 bytes or less:
252 		 */
253 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
254 		       max(prev->io_bitmap_max, next->io_bitmap_max));
255 		/*
256 		 * Make sure that the TSS limit is correct for the CPU
257 		 * to notice the IO bitmap.
258 		 */
259 		refresh_tss_limit();
260 	} else if (tifp & _TIF_IO_BITMAP) {
261 		/*
262 		 * Clear any possible leftover bits:
263 		 */
264 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
265 	}
266 }
267 
268 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
269 		      struct tss_struct *tss)
270 {
271 	struct thread_struct *prev, *next;
272 	unsigned long tifp, tifn;
273 
274 	prev = &prev_p->thread;
275 	next = &next_p->thread;
276 
277 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
278 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
279 	switch_to_bitmap(tss, prev, next, tifp, tifn);
280 
281 	propagate_user_return_notify(prev_p, next_p);
282 
283 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
284 	    arch_has_block_step()) {
285 		unsigned long debugctl, msk;
286 
287 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
288 		debugctl &= ~DEBUGCTLMSR_BTF;
289 		msk = tifn & _TIF_BLOCKSTEP;
290 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
291 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
292 	}
293 
294 	if ((tifp ^ tifn) & _TIF_NOTSC)
295 		cr4_toggle_bits(X86_CR4_TSD);
296 
297 	if ((tifp ^ tifn) & _TIF_NOCPUID)
298 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
299 }
300 
301 /*
302  * Idle related variables and functions
303  */
304 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
305 EXPORT_SYMBOL(boot_option_idle_override);
306 
307 static void (*x86_idle)(void);
308 
309 #ifndef CONFIG_SMP
310 static inline void play_dead(void)
311 {
312 	BUG();
313 }
314 #endif
315 
316 void arch_cpu_idle_enter(void)
317 {
318 	tsc_verify_tsc_adjust(false);
319 	local_touch_nmi();
320 }
321 
322 void arch_cpu_idle_dead(void)
323 {
324 	play_dead();
325 }
326 
327 /*
328  * Called from the generic idle code.
329  */
330 void arch_cpu_idle(void)
331 {
332 	x86_idle();
333 }
334 
335 /*
336  * We use this if we don't have any better idle routine..
337  */
338 void __cpuidle default_idle(void)
339 {
340 	trace_cpu_idle_rcuidle(1, smp_processor_id());
341 	safe_halt();
342 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
343 }
344 #ifdef CONFIG_APM_MODULE
345 EXPORT_SYMBOL(default_idle);
346 #endif
347 
348 #ifdef CONFIG_XEN
349 bool xen_set_default_idle(void)
350 {
351 	bool ret = !!x86_idle;
352 
353 	x86_idle = default_idle;
354 
355 	return ret;
356 }
357 #endif
358 
359 void stop_this_cpu(void *dummy)
360 {
361 	local_irq_disable();
362 	/*
363 	 * Remove this CPU:
364 	 */
365 	set_cpu_online(smp_processor_id(), false);
366 	disable_local_APIC();
367 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
368 
369 	for (;;) {
370 		/*
371 		 * Use wbinvd followed by hlt to stop the processor. This
372 		 * provides support for kexec on a processor that supports
373 		 * SME. With kexec, going from SME inactive to SME active
374 		 * requires clearing cache entries so that addresses without
375 		 * the encryption bit set don't corrupt the same physical
376 		 * address that has the encryption bit set when caches are
377 		 * flushed. To achieve this a wbinvd is performed followed by
378 		 * a hlt. Even if the processor is not in the kexec/SME
379 		 * scenario this only adds a wbinvd to a halting processor.
380 		 */
381 		asm volatile("wbinvd; hlt" : : : "memory");
382 	}
383 }
384 
385 /*
386  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
387  * states (local apic timer and TSC stop).
388  */
389 static void amd_e400_idle(void)
390 {
391 	/*
392 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
393 	 * gets set after static_cpu_has() places have been converted via
394 	 * alternatives.
395 	 */
396 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
397 		default_idle();
398 		return;
399 	}
400 
401 	tick_broadcast_enter();
402 
403 	default_idle();
404 
405 	/*
406 	 * The switch back from broadcast mode needs to be called with
407 	 * interrupts disabled.
408 	 */
409 	local_irq_disable();
410 	tick_broadcast_exit();
411 	local_irq_enable();
412 }
413 
414 /*
415  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
416  * We can't rely on cpuidle installing MWAIT, because it will not load
417  * on systems that support only C1 -- so the boot default must be MWAIT.
418  *
419  * Some AMD machines are the opposite, they depend on using HALT.
420  *
421  * So for default C1, which is used during boot until cpuidle loads,
422  * use MWAIT-C1 on Intel HW that has it, else use HALT.
423  */
424 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
425 {
426 	if (c->x86_vendor != X86_VENDOR_INTEL)
427 		return 0;
428 
429 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
430 		return 0;
431 
432 	return 1;
433 }
434 
435 /*
436  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
437  * with interrupts enabled and no flags, which is backwards compatible with the
438  * original MWAIT implementation.
