xref: /openbmc/linux/arch/x86/kernel/process.c (revision 4bce6fce)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/i387.h>
29 #include <asm/fpu-internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33 
34 /*
35  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
36  * no more per-task TSS's. The TSS size is kept cacheline-aligned
37  * so they are allowed to end up in the .data..cacheline_aligned
38  * section. Since TSS's are completely CPU-local, we want them
39  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
40  */
41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
42 	.x86_tss = {
43 		.sp0 = TOP_OF_INIT_STACK,
44 #ifdef CONFIG_X86_32
45 		.ss0 = __KERNEL_DS,
46 		.ss1 = __KERNEL_CS,
47 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
48 #endif
49 	 },
50 #ifdef CONFIG_X86_32
51 	 /*
52 	  * Note that the .io_bitmap member must be extra-big. This is because
53 	  * the CPU will access an additional byte beyond the end of the IO
54 	  * permission bitmap. The extra byte must be all 1 bits, and must
55 	  * be within the limit.
56 	  */
57 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
58 #endif
59 };
60 EXPORT_PER_CPU_SYMBOL_GPL(cpu_tss);
61 
62 #ifdef CONFIG_X86_64
63 static DEFINE_PER_CPU(unsigned char, is_idle);
64 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
65 
66 void idle_notifier_register(struct notifier_block *n)
67 {
68 	atomic_notifier_chain_register(&idle_notifier, n);
69 }
70 EXPORT_SYMBOL_GPL(idle_notifier_register);
71 
72 void idle_notifier_unregister(struct notifier_block *n)
73 {
74 	atomic_notifier_chain_unregister(&idle_notifier, n);
75 }
76 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
77 #endif
78 
79 struct kmem_cache *task_xstate_cachep;
80 EXPORT_SYMBOL_GPL(task_xstate_cachep);
81 
82 /*
83  * this gets called so that we can store lazy state into memory and copy the
84  * current task into the new thread.
85  */
86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
87 {
88 	*dst = *src;
89 
90 	dst->thread.fpu_counter = 0;
91 	dst->thread.fpu.has_fpu = 0;
92 	dst->thread.fpu.state = NULL;
93 	task_disable_lazy_fpu_restore(dst);
94 	if (tsk_used_math(src)) {
95 		int err = fpu_alloc(&dst->thread.fpu);
96 		if (err)
97 			return err;
98 		fpu_copy(dst, src);
99 	}
100 	return 0;
101 }
102 
103 void free_thread_xstate(struct task_struct *tsk)
104 {
105 	fpu_free(&tsk->thread.fpu);
106 }
107 
108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 	free_thread_xstate(tsk);
111 }
112 
113 void arch_task_cache_init(void)
114 {
115         task_xstate_cachep =
116         	kmem_cache_create("task_xstate", xstate_size,
117 				  __alignof__(union thread_xstate),
118 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
119 	setup_xstate_comp();
120 }
121 
122 /*
123  * Free current thread data structures etc..
124  */
125 void exit_thread(void)
126 {
127 	struct task_struct *me = current;
128 	struct thread_struct *t = &me->thread;
129 	unsigned long *bp = t->io_bitmap_ptr;
130 
131 	if (bp) {
132 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
133 
134 		t->io_bitmap_ptr = NULL;
135 		clear_thread_flag(TIF_IO_BITMAP);
136 		/*
137 		 * Careful, clear this in the TSS too:
138 		 */
139 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
140 		t->io_bitmap_max = 0;
141 		put_cpu();
142 		kfree(bp);
143 	}
144 
145 	drop_fpu(me);
146 }
147 
148 void flush_thread(void)
149 {
150 	struct task_struct *tsk = current;
151 
152 	flush_ptrace_hw_breakpoint(tsk);
153 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 
155 	if (!use_eager_fpu()) {
156 		/* FPU state will be reallocated lazily at the first use. */
157 		drop_fpu(tsk);
158 		free_thread_xstate(tsk);
159 	} else if (!used_math()) {
160 		/* kthread execs. TODO: cleanup this horror. */
161 		if (WARN_ON(init_fpu(tsk)))
162 			force_sig(SIGKILL, tsk);
163 		user_fpu_begin();
164 		restore_init_xstate();
165 	}
166 }
167 
168 static void hard_disable_TSC(void)
169 {
170 	cr4_set_bits(X86_CR4_TSD);
171 }
172 
173 void disable_TSC(void)
174 {
175 	preempt_disable();
176 	if (!test_and_set_thread_flag(TIF_NOTSC))
177 		/*
178 		 * Must flip the CPU state synchronously with
179 		 * TIF_NOTSC in the current running context.
