xref: /openbmc/linux/arch/x86/kernel/process.c (revision 68198dca)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/tick.h>
25 #include <linux/cpuidle.h>
26 #include <trace/events/power.h>
27 #include <linux/hw_breakpoint.h>
28 #include <asm/cpu.h>
29 #include <asm/apic.h>
30 #include <asm/syscalls.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 
43 /*
44  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45  * no more per-task TSS's. The TSS size is kept cacheline-aligned
46  * so they are allowed to end up in the .data..cacheline_aligned
47  * section. Since TSS's are completely CPU-local, we want them
48  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49  */
50 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
51 	.x86_tss = {
52 		/*
53 		 * .sp0 is only used when entering ring 0 from a lower
54 		 * privilege level.  Since the init task never runs anything
55 		 * but ring 0 code, there is no need for a valid value here.
56 		 * Poison it.
57 		 */
58 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 #ifdef CONFIG_X86_32
60 		.ss0 = __KERNEL_DS,
61 		.ss1 = __KERNEL_CS,
62 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
63 #endif
64 	 },
65 #ifdef CONFIG_X86_32
66 	 /*
67 	  * Note that the .io_bitmap member must be extra-big. This is because
68 	  * the CPU will access an additional byte beyond the end of the IO
69 	  * permission bitmap. The extra byte must be all 1 bits, and must
70 	  * be within the limit.
71 	  */
72 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
73 #endif
74 #ifdef CONFIG_X86_32
75 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
76 #endif
77 };
78 EXPORT_PER_CPU_SYMBOL(cpu_tss);
79 
80 DEFINE_PER_CPU(bool, __tss_limit_invalid);
81 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
82 
83 /*
84  * this gets called so that we can store lazy state into memory and copy the
85  * current task into the new thread.
86  */
87 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
88 {
89 	memcpy(dst, src, arch_task_struct_size);
90 #ifdef CONFIG_VM86
91 	dst->thread.vm86 = NULL;
92 #endif
93 
94 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
95 }
96 
97 /*
98  * Free current thread data structures etc..
99  */
100 void exit_thread(struct task_struct *tsk)
101 {
102 	struct thread_struct *t = &tsk->thread;
103 	unsigned long *bp = t->io_bitmap_ptr;
104 	struct fpu *fpu = &t->fpu;
105 
106 	if (bp) {
107 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
108 
109 		t->io_bitmap_ptr = NULL;
110 		clear_thread_flag(TIF_IO_BITMAP);
111 		/*
112 		 * Careful, clear this in the TSS too:
113 		 */
114 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
115 		t->io_bitmap_max = 0;
116 		put_cpu();
117 		kfree(bp);
118 	}
119 
120 	free_vm86(t);
121 
122 	fpu__drop(fpu);
123 }
124 
125 void flush_thread(void)
126 {
127 	struct task_struct *tsk = current;
128 
129 	flush_ptrace_hw_breakpoint(tsk);
130 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
131 
132 	fpu__clear(&tsk->thread.fpu);
133 }
134 
135 void disable_TSC(void)
136 {
137 	preempt_disable();
138 	if (!test_and_set_thread_flag(TIF_NOTSC))
139 		/*
140 		 * Must flip the CPU state synchronously with
141 		 * TIF_NOTSC in the current running context.
142 		 */
143 		cr4_set_bits(X86_CR4_TSD);
144 	preempt_enable();
145 }
146 
147 static void enable_TSC(void)
148 {
149 	preempt_disable();
150 	if (test_and_clear_thread_flag(TIF_NOTSC))
151 		/*
152 		 * Must flip the CPU state synchronously with
153 		 * TIF_NOTSC in the current running context.
