1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/errno.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/smp.h> 7 #include <linux/prctl.h> 8 #include <linux/slab.h> 9 #include <linux/sched.h> 10 #include <linux/module.h> 11 #include <linux/pm.h> 12 #include <linux/tick.h> 13 #include <linux/random.h> 14 #include <linux/user-return-notifier.h> 15 #include <linux/dmi.h> 16 #include <linux/utsname.h> 17 #include <linux/stackprotector.h> 18 #include <linux/tick.h> 19 #include <linux/cpuidle.h> 20 #include <trace/events/power.h> 21 #include <linux/hw_breakpoint.h> 22 #include <asm/cpu.h> 23 #include <asm/apic.h> 24 #include <asm/syscalls.h> 25 #include <asm/idle.h> 26 #include <asm/uaccess.h> 27 #include <asm/mwait.h> 28 #include <asm/i387.h> 29 #include <asm/fpu-internal.h> 30 #include <asm/debugreg.h> 31 #include <asm/nmi.h> 32 #include <asm/tlbflush.h> 33 34 /* 35 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 36 * no more per-task TSS's. The TSS size is kept cacheline-aligned 37 * so they are allowed to end up in the .data..cacheline_aligned 38 * section. Since TSS's are completely CPU-local, we want them 39 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 40 */ 41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = { 42 .x86_tss = { 43 .sp0 = TOP_OF_INIT_STACK, 44 #ifdef CONFIG_X86_32 45 .ss0 = __KERNEL_DS, 46 .ss1 = __KERNEL_CS, 47 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 48 #endif 49 }, 50 #ifdef CONFIG_X86_32 51 /* 52 * Note that the .io_bitmap member must be extra-big. This is because 53 * the CPU will access an additional byte beyond the end of the IO 54 * permission bitmap. The extra byte must be all 1 bits, and must 55 * be within the limit. 56 */ 57 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 58 #endif 59 }; 60 EXPORT_PER_CPU_SYMBOL_GPL(cpu_tss); 61 62 #ifdef CONFIG_X86_64 63 static DEFINE_PER_CPU(unsigned char, is_idle); 64 static ATOMIC_NOTIFIER_HEAD(idle_notifier); 65 66 void idle_notifier_register(struct notifier_block *n) 67 { 68 atomic_notifier_chain_register(&idle_notifier, n); 69 } 70 EXPORT_SYMBOL_GPL(idle_notifier_register); 71 72 void idle_notifier_unregister(struct notifier_block *n) 73 { 74 atomic_notifier_chain_unregister(&idle_notifier, n); 75 } 76 EXPORT_SYMBOL_GPL(idle_notifier_unregister); 77 #endif 78 79 struct kmem_cache *task_xstate_cachep; 80 EXPORT_SYMBOL_GPL(task_xstate_cachep); 81 82 /* 83 * this gets called so that we can store lazy state into memory and copy the 84 * current task into the new thread. 85 */ 86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 87 { 88 *dst = *src; 89 90 dst->thread.fpu_counter = 0; 91 dst->thread.fpu.has_fpu = 0; 92 dst->thread.fpu.state = NULL; 93 task_disable_lazy_fpu_restore(dst); 94 if (tsk_used_math(src)) { 95 int err = fpu_alloc(&dst->thread.fpu); 96 if (err) 97 return err; 98 fpu_copy(dst, src); 99 } 100 return 0; 101 } 102 103 void free_thread_xstate(struct task_struct *tsk) 104 { 105 fpu_free(&tsk->thread.fpu); 106 } 107 108 void arch_release_task_struct(struct task_struct *tsk) 109 { 110 free_thread_xstate(tsk); 111 } 112 113 void arch_task_cache_init(void) 114 { 115 task_xstate_cachep = 116 kmem_cache_create("task_xstate", xstate_size, 117 __alignof__(union thread_xstate), 118 SLAB_PANIC | SLAB_NOTRACK, NULL); 119 setup_xstate_comp(); 120 } 121 122 /* 123 * Free current thread data structures etc.. 124 */ 125 void exit_thread(void) 126 { 127 struct task_struct *me = current; 128 struct thread_struct *t = &me->thread; 129 unsigned long *bp = t->io_bitmap_ptr; 130 131 if (bp) { 132 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu()); 133 134 t->io_bitmap_ptr = NULL; 135 clear_thread_flag(TIF_IO_BITMAP); 136 /* 137 * Careful, clear this in the TSS too: 138 */ 139 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 140 t->io_bitmap_max = 0; 141 put_cpu(); 142 kfree(bp); 143 } 144 145 drop_fpu(me); 146 } 147 148 void flush_thread(void) 149 { 150 struct task_struct *tsk = current; 151 152 flush_ptrace_hw_breakpoint(tsk); 153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 154 155 if (!use_eager_fpu()) { 156 /* FPU state will be reallocated lazily at the first use. */ 157 drop_fpu(tsk); 158 free_thread_xstate(tsk); 159 } else if (!used_math()) { 160 /* kthread execs. TODO: cleanup this horror. */ 161 if (WARN_ON(init_fpu(tsk))) 162 force_sig(SIGKILL, tsk); 163 user_fpu_begin(); 164 restore_init_xstate(); 165 } 166 } 167 168 static void hard_disable_TSC(void) 169 { 170 cr4_set_bits(X86_CR4_TSD); 171 } 172 173 void disable_TSC(void) 174 { 175 preempt_disable(); 176 if (!test_and_set_thread_flag(TIF_NOTSC)) 177 /* 178 * Must flip the CPU state synchronously with 179 * TIF_NOTSC in the current running context. 