xref: /openbmc/linux/arch/x86/kernel/process.c (revision 6a551c11)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34 
35 /*
36  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37  * no more per-task TSS's. The TSS size is kept cacheline-aligned
38  * so they are allowed to end up in the .data..cacheline_aligned
39  * section. Since TSS's are completely CPU-local, we want them
40  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
41  */
42 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
43 	.x86_tss = {
44 		.sp0 = TOP_OF_INIT_STACK,
45 #ifdef CONFIG_X86_32
46 		.ss0 = __KERNEL_DS,
47 		.ss1 = __KERNEL_CS,
48 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
49 #endif
50 	 },
51 #ifdef CONFIG_X86_32
52 	 /*
53 	  * Note that the .io_bitmap member must be extra-big. This is because
54 	  * the CPU will access an additional byte beyond the end of the IO
55 	  * permission bitmap. The extra byte must be all 1 bits, and must
56 	  * be within the limit.
57 	  */
58 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
59 #endif
60 #ifdef CONFIG_X86_32
61 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
62 #endif
63 };
64 EXPORT_PER_CPU_SYMBOL(cpu_tss);
65 
66 #ifdef CONFIG_X86_64
67 static DEFINE_PER_CPU(unsigned char, is_idle);
68 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
69 
70 void idle_notifier_register(struct notifier_block *n)
71 {
72 	atomic_notifier_chain_register(&idle_notifier, n);
73 }
74 EXPORT_SYMBOL_GPL(idle_notifier_register);
75 
76 void idle_notifier_unregister(struct notifier_block *n)
77 {
78 	atomic_notifier_chain_unregister(&idle_notifier, n);
79 }
80 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
81 #endif
82 
83 /*
84  * this gets called so that we can store lazy state into memory and copy the
85  * current task into the new thread.
86  */
87 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
88 {
89 	memcpy(dst, src, arch_task_struct_size);
90 #ifdef CONFIG_VM86
91 	dst->thread.vm86 = NULL;
92 #endif
93 
94 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
95 }
96 
97 /*
98  * Free current thread data structures etc..
99  */
100 void exit_thread(struct task_struct *tsk)
101 {
102 	struct thread_struct *t = &tsk->thread;
103 	unsigned long *bp = t->io_bitmap_ptr;
104 	struct fpu *fpu = &t->fpu;
105 
106 	if (bp) {
107 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
108 
109 		t->io_bitmap_ptr = NULL;
110 		clear_thread_flag(TIF_IO_BITMAP);
111 		/*
112 		 * Careful, clear this in the TSS too:
113 		 */
114 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
115 		t->io_bitmap_max = 0;
116 		put_cpu();
117 		kfree(bp);
118 	}
119 
120 	free_vm86(t);
121 
122 	fpu__drop(fpu);
123 }
124 
125 void flush_thread(void)
126 {
127 	struct task_struct *tsk = current;
128 
129 	flush_ptrace_hw_breakpoint(tsk);
130 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
131 
132 	fpu__clear(&tsk->thread.fpu);
133 }
134 
135 static void hard_disable_TSC(void)
136 {
137 	cr4_set_bits(X86_CR4_TSD);
138 }
139 
140 void disable_TSC(void)
141 {
142 	preempt_disable();
143 	if (!test_and_set_thread_flag(TIF_NOTSC))
144 		/*
145 		 * Must flip the CPU state synchronously with
146 		 * TIF_NOTSC in the current running context.
147 		 */
148 		hard_disable_TSC();
149 	preempt_enable();
150 }
151 
152 static void hard_enable_TSC(void)
153 {
154 	cr4_clear_bits(X86_CR4_TSD);
155 }
156 
157 static void enable_TSC(void)
158 {
159 	preempt_disable();
160 	if (test_and_clear_thread_flag(TIF_NOTSC))
161 		/*
162 		 * Must flip the CPU state synchronously with
163 		 * TIF_NOTSC in the current running context.
164 		 */
165 		hard_enable_TSC();
166 	preempt_enable();
167 }
168 
169 int get_tsc_mode(unsigned long adr)
170 {
171 	unsigned int val;
172 
173 	if (test_thread_flag(TIF_NOTSC))
174 		val = PR_TSC_SIGSEGV;
175 	else
176 		val = PR_TSC_ENABLE;
177 
178 	return put_user(val, (unsigned int __user *)adr);
179 }
180 
181 int set_tsc_mode(unsigned int val)
182 {
183 	if (val == PR_TSC_SIGSEGV)
184 		disable_TSC();
185 	else if (val == PR_TSC_ENABLE)
186 		enable_TSC();
187 	else
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
194 		      struct tss_struct *tss)
195 {
196 	struct thread_struct *prev, *next;
197 
198 	prev = &prev_p->thread;
199 	next = &next_p->thread;
200 
201 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
202 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
203 		unsigned long debugctl = get_debugctlmsr();
204 
205 		debugctl &= ~DEBUGCTLMSR_BTF;
206 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
207 			debugctl |= DEBUGCTLMSR_BTF;
208 
209 		update_debugctlmsr(debugctl);
210 	}
211 
212 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
213 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
214 		/* prev and next are different */
215 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
216 			hard_disable_TSC();
217 		else
218 			hard_enable_TSC();
219 	}
220 
221 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
222 		/*
223 		 * Copy the relevant range of the IO bitmap.