180 		 */
181 		hard_disable_TSC();
182 	preempt_enable();
183 }
184 
185 static void hard_enable_TSC(void)
186 {
187 	cr4_clear_bits(X86_CR4_TSD);
188 }
189 
190 static void enable_TSC(void)
191 {
192 	preempt_disable();
193 	if (test_and_clear_thread_flag(TIF_NOTSC))
194 		/*
195 		 * Must flip the CPU state synchronously with
196 		 * TIF_NOTSC in the current running context.
197 		 */
198 		hard_enable_TSC();
199 	preempt_enable();
200 }
201 
202 int get_tsc_mode(unsigned long adr)
203 {
204 	unsigned int val;
205 
206 	if (test_thread_flag(TIF_NOTSC))
207 		val = PR_TSC_SIGSEGV;
208 	else
209 		val = PR_TSC_ENABLE;
210 
211 	return put_user(val, (unsigned int __user *)adr);
212 }
213 
214 int set_tsc_mode(unsigned int val)
215 {
216 	if (val == PR_TSC_SIGSEGV)
217 		disable_TSC();
218 	else if (val == PR_TSC_ENABLE)
219 		enable_TSC();
220 	else
221 		return -EINVAL;
222 
223 	return 0;
224 }
225 
226 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
227 		      struct tss_struct *tss)
228 {
229 	struct thread_struct *prev, *next;
230 
231 	prev = &prev_p->thread;
232 	next = &next_p->thread;
233 
234 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
235 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
236 		unsigned long debugctl = get_debugctlmsr();
237 
238 		debugctl &= ~DEBUGCTLMSR_BTF;
239 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
240 			debugctl |= DEBUGCTLMSR_BTF;
241 
242 		update_debugctlmsr(debugctl);
243 	}
244 
245 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
246 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
247 		/* prev and next are different */
248 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
249 			hard_disable_TSC();
250 		else
251 			hard_enable_TSC();
252 	}
253 
254 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
255 		/*
256 		 * Copy the relevant range of the IO bitmap.
257 		 * Normally this is 128 bytes or less:
258 		 */
259 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
260 		       max(prev->io_bitmap_max, next->io_bitmap_max));
261 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
262 		/*
263 		 * Clear any possible leftover bits:
264 		 */
265 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
266 	}
267 	propagate_user_return_notify(prev_p, next_p);
268 }
269 
270 /*
271  * Idle related variables and functions
272  */
273 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
274 EXPORT_SYMBOL(boot_option_idle_override);
275 
276 static void (*x86_idle)(void);
277 
278 #ifndef CONFIG_SMP
279 static inline void play_dead(void)
280 {
281 	BUG();
282 }
283 #endif
284 
285 #ifdef CONFIG_X86_64
286 void enter_idle(void)
287 {
288 	this_cpu_write(is_idle, 1);
289 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
290 }
291 
292 static void __exit_idle(void)
293 {
294 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
295 		return;
296 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
297 }
298 
299 /* Called from interrupts to signify idle end */
300 void exit_idle(void)
301 {
302 	/* idle loop has pid 0 */
303 	if (current->pid)
304 		return;
305 	__exit_idle();
306 }
307 #endif
308 
309 void arch_cpu_idle_enter(void)
310 {
311 	local_touch_nmi();
312 	enter_idle();
313 }
314 
315 void arch_cpu_idle_exit(void)
316 {
317 	__exit_idle();
318 }
319 
320 void arch_cpu_idle_dead(void)
321 {
322 	play_dead();
323 }
324 
325 /*
326  * Called from the generic idle code.
327  */
328 void arch_cpu_idle(void)
329 {
330 	x86_idle();
331 }
332 
333 /*
334  * We use this if we don't have any better idle routine..
335  */
336 void default_idle(void)
337 {
338 	trace_cpu_idle_rcuidle(1, smp_processor_id());
339 	safe_halt();
340 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
341 }
342 #ifdef CONFIG_APM_MODULE
343 EXPORT_SYMBOL(default_idle);
344 #endif
345 
346 #ifdef CONFIG_XEN
347 bool xen_set_default_idle(void)
348 {
349 	bool ret = !!x86_idle;
350 
351 	x86_idle = default_idle;
352 
353 	return ret;
354 }
355 #endif
356 void stop_this_cpu(void *dummy)
357 {
358 	local_irq_disable();
359 	/*
360 	 * Remove this CPU:
361 	 */
362 	set_cpu_online(smp_processor_id(), false);
363 	disable_local_APIC();
364 
365 	for (;;)
366 		halt();
367 }
368 
369 bool amd_e400_c1e_detected;
370 EXPORT_SYMBOL(amd_e400_c1e_detected);
371 
372 static cpumask_var_t amd_e400_c1e_mask;
373 
374 void amd_e400_remove_cpu(int cpu)
375 {
376 	if (amd_e400_c1e_mask != NULL)
377 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
378 }
379 
380 /*
381  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
382  * pending message MSR. If we detect C1E, then we handle it the same
383  * way as C3 power states (local apic timer and TSC stop)
384  */
385 static void amd_e400_idle(void)
386 {
387 	if (!amd_e400_c1e_detected) {
388 		u32 lo, hi;
389 
390 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
391 
392 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
393 			amd_e400_c1e_detected = true;
394 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
395 				mark_tsc_unstable("TSC halt in AMD C1E");
396 			pr_info("System has AMD C1E enabled\n");
397 		}
398 	}
399 
400 	if (amd_e400_c1e_detected) {
401 		int cpu = smp_processor_id();
402 
403 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
404 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
405 			/* Force broadcast so ACPI can not interfere. */
406 			tick_broadcast_force();
407 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
408 		}
409 		tick_broadcast_enter();
410 
411 		default_idle();
412 
413 		/*
414 		 * The switch back from broadcast mode needs to be
415 		 * called with interrupts disabled.