154 		 */
155 		cr4_clear_bits(X86_CR4_TSD);
156 	preempt_enable();
157 }
158 
159 int get_tsc_mode(unsigned long adr)
160 {
161 	unsigned int val;
162 
163 	if (test_thread_flag(TIF_NOTSC))
164 		val = PR_TSC_SIGSEGV;
165 	else
166 		val = PR_TSC_ENABLE;
167 
168 	return put_user(val, (unsigned int __user *)adr);
169 }
170 
171 int set_tsc_mode(unsigned int val)
172 {
173 	if (val == PR_TSC_SIGSEGV)
174 		disable_TSC();
175 	else if (val == PR_TSC_ENABLE)
176 		enable_TSC();
177 	else
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
184 
185 static void set_cpuid_faulting(bool on)
186 {
187 	u64 msrval;
188 
189 	msrval = this_cpu_read(msr_misc_features_shadow);
190 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
191 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
192 	this_cpu_write(msr_misc_features_shadow, msrval);
193 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
194 }
195 
196 static void disable_cpuid(void)
197 {
198 	preempt_disable();
199 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
200 		/*
201 		 * Must flip the CPU state synchronously with
202 		 * TIF_NOCPUID in the current running context.
203 		 */
204 		set_cpuid_faulting(true);
205 	}
206 	preempt_enable();
207 }
208 
209 static void enable_cpuid(void)
210 {
211 	preempt_disable();
212 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
213 		/*
214 		 * Must flip the CPU state synchronously with
215 		 * TIF_NOCPUID in the current running context.
216 		 */
217 		set_cpuid_faulting(false);
218 	}
219 	preempt_enable();
220 }
221 
222 static int get_cpuid_mode(void)
223 {
224 	return !test_thread_flag(TIF_NOCPUID);
225 }
226 
227 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
228 {
229 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
230 		return -ENODEV;
231 
232 	if (cpuid_enabled)
233 		enable_cpuid();
234 	else
235 		disable_cpuid();
236 
237 	return 0;
238 }
239 
240 /*
241  * Called immediately after a successful exec.
242  */
243 void arch_setup_new_exec(void)
244 {
245 	/* If cpuid was previously disabled for this task, re-enable it. */
246 	if (test_thread_flag(TIF_NOCPUID))
247 		enable_cpuid();
248 }
249 
250 static inline void switch_to_bitmap(struct tss_struct *tss,
251 				    struct thread_struct *prev,
252 				    struct thread_struct *next,
253 				    unsigned long tifp, unsigned long tifn)
254 {
255 	if (tifn & _TIF_IO_BITMAP) {
256 		/*
257 		 * Copy the relevant range of the IO bitmap.
258 		 * Normally this is 128 bytes or less:
259 		 */
260 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
261 		       max(prev->io_bitmap_max, next->io_bitmap_max));
262 		/*
263 		 * Make sure that the TSS limit is correct for the CPU
264 		 * to notice the IO bitmap.
265 		 */
266 		refresh_tss_limit();
267 	} else if (tifp & _TIF_IO_BITMAP) {
268 		/*
269 		 * Clear any possible leftover bits:
270 		 */
271 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
272 	}
273 }
274 
275 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
276 		      struct tss_struct *tss)
277 {
278 	struct thread_struct *prev, *next;
279 	unsigned long tifp, tifn;
280 
281 	prev = &prev_p->thread;
282 	next = &next_p->thread;
283 
284 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
285 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
286 	switch_to_bitmap(tss, prev, next, tifp, tifn);
287 
288 	propagate_user_return_notify(prev_p, next_p);
289 
290 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
291 	    arch_has_block_step()) {
292 		unsigned long debugctl, msk;
293 
294 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
295 		debugctl &= ~DEBUGCTLMSR_BTF;
296 		msk = tifn & _TIF_BLOCKSTEP;
297 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
298 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
299 	}
300 
301 	if ((tifp ^ tifn) & _TIF_NOTSC)
302 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
303 
304 	if ((tifp ^ tifn) & _TIF_NOCPUID)
305 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
306 }
307 
308 /*
309  * Idle related variables and functions
310  */
311 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
312 EXPORT_SYMBOL(boot_option_idle_override);
313 
314 static void (*x86_idle)(void);
315 
316 #ifndef CONFIG_SMP
317 static inline void play_dead(void)
318 {
319 	BUG();
320 }
321 #endif
322 
323 void arch_cpu_idle_enter(void)
324 {
325 	tsc_verify_tsc_adjust(false);
326 	local_touch_nmi();
327 }
328 
329 void arch_cpu_idle_dead(void)
330 {
331 	play_dead();
332 }
333 
334 /*
335  * Called from the generic idle code.
336  */
337 void arch_cpu_idle(void)
338 {
339 	x86_idle();
340 }
341 
342 /*
343  * We use this if we don't have any better idle routine..