180 */ 181 hard_disable_TSC(); 182 preempt_enable(); 183 } 184 185 static void hard_enable_TSC(void) 186 { 187 cr4_clear_bits(X86_CR4_TSD); 188 } 189 190 static void enable_TSC(void) 191 { 192 preempt_disable(); 193 if (test_and_clear_thread_flag(TIF_NOTSC)) 194 /* 195 * Must flip the CPU state synchronously with 196 * TIF_NOTSC in the current running context. 197 */ 198 hard_enable_TSC(); 199 preempt_enable(); 200 } 201 202 int get_tsc_mode(unsigned long adr) 203 { 204 unsigned int val; 205 206 if (test_thread_flag(TIF_NOTSC)) 207 val = PR_TSC_SIGSEGV; 208 else 209 val = PR_TSC_ENABLE; 210 211 return put_user(val, (unsigned int __user *)adr); 212 } 213 214 int set_tsc_mode(unsigned int val) 215 { 216 if (val == PR_TSC_SIGSEGV) 217 disable_TSC(); 218 else if (val == PR_TSC_ENABLE) 219 enable_TSC(); 220 else 221 return -EINVAL; 222 223 return 0; 224 } 225 226 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 227 struct tss_struct *tss) 228 { 229 struct thread_struct *prev, *next; 230 231 prev = &prev_p->thread; 232 next = &next_p->thread; 233 234 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 235 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 236 unsigned long debugctl = get_debugctlmsr(); 237 238 debugctl &= ~DEBUGCTLMSR_BTF; 239 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 240 debugctl |= DEBUGCTLMSR_BTF; 241 242 update_debugctlmsr(debugctl); 243 } 244 245 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 246 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 247 /* prev and next are different */ 248 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 249 hard_disable_TSC(); 250 else 251 hard_enable_TSC(); 252 } 253 254 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 255 /* 256 * Copy the relevant range of the IO bitmap. 257 * Normally this is 128 bytes or less: 258 */ 259 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 260 max(prev->io_bitmap_max, next->io_bitmap_max)); 261 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 262 /* 263 * Clear any possible leftover bits: 264 */ 265 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 266 } 267 propagate_user_return_notify(prev_p, next_p); 268 } 269 270 /* 271 * Idle related variables and functions 272 */ 273 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 274 EXPORT_SYMBOL(boot_option_idle_override); 275 276 static void (*x86_idle)(void); 277 278 #ifndef CONFIG_SMP 279 static inline void play_dead(void) 280 { 281 BUG(); 282 } 283 #endif 284 285 #ifdef CONFIG_X86_64 286 void enter_idle(void) 287 { 288 this_cpu_write(is_idle, 1); 289 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); 290 } 291 292 static void __exit_idle(void) 293 { 294 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) 295 return; 296 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); 297 } 298 299 /* Called from interrupts to signify idle end */ 300 void exit_idle(void) 301 { 302 /* idle loop has pid 0 */ 303 if (current->pid) 304 return; 305 __exit_idle(); 306 } 307 #endif 308 309 void arch_cpu_idle_enter(void) 310 { 311 local_touch_nmi(); 312 enter_idle(); 313 } 314 315 void arch_cpu_idle_exit(void) 316 { 317 __exit_idle(); 318 } 319 320 void arch_cpu_idle_dead(void) 321 { 322 play_dead(); 323 } 324 325 /* 326 * Called from the generic idle code. 327 */ 328 void arch_cpu_idle(void) 329 { 330 x86_idle(); 331 } 332 333 /* 334 * We use this if we don't have any better idle routine.. 335 */ 336 void default_idle(void) 337 { 338 trace_cpu_idle_rcuidle(1, smp_processor_id()); 339 safe_halt(); 340 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 341 } 342 #ifdef CONFIG_APM_MODULE 343 EXPORT_SYMBOL(default_idle); 344 #endif 345 346 #ifdef CONFIG_XEN 347 bool xen_set_default_idle(void) 348 { 349 bool ret = !!x86_idle; 350 351 x86_idle = default_idle; 352 353 return ret; 354 } 355 #endif 356 void stop_this_cpu(void *dummy) 357 { 358 local_irq_disable(); 359 /* 360 * Remove this CPU: 361 */ 362 set_cpu_online(smp_processor_id(), false); 363 disable_local_APIC(); 364 365 for (;;) 366 halt(); 367 } 368 369 bool amd_e400_c1e_detected; 370 EXPORT_SYMBOL(amd_e400_c1e_detected); 371 372 static cpumask_var_t amd_e400_c1e_mask; 373 374 void amd_e400_remove_cpu(int cpu) 375 { 376 if (amd_e400_c1e_mask != NULL) 377 