224 		 * Normally this is 128 bytes or less:
225 		 */
226 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
227 		       max(prev->io_bitmap_max, next->io_bitmap_max));
228 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
229 		/*
230 		 * Clear any possible leftover bits:
231 		 */
232 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
233 	}
234 	propagate_user_return_notify(prev_p, next_p);
235 }
236 
237 /*
238  * Idle related variables and functions
239  */
240 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
241 EXPORT_SYMBOL(boot_option_idle_override);
242 
243 static void (*x86_idle)(void);
244 
245 #ifndef CONFIG_SMP
246 static inline void play_dead(void)
247 {
248 	BUG();
249 }
250 #endif
251 
252 #ifdef CONFIG_X86_64
253 void enter_idle(void)
254 {
255 	this_cpu_write(is_idle, 1);
256 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
257 }
258 
259 static void __exit_idle(void)
260 {
261 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
262 		return;
263 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
264 }
265 
266 /* Called from interrupts to signify idle end */
267 void exit_idle(void)
268 {
269 	/* idle loop has pid 0 */
270 	if (current->pid)
271 		return;
272 	__exit_idle();
273 }
274 #endif
275 
276 void arch_cpu_idle_enter(void)
277 {
278 	local_touch_nmi();
279 	enter_idle();
280 }
281 
282 void arch_cpu_idle_exit(void)
283 {
284 	__exit_idle();
285 }
286 
287 void arch_cpu_idle_dead(void)
288 {
289 	play_dead();
290 }
291 
292 /*
293  * Called from the generic idle code.
294  */
295 void arch_cpu_idle(void)
296 {
297 	x86_idle();
298 }
299 
300 /*
301  * We use this if we don't have any better idle routine..
302  */
303 void default_idle(void)
304 {
305 	trace_cpu_idle_rcuidle(1, smp_processor_id());
306 	safe_halt();
307 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
308 }
309 #ifdef CONFIG_APM_MODULE
310 EXPORT_SYMBOL(default_idle);
311 #endif
312 
313 #ifdef CONFIG_XEN
314 bool xen_set_default_idle(void)
315 {
316 	bool ret = !!x86_idle;
317 
318 	x86_idle = default_idle;
319 
320 	return ret;
321 }
322 #endif
323 void stop_this_cpu(void *dummy)
324 {
325 	local_irq_disable();
326 	/*
327 	 * Remove this CPU:
328 	 */
329 	set_cpu_online(smp_processor_id(), false);
330 	disable_local_APIC();
331 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
332 
333 	for (;;)
334 		halt();
335 }
336 
337 bool amd_e400_c1e_detected;
338 EXPORT_SYMBOL(amd_e400_c1e_detected);
339 
340 static cpumask_var_t amd_e400_c1e_mask;
341 
342 void amd_e400_remove_cpu(int cpu)
343 {
344 	if (amd_e400_c1e_mask != NULL)
345 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
346 }
347 
348 /*
349  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
350  * pending message MSR. If we detect C1E, then we handle it the same
351  * way as C3 power states (local apic timer and TSC stop)
352  */
353 static void amd_e400_idle(void)
354 {
355 	if (!amd_e400_c1e_detected) {
356 		u32 lo, hi;
357 
358 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
359 
360 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
361 			amd_e400_c1e_detected = true;
362 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
363 				mark_tsc_unstable("TSC halt in AMD C1E");
364 			pr_info("System has AMD C1E enabled\n");
365 		}
366 	}
367 
368 	if (amd_e400_c1e_detected) {
369 		int cpu = smp_processor_id();
370 
371 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
372 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
373 			/* Force broadcast so ACPI can not interfere. */
374 			tick_broadcast_force();
375 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
376 		}
377 		tick_broadcast_enter();
378 
379 		default_idle();
380 
381 		/*
382 		 * The switch back from broadcast mode needs to be
383 		 * called with interrupts disabled.
384 		 */
385 		local_irq_disable();
386 		tick_broadcast_exit();
387 		local_irq_enable();
388 	} else
389 		default_idle();
390 }
391 
392 /*
393  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
394  * We can't rely on cpuidle installing MWAIT, because it will not load
395  * on systems that support only C1 -- so the boot default must be MWAIT.
396  *
397  * Some AMD machines are the opposite, they depend on using HALT.
398  *
399  * So for default C1, which is used during boot until cpuidle loads,
400  * use MWAIT-C1 on Intel HW that has it, else use HALT.