344  */
345 void __cpuidle default_idle(void)
346 {
347 	trace_cpu_idle_rcuidle(1, smp_processor_id());
348 	safe_halt();
349 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
350 }
351 #ifdef CONFIG_APM_MODULE
352 EXPORT_SYMBOL(default_idle);
353 #endif
354 
355 #ifdef CONFIG_XEN
356 bool xen_set_default_idle(void)
357 {
358 	bool ret = !!x86_idle;
359 
360 	x86_idle = default_idle;
361 
362 	return ret;
363 }
364 #endif
365 
366 void stop_this_cpu(void *dummy)
367 {
368 	local_irq_disable();
369 	/*
370 	 * Remove this CPU:
371 	 */
372 	set_cpu_online(smp_processor_id(), false);
373 	disable_local_APIC();
374 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
375 
376 	for (;;) {
377 		/*
378 		 * Use wbinvd followed by hlt to stop the processor. This
379 		 * provides support for kexec on a processor that supports
380 		 * SME. With kexec, going from SME inactive to SME active
381 		 * requires clearing cache entries so that addresses without
382 		 * the encryption bit set don't corrupt the same physical
383 		 * address that has the encryption bit set when caches are
384 		 * flushed. To achieve this a wbinvd is performed followed by
385 		 * a hlt. Even if the processor is not in the kexec/SME
386 		 * scenario this only adds a wbinvd to a halting processor.
387 		 */
388 		asm volatile("wbinvd; hlt" : : : "memory");
389 	}
390 }
391 
392 /*
393  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
394  * states (local apic timer and TSC stop).
395  */
396 static void amd_e400_idle(void)
397 {
398 	/*
399 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
400 	 * gets set after static_cpu_has() places have been converted via
401 	 * alternatives.
402 	 */
403 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
404 		default_idle();
405 		return;
406 	}
407 
408 	tick_broadcast_enter();
409 
410 	default_idle();
411 
412 	/*
413 	 * The switch back from broadcast mode needs to be called with
414 	 * interrupts disabled.
415 	 */
416 	local_irq_disable();
417 	tick_broadcast_exit();
418 	local_irq_enable();
419 }
420 
421 /*
422  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
423  * We can't rely on cpuidle installing MWAIT, because it will not load
424  * on systems that support only C1 -- so the boot default must be MWAIT.
425  *
426  * Some AMD machines are the opposite, they depend on using HALT.
427  *
428  * So for default C1, which is used during boot until cpuidle loads,
429  * use MWAIT-C1 on Intel HW that has it, else use HALT.
430  */
431 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
432 {
433 	if (c->x86_vendor != X86_VENDOR_INTEL)
434 		return 0;
435 
436 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
437 		return 0;
438 
439 	return 1;
440 }
441 
442 /*
443  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
444  * with interrupts enabled and no flags, which is backwards compatible with the
445  * original MWAIT implementation.
446  */
447 static __cpuidle void mwait_idle(void)
448 {
449 	if (!current_set_polling_and_test()) {
450 		trace_cpu_idle_rcuidle(1, smp_processor_id());
451 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
452 			mb(); /* quirk */
453 			clflush((void *)&current_thread_info()->flags);
454 			mb(); /* quirk */
455 		}
456 
457 		__monitor((void *)&current_thread_info()->flags, 0, 0);
458 		if (!need_resched())
459 			__sti_mwait(0, 0);
460 		else
461 			local_irq_enable();
462 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
463 	} else {
464 		local_irq_enable();
465 	}
466 	__current_clr_polling();
467 }
468 
469 void select_idle_routine(const struct cpuinfo_x86 *c)
470 {
471 #ifdef CONFIG_SMP
472 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
473 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
474 #endif
475 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
476 		return;
477 
478 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
479 		pr_info("using AMD E400 aware idle routine\n");
480 		x86_idle = amd_e400_idle;
481 	} else if (prefer_mwait_c1_over_halt(c)) {
482 		pr_info("using mwait in idle threads\n");
483 		x86_idle = mwait_idle;
484 	} else
485 		x86_idle = default_idle;
486 }
487 
488 void amd_e400_c1e_apic_setup(void)
489 {
490 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
491 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
492 		local_irq_disable();
493 		tick_broadcast_force();
494 		local_irq_enable();
495 	}
496 }
497 
498 void __init arch_post_acpi_subsys_init(void)
499 {
500 	u32 lo, hi;
501 
502 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
503 		return;
504 
505 	/*
506 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
507 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
508 	 * MSR_K8_INT_PENDING_MSG.
