xref: /openbmc/linux/arch/x86/kernel/process.c (revision 588b48ca)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 
32 /*
33  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34  * no more per-task TSS's. The TSS size is kept cacheline-aligned
35  * so they are allowed to end up in the .data..cacheline_aligned
36  * section. Since TSS's are completely CPU-local, we want them
37  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38  */
39 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40 
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44 
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 	atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50 
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 	atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57 
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60 
61 /*
62  * this gets called so that we can store lazy state into memory and copy the
63  * current task into the new thread.
64  */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 	int ret;
68 
69 	*dst = *src;
70 	if (fpu_allocated(&src->thread.fpu)) {
71 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 		ret = fpu_alloc(&dst->thread.fpu);
73 		if (ret)
74 			return ret;
75 		fpu_copy(dst, src);
76 	}
77 	return 0;
78 }
79 
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 	fpu_free(&tsk->thread.fpu);
83 }
84 
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 	free_thread_xstate(tsk);
88 }
89 
90 void arch_task_cache_init(void)
91 {
92         task_xstate_cachep =
93         	kmem_cache_create("task_xstate", xstate_size,
94 				  __alignof__(union thread_xstate),
95 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
96 	setup_xstate_comp();
97 }
98 
99 /*
100  * Free current thread data structures etc..
101  */
102 void exit_thread(void)
103 {
104 	struct task_struct *me = current;
105 	struct thread_struct *t = &me->thread;
106 	unsigned long *bp = t->io_bitmap_ptr;
107 
108 	if (bp) {
109 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
110 
111 		t->io_bitmap_ptr = NULL;
112 		clear_thread_flag(TIF_IO_BITMAP);
113 		/*
114 		 * Careful, clear this in the TSS too:
115 		 */
116 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
117 		t->io_bitmap_max = 0;
118 		put_cpu();
119 		kfree(bp);
120 	}
121 
122 	drop_fpu(me);
123 }
124 
125 void flush_thread(void)
126 {
127 	struct task_struct *tsk = current;
128 
129 	flush_ptrace_hw_breakpoint(tsk);
130 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
131 	drop_init_fpu(tsk);
132 	/*
133 	 * Free the FPU state for non xsave platforms. They get reallocated
134 	 * lazily at the first use.
135 	 */
136 	if (!use_eager_fpu())
137 		free_thread_xstate(tsk);
138 }
139 
140 static void hard_disable_TSC(void)
141 {
142 	write_cr4(read_cr4() | X86_CR4_TSD);
143 }
144 
145 void disable_TSC(void)
146 {
147 	preempt_disable();
148 	if (!test_and_set_thread_flag(TIF_NOTSC))
149 		/*
150 		 * Must flip the CPU state synchronously with
151 		 * TIF_NOTSC in the current running context.
152 		 */
153 		hard_disable_TSC();
154 	preempt_enable();
155 }
156 
157 static void hard_enable_TSC(void)
158 {
159 	write_cr4(read_cr4() & ~X86_CR4_TSD);
160 }
161 
162 static void enable_TSC(void)
163 {
164 	preempt_disable();
165 	if (test_and_clear_thread_flag(TIF_NOTSC))
166 		/*
167 		 * Must flip the CPU state synchronously with
168 		 * TIF_NOTSC in the current running context.
169 		 */
170 		hard_enable_TSC();
171 	preempt_enable();
172 }
173 
174 int get_tsc_mode(unsigned long adr)
175 {
176 	unsigned int val;
177 
178 	if (test_thread_flag(TIF_NOTSC))
179 		val = PR_TSC_SIGSEGV;
180 	else
181 		val = PR_TSC_ENABLE;
182 
183 	return put_user(val, (unsigned int __user *)adr);
184 }
185 
186 int set_tsc_mode(unsigned int val)
187 {
188 	if (val == PR_TSC_SIGSEGV)
189 		disable_TSC();
190 	else if (val == PR_TSC_ENABLE)
191 		enable_TSC();
192 	else
193 		return -EINVAL;
194 
195 	return 0;
196 }
197 
198 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
199 		      struct tss_struct *tss)
200 {
201 	struct thread_struct *prev, *next;
202 
203 	prev = &prev_p->thread;
204 	next = &next_p->thread;
205 
206 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
207 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
208 		unsigned long debugctl = get_debugctlmsr();
209 
210 		debugctl &= ~DEBUGCTLMSR_BTF;
211 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
212 			debugctl |= DEBUGCTLMSR_BTF;
213 
214 		update_debugctlmsr(debugctl);
215 	}
216 
217 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
218 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
219 		/* prev and next are different */
220 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
221 			hard_disable_TSC();
222 		else
223 			hard_enable_TSC();
224 	}
225 
226 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
227 		/*
228 		 * Copy the relevant range of the IO bitmap.