416 		 */
417 		local_irq_disable();
418 		tick_broadcast_exit();
419 		local_irq_enable();
420 	} else
421 		default_idle();
422 }
423 
424 /*
425  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
426  * We can't rely on cpuidle installing MWAIT, because it will not load
427  * on systems that support only C1 -- so the boot default must be MWAIT.
428  *
429  * Some AMD machines are the opposite, they depend on using HALT.
430  *
431  * So for default C1, which is used during boot until cpuidle loads,
432  * use MWAIT-C1 on Intel HW that has it, else use HALT.
433  */
434 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
435 {
436 	if (c->x86_vendor != X86_VENDOR_INTEL)
437 		return 0;
438 
439 	if (!cpu_has(c, X86_FEATURE_MWAIT))
440 		return 0;
441 
442 	return 1;
443 }
444 
445 /*
446  * MONITOR/MWAIT with no hints, used for default default C1 state.
447  * This invokes MWAIT with interrutps enabled and no flags,
448  * which is backwards compatible with the original MWAIT implementation.
449  */
450 
451 static void mwait_idle(void)
452 {
453 	if (!current_set_polling_and_test()) {
454 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
455 			smp_mb(); /* quirk */
456 			clflush((void *)&current_thread_info()->flags);
457 			smp_mb(); /* quirk */
458 		}
459 
460 		__monitor((void *)&current_thread_info()->flags, 0, 0);
461 		if (!need_resched())
462 			__sti_mwait(0, 0);
463 		else
464 			local_irq_enable();
465 	} else {
466 		local_irq_enable();
467 	}
468 	__current_clr_polling();
469 }
470 
471 void select_idle_routine(const struct cpuinfo_x86 *c)
472 {
473 #ifdef CONFIG_SMP
474 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
475 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
476 #endif
477 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
478 		return;
479 
480 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
481 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
482 		pr_info("using AMD E400 aware idle routine\n");
483 		x86_idle = amd_e400_idle;
484 	} else if (prefer_mwait_c1_over_halt(c)) {
485 		pr_info("using mwait in idle threads\n");
486 		x86_idle = mwait_idle;
487 	} else
488 		x86_idle = default_idle;
489 }
490 
491 void __init init_amd_e400_c1e_mask(void)
492 {
493 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
494 	if (x86_idle == amd_e400_idle)
495 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
496 }
497 
498 static int __init idle_setup(char *str)
499 {
500 	if (!str)
501 		return -EINVAL;
502 
503 	if (!strcmp(str, "poll")) {
504 		pr_info("using polling idle threads\n");
505 		boot_option_idle_override = IDLE_POLL;
506 		cpu_idle_poll_ctrl(true);
507 	} else if (!strcmp(str, "halt")) {
508 		/*
509 		 * When the boot option of idle=halt is added, halt is
510 		 * forced to be used for CPU idle. In such case CPU C2/C3
511 		 * won't be used again.
512 		 * To continue to load the CPU idle driver, don't touch
513 		 * the boot_option_idle_override.
514 		 */
515 		x86_idle = default_idle;
516 		boot_option_idle_override = IDLE_HALT;
517 	} else if (!strcmp(str, "nomwait")) {
518 		/*
519 		 * If the boot option of "idle=nomwait" is added,
520 		 * it means that mwait will be disabled for CPU C2/C3
521 		 * states. In such case it won't touch the variable
522 		 * of boot_option_idle_override.
523 		 */
524 		boot_option_idle_override = IDLE_NOMWAIT;
525 	} else
526 		return -1;
527 
528 	return 0;
529 }
530 early_param("idle", idle_setup);
531 
532 unsigned long arch_align_stack(unsigned long sp)
533 {
534 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
535 		sp -= get_random_int() % 8192;
536 	return sp & ~0xf;
537 }
538 
539 unsigned long arch_randomize_brk(struct mm_struct *mm)
540 {
541 	unsigned long range_end = mm->brk + 0x02000000;
542 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
543 }
544 
545