509 	 */
510 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
511 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
512 		return;
513 
514 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
515 
516 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
517 		mark_tsc_unstable("TSC halt in AMD C1E");
518 	pr_info("System has AMD C1E enabled\n");
519 }
520 
521 static int __init idle_setup(char *str)
522 {
523 	if (!str)
524 		return -EINVAL;
525 
526 	if (!strcmp(str, "poll")) {
527 		pr_info("using polling idle threads\n");
528 		boot_option_idle_override = IDLE_POLL;
529 		cpu_idle_poll_ctrl(true);
530 	} else if (!strcmp(str, "halt")) {
531 		/*
532 		 * When the boot option of idle=halt is added, halt is
533 		 * forced to be used for CPU idle. In such case CPU C2/C3
534 		 * won't be used again.
535 		 * To continue to load the CPU idle driver, don't touch
536 		 * the boot_option_idle_override.
537 		 */
538 		x86_idle = default_idle;
539 		boot_option_idle_override = IDLE_HALT;
540 	} else if (!strcmp(str, "nomwait")) {
541 		/*
542 		 * If the boot option of "idle=nomwait" is added,
543 		 * it means that mwait will be disabled for CPU C2/C3
544 		 * states. In such case it won't touch the variable
545 		 * of boot_option_idle_override.
546 		 */
547 		boot_option_idle_override = IDLE_NOMWAIT;
548 	} else
549 		return -1;
550 
551 	return 0;
552 }
553 early_param("idle", idle_setup);
554 
555 unsigned long arch_align_stack(unsigned long sp)
556 {
557 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
558 		sp -= get_random_int() % 8192;
559 	return sp & ~0xf;
560 }
561 
562 unsigned long arch_randomize_brk(struct mm_struct *mm)
563 {
564 	return randomize_page(mm->brk, 0x02000000);
565 }
566 
567 /*
568  * Called from fs/proc with a reference on @p to find the function
569  * which called into schedule(). This needs to be done carefully
570  * because the task might wake up and we might look at a stack
571  * changing under us.
572  */
573 unsigned long get_wchan(struct task_struct *p)
574 {
575 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
576 	int count = 0;
577 
578 	if (!p || p == current || p->state == TASK_RUNNING)
579 		return 0;
580 
581 	if (!try_get_task_stack(p))
582 		return 0;
583 
584 	start = (unsigned long)task_stack_page(p);
585 	if (!start)
586 		goto out;
587 
588 	/*
589 	 * Layout of the stack page:
590 	 *
591 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
592 	 * PADDING
593 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
594 	 * stack
595 	 * ----------- bottom = start
596 	 *
597 	 * The tasks stack pointer points at the location where the
598 	 * framepointer is stored. The data on the stack is:
599 	 * ... IP FP ... IP FP
600 	 *
601 	 * We need to read FP and IP, so we need to adjust the upper
602 	 * bound by another unsigned long.
603 	 */
604 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
605 	top -= 2 * sizeof(unsigned long);
606 	bottom = start;
607 
608 	sp = READ_ONCE(p->thread.sp);
609 	if (sp < bottom || sp > top)
610 		goto out;
611 
612 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
613 	do {
614 		if (fp < bottom || fp > top)
615 			goto out;
616 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
617 		if (!in_sched_functions(ip)) {
618 			ret = ip;
619 			goto out;
620 		}
621 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
622 	} while (count++ < 16 && p->state != TASK_RUNNING);
623 
624 out:
625 	put_task_stack(p);
626 	return ret;
627 }
628 
629 long do_arch_prctl_common(struct task_struct *task, int option,
630 			  unsigned long cpuid_enabled)
631 {
632 	switch (option) {
633 	case ARCH_GET_CPUID:
634 		return get_cpuid_mode();
635 	case ARCH_SET_CPUID:
636 		return set_cpuid_mode(task, cpuid_enabled);
637 	}
638 
639 	return -EINVAL;
640 }
641