229 		 * Normally this is 128 bytes or less:
230 		 */
231 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
232 		       max(prev->io_bitmap_max, next->io_bitmap_max));
233 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
234 		/*
235 		 * Clear any possible leftover bits:
236 		 */
237 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
238 	}
239 	propagate_user_return_notify(prev_p, next_p);
240 }
241 
242 /*
243  * Idle related variables and functions
244  */
245 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
246 EXPORT_SYMBOL(boot_option_idle_override);
247 
248 static void (*x86_idle)(void);
249 
250 #ifndef CONFIG_SMP
251 static inline void play_dead(void)
252 {
253 	BUG();
254 }
255 #endif
256 
257 #ifdef CONFIG_X86_64
258 void enter_idle(void)
259 {
260 	this_cpu_write(is_idle, 1);
261 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
262 }
263 
264 static void __exit_idle(void)
265 {
266 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
267 		return;
268 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
269 }
270 
271 /* Called from interrupts to signify idle end */
272 void exit_idle(void)
273 {
274 	/* idle loop has pid 0 */
275 	if (current->pid)
276 		return;
277 	__exit_idle();
278 }
279 #endif
280 
281 void arch_cpu_idle_enter(void)
282 {
283 	local_touch_nmi();
284 	enter_idle();
285 }
286 
287 void arch_cpu_idle_exit(void)
288 {
289 	__exit_idle();
290 }
291 
292 void arch_cpu_idle_dead(void)
293 {
294 	play_dead();
295 }
296 
297 /*
298  * Called from the generic idle code.
299  */
300 void arch_cpu_idle(void)
301 {
302 	x86_idle();
303 }
304 
305 /*
306  * We use this if we don't have any better idle routine..
307  */
308 void default_idle(void)
309 {
310 	trace_cpu_idle_rcuidle(1, smp_processor_id());
311 	safe_halt();
312 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
313 }
314 #ifdef CONFIG_APM_MODULE
315 EXPORT_SYMBOL(default_idle);
316 #endif
317 
318 #ifdef CONFIG_XEN
319 bool xen_set_default_idle(void)
320 {
321 	bool ret = !!x86_idle;
322 
323 	x86_idle = default_idle;
324 
325 	return ret;
326 }
327 #endif
328 void stop_this_cpu(void *dummy)
329 {
330 	local_irq_disable();
331 	/*
332 	 * Remove this CPU:
333 	 */
334 	set_cpu_online(smp_processor_id(), false);
335 	disable_local_APIC();
336 
337 	for (;;)
338 		halt();
339 }
340 
341 bool amd_e400_c1e_detected;
342 EXPORT_SYMBOL(amd_e400_c1e_detected);
343 
344 static cpumask_var_t amd_e400_c1e_mask;
345 
346 void amd_e400_remove_cpu(int cpu)
347 {
348 	if (amd_e400_c1e_mask != NULL)
349 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
350 }
351 
352 /*
353  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
354  * pending message MSR. If we detect C1E, then we handle it the same
355  * way as C3 power states (local apic timer and TSC stop)
356  */
357 static void amd_e400_idle(void)
358 {
359 	if (!amd_e400_c1e_detected) {
360 		u32 lo, hi;
361 
362 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
363 
364 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
365 			amd_e400_c1e_detected = true;
366 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
367 				mark_tsc_unstable("TSC halt in AMD C1E");
368 			pr_info("System has AMD C1E enabled\n");
369 		}
370 	}
371 
372 	if (amd_e400_c1e_detected) {
373 		int cpu = smp_processor_id();
374 
375 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
376 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
377 			/*
378 			 * Force broadcast so ACPI can not interfere.
379 			 */
380 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
381 					   &cpu);
382 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
383 		}
384 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
385 
386 		default_idle();
387 
388 		/*
389 		 * The switch back from broadcast mode needs to be
390 		 * called with interrupts disabled.
391 		 */
392 		local_irq_disable();
393 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
394 		local_irq_enable();
395 	} else
396 		default_idle();
397 }
398 
399 void select_idle_routine(const struct cpuinfo_x86 *c)
400 {
401 #ifdef CONFIG_SMP
402 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
403 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
404 #endif
405 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
406 		return;
407 
408 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
409 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
410 		pr_info("using AMD E400 aware idle routine\n");
411 		x86_idle = amd_e400_idle;
412 	} else
413 		x86_idle = default_idle;
414 }
415 
416 void __init init_amd_e400_c1e_mask(void)
417 {
418 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
419 	if (x86_idle == amd_e400_idle)
420 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
421 }
422 
423 static int __init idle_setup(char *str)
424 {
425 	if (!str)
426 		return -EINVAL;
427 
428 	if (!strcmp(str, "poll")) {
429 		pr_info("using polling idle threads\n");
430 		boot_option_idle_override = IDLE_POLL;
431 		cpu_idle_poll_ctrl(true);
432 	} else if (!strcmp(str, "halt")) {
433 		/*
434 		 * When the boot option of idle=halt is added, halt is
435 		 * forced to be used for CPU idle. In such case CPU C2/C3
436 		 * won't be used again.
437 		 * To continue to load the CPU idle driver, don't touch
438 		 * the boot_option_idle_override.
439 		 */
440 		x86_idle = default_idle;
441 		boot_option_idle_override = IDLE_HALT;
442 	} else if (!strcmp(str, "nomwait")) {
443 		/*
444 		 * If the boot option of "idle=nomwait" is added,
445 		 * it means that mwait will be disabled for CPU C2/C3
446 		 * states. In such case it won't touch the variable
447 		 * of boot_option_idle_override.
448 		 */
449 		boot_option_idle_override = IDLE_NOMWAIT;
450 	} else
451 		return -1;
452 
453 	return 0;
454 }
455 early_param("idle", idle_setup);
456 
457 unsigned long arch_align_stack(unsigned long sp)
458 {
459 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
460 		sp -= get_random_int() % 8192;
461 	return sp & ~0xf;
462 }
463 
464 unsigned long arch_randomize_brk(struct mm_struct *mm)
465 {
466 	unsigned long range_end = mm->brk + 0x02000000;
467 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
468 }
469 
470