439  */
440 static __cpuidle void mwait_idle(void)
441 {
442 	if (!current_set_polling_and_test()) {
443 		trace_cpu_idle_rcuidle(1, smp_processor_id());
444 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
445 			mb(); /* quirk */
446 			clflush((void *)&current_thread_info()->flags);
447 			mb(); /* quirk */
448 		}
449 
450 		__monitor((void *)&current_thread_info()->flags, 0, 0);
451 		if (!need_resched())
452 			__sti_mwait(0, 0);
453 		else
454 			local_irq_enable();
455 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
456 	} else {
457 		local_irq_enable();
458 	}
459 	__current_clr_polling();
460 }
461 
462 void select_idle_routine(const struct cpuinfo_x86 *c)
463 {
464 #ifdef CONFIG_SMP
465 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
466 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
467 #endif
468 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
469 		return;
470 
471 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
472 		pr_info("using AMD E400 aware idle routine\n");
473 		x86_idle = amd_e400_idle;
474 	} else if (prefer_mwait_c1_over_halt(c)) {
475 		pr_info("using mwait in idle threads\n");
476 		x86_idle = mwait_idle;
477 	} else
478 		x86_idle = default_idle;
479 }
480 
481 void amd_e400_c1e_apic_setup(void)
482 {
483 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
484 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
485 		local_irq_disable();
486 		tick_broadcast_force();
487 		local_irq_enable();
488 	}
489 }
490 
491 void __init arch_post_acpi_subsys_init(void)
492 {
493 	u32 lo, hi;
494 
495 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
496 		return;
497 
498 	/*
499 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
500 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
501 	 * MSR_K8_INT_PENDING_MSG.
502 	 */
503 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
504 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
505 		return;
506 
507 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
508 
509 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
510 		mark_tsc_unstable("TSC halt in AMD C1E");
511 	pr_info("System has AMD C1E enabled\n");
512 }
513 
514 static int __init idle_setup(char *str)
515 {
516 	if (!str)
517 		return -EINVAL;
518 
519 	if (!strcmp(str, "poll")) {
520 		pr_info("using polling idle threads\n");
521 		boot_option_idle_override = IDLE_POLL;
522 		cpu_idle_poll_ctrl(true);
523 	} else if (!strcmp(str, "halt")) {
524 		/*
525 		 * When the boot option of idle=halt is added, halt is
526 		 * forced to be used for CPU idle. In such case CPU C2/C3
527 		 * won't be used again.
528 		 * To continue to load the CPU idle driver, don't touch
529 		 * the boot_option_idle_override.
530 		 */
531 		x86_idle = default_idle;
532 		boot_option_idle_override = IDLE_HALT;
533 	} else if (!strcmp(str, "nomwait")) {
534 		/*
535 		 * If the boot option of "idle=nomwait" is added,
536 		 * it means that mwait will be disabled for CPU C2/C3
537 		 * states. In such case it won't touch the variable
538 		 * of boot_option_idle_override.
539 		 */
540 		boot_option_idle_override = IDLE_NOMWAIT;
541 	} else
542 		return -1;
543 
544 	return 0;
545 }
546 early_param("idle", idle_setup);
547 
548 unsigned long arch_align_stack(unsigned long sp)
549 {
550 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
551 		sp -= get_random_int() % 8192;
552 	return sp & ~0xf;
553 }
554 
555 unsigned long arch_randomize_brk(struct mm_struct *mm)
556 {
557 	return randomize_page(mm->brk, 0x02000000);
558 }
559 
560 /*
561  * Called from fs/proc with a reference on @p to find the function
562  * which called into schedule(). This needs to be done carefully
563  * because the task might wake up and we might look at a stack
564  * changing under us.
565  */
566 unsigned long get_wchan(struct task_struct *p)
567 {
568 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
569 	int count = 0;
570 
571 	if (!p || p == current || p->state == TASK_RUNNING)
572 		return 0;
573 
574 	if (!try_get_task_stack(p))
575 		return 0;
576 
577 	start = (unsigned long)task_stack_page(p);
578 	if (!start)
579 		goto out;
580 
581 	/*
582 	 * Layout of the stack page:
583 	 *
584 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
585 	 * PADDING
586 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
587 	 * stack
588 	 * ----------- bottom = start
589 	 *
590 	 * The tasks stack pointer points at the location where the
591 	 * framepointer is stored. The data on the stack is:
592 	 * ... IP FP ... IP FP
593 	 *
594 	 * We need to read FP and IP, so we need to adjust the upper
595 	 * bound by another unsigned long.
596 	 */
597 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
598 	top -= 2 * sizeof(unsigned long);
599 	bottom = start;
600 
601 	sp = READ_ONCE(p->thread.sp);
602 	if (sp < bottom || sp > top)
603 		goto out;
604 
605 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
606 	do {
607 		if (fp < bottom || fp > top)
608 			goto out;
609 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
610 		if (!in_sched_functions(ip)) {
611 			ret = ip;
612 			goto out;
613 		}
614 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
615 	} while (count++ < 16 && p->state != TASK_RUNNING);
616 
617 out:
618 	put_task_stack(p);
619 	return ret;
620 }
621 
622 long do_arch_prctl_common(struct task_struct *task, int option,
623 			  unsigned long cpuid_enabled)
624 {
625 	switch (option) {
626 	case ARCH_GET_CPUID:
627 		return get_cpuid_mode();
628 	case ARCH_SET_CPUID:
629 		return set_cpuid_mode(task, cpuid_enabled);
630 	}
631 
632 	return -EINVAL;
633 }
634