401  */
402 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
403 {
404 	if (c->x86_vendor != X86_VENDOR_INTEL)
405 		return 0;
406 
407 	if (!cpu_has(c, X86_FEATURE_MWAIT))
408 		return 0;
409 
410 	return 1;
411 }
412 
413 /*
414  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
415  * with interrupts enabled and no flags, which is backwards compatible with the
416  * original MWAIT implementation.
417  */
418 static void mwait_idle(void)
419 {
420 	if (!current_set_polling_and_test()) {
421 		trace_cpu_idle_rcuidle(1, smp_processor_id());
422 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
423 			mb(); /* quirk */
424 			clflush((void *)&current_thread_info()->flags);
425 			mb(); /* quirk */
426 		}
427 
428 		__monitor((void *)&current_thread_info()->flags, 0, 0);
429 		if (!need_resched())
430 			__sti_mwait(0, 0);
431 		else
432 			local_irq_enable();
433 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
434 	} else {
435 		local_irq_enable();
436 	}
437 	__current_clr_polling();
438 }
439 
440 void select_idle_routine(const struct cpuinfo_x86 *c)
441 {
442 #ifdef CONFIG_SMP
443 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
444 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
445 #endif
446 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
447 		return;
448 
449 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
450 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
451 		pr_info("using AMD E400 aware idle routine\n");
452 		x86_idle = amd_e400_idle;
453 	} else if (prefer_mwait_c1_over_halt(c)) {
454 		pr_info("using mwait in idle threads\n");
455 		x86_idle = mwait_idle;
456 	} else
457 		x86_idle = default_idle;
458 }
459 
460 void __init init_amd_e400_c1e_mask(void)
461 {
462 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
463 	if (x86_idle == amd_e400_idle)
464 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
465 }
466 
467 static int __init idle_setup(char *str)
468 {
469 	if (!str)
470 		return -EINVAL;
471 
472 	if (!strcmp(str, "poll")) {
473 		pr_info("using polling idle threads\n");
474 		boot_option_idle_override = IDLE_POLL;
475 		cpu_idle_poll_ctrl(true);
476 	} else if (!strcmp(str, "halt")) {
477 		/*
478 		 * When the boot option of idle=halt is added, halt is
479 		 * forced to be used for CPU idle. In such case CPU C2/C3
480 		 * won't be used again.
481 		 * To continue to load the CPU idle driver, don't touch
482 		 * the boot_option_idle_override.
483 		 */
484 		x86_idle = default_idle;
485 		boot_option_idle_override = IDLE_HALT;
486 	} else if (!strcmp(str, "nomwait")) {
487 		/*
488 		 * If the boot option of "idle=nomwait" is added,
489 		 * it means that mwait will be disabled for CPU C2/C3
490 		 * states. In such case it won't touch the variable
491 		 * of boot_option_idle_override.
492 		 */
493 		boot_option_idle_override = IDLE_NOMWAIT;
494 	} else
495 		return -1;
496 
497 	return 0;
498 }
499 early_param("idle", idle_setup);
500 
501 unsigned long arch_align_stack(unsigned long sp)
502 {
503 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
504 		sp -= get_random_int() % 8192;
505 	return sp & ~0xf;
506 }
507 
508 unsigned long arch_randomize_brk(struct mm_struct *mm)
509 {
510 	unsigned long range_end = mm->brk + 0x02000000;
511 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
512 }
513 
514 /*
515  * Called from fs/proc with a reference on @p to find the function
516  * which called into schedule(). This needs to be done carefully
517  * because the task might wake up and we might look at a stack
518  * changing under us.
519  */
520 unsigned long get_wchan(struct task_struct *p)
521 {
522 	unsigned long start, bottom, top, sp, fp, ip;
523 	int count = 0;
524 
525 	if (!p || p == current || p->state == TASK_RUNNING)
526 		return 0;
527 
528 	start = (unsigned long)task_stack_page(p);
529 	if (!start)
530 		return 0;
531 
532 	/*
533 	 * Layout of the stack page:
534 	 *
535 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
536 	 * PADDING
537 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
538 	 * stack
539 	 * ----------- bottom = start + sizeof(thread_info)
540 	 * thread_info
541 	 * ----------- start
542 	 *
543 	 * The tasks stack pointer points at the location where the
544 	 * framepointer is stored. The data on the stack is:
545 	 * ... IP FP ... IP FP
546 	 *
547 	 * We need to read FP and IP, so we need to adjust the upper
548 	 * bound by another unsigned long.
549 	 */
550 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
551 	top -= 2 * sizeof(unsigned long);
552 	bottom = start + sizeof(struct thread_info);
553 
554 	sp = READ_ONCE(p->thread.sp);
555 	if (sp < bottom || sp > top)
556 		return 0;
557 
558 	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
559 	do {
560 		if (fp < bottom || fp > top)
561 			return 0;
562 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
563 		if (!in_sched_functions(ip))
564 			return ip;
565 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
566 	} while (count++ < 16 && p->state != TASK_RUNNING);
567 	return 0;
568 }
569