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 378 } 379 380 /* 381 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 382 * pending message MSR. If we detect C1E, then we handle it the same 383 * way as C3 power states (local apic timer and TSC stop) 384 */ 385 static void amd_e400_idle(void) 386 { 387 if (!amd_e400_c1e_detected) { 388 u32 lo, hi; 389 390 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 391 392 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 393 amd_e400_c1e_detected = true; 394 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 395 mark_tsc_unstable("TSC halt in AMD C1E"); 396 pr_info("System has AMD C1E enabled\n"); 397 } 398 } 399 400 if (amd_e400_c1e_detected) { 401 int cpu = smp_processor_id(); 402 403 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 404 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 405 /* Force broadcast so ACPI can not interfere. */ 406 tick_broadcast_force(); 407 pr_info("Switch to broadcast mode on CPU%d\n", cpu); 408 } 409 tick_broadcast_enter(); 410 411 default_idle(); 412 413 /* 414 * The switch back from broadcast mode needs to be 415 * called with interrupts disabled. 416 */ 417 local_irq_disable(); 418 tick_broadcast_exit(); 419 local_irq_enable(); 420 } else 421 default_idle(); 422 } 423 424 /* 425 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 426 * We can't rely on cpuidle installing MWAIT, because it will not load 427 * on systems that support only C1 -- so the boot default must be MWAIT. 428 * 429 * Some AMD machines are the opposite, they depend on using HALT. 430 * 431 * So for default C1, which is used during boot until cpuidle loads, 432 * use MWAIT-C1 on Intel HW that has it, else use HALT. 433 */ 434 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 435 { 436 if (c->x86_vendor != X86_VENDOR_INTEL) 437 return 0; 438 439 if (!cpu_has(c, X86_FEATURE_MWAIT)) 440 return 0; 441 442 return 1; 443 } 444 445 /* 446 * MONITOR/MWAIT with no hints, used for default default C1 state. 447 * This invokes MWAIT with interrutps enabled and no flags, 448 * which is backwards compatible with the original MWAIT implementation. 449 */ 450 451 static void mwait_idle(void) 452 { 453 if (!current_set_polling_and_test()) { 454 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 455 smp_mb(); /* quirk */ 456 clflush((void *)¤t_thread_info()->flags); 457 smp_mb(); /* quirk */ 458 } 459 460 __monitor((void *)¤t_thread_info()->flags, 0, 0); 461 if (!need_resched()) 462 __sti_mwait(0, 0); 463 else 464 local_irq_enable(); 465 } else { 466 local_irq_enable(); 467 } 468 __current_clr_polling(); 469 } 470 471 void select_idle_routine(const struct cpuinfo_x86 *c) 472 { 473 #ifdef CONFIG_SMP 474 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 475 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 476 #endif 477 if (x86_idle || boot_option_idle_override == IDLE_POLL) 478 return; 479 480 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) { 481 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 482 pr_info("using AMD E400 aware idle routine\n"); 483 x86_idle = amd_e400_idle; 484 } else if (prefer_mwait_c1_over_halt(c)) { 485 pr_info("using mwait in idle threads\n"); 486 x86_idle = mwait_idle; 487 } else 488 x86_idle = default_idle; 489 } 490 491 void __init init_amd_e400_c1e_mask(void) 492 { 493 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 494 if (x86_idle == amd_e400_idle) 495 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 496 } 497 498 static int __init idle_setup(char *str) 499 { 500 if (!str) 501 return -EINVAL; 502 503 if (!strcmp(str, "poll")) { 504 pr_info("using polling idle threads\n"); 505 boot_option_idle_override = IDLE_POLL; 506 cpu_idle_poll_ctrl(true); 507 } else if (!strcmp(str, "halt")) { 508 /* 509 * When the boot option of idle=halt is added, halt is 510 * forced to be used for CPU idle. In such case CPU C2/C3 511 * won't be used again. 512 * To continue to load the CPU idle driver, don't touch 513 * the boot_option_idle_override. 514 */ 515 x86_idle = default_idle; 516 boot_option_idle_override = IDLE_HALT; 517 } else if (!strcmp(str, "nomwait")) { 518 /* 519 * If the boot option of "idle=nomwait" is added, 520 * it means that mwait will be disabled for CPU C2/C3 521 * states. In such case it won't touch the variable 522 * of boot_option_idle_override. 523 */ 524 boot_option_idle_override = IDLE_NOMWAIT; 525 } else 526 return -1; 527 528 return 0; 529 } 530 early_param("idle", idle_setup); 531 532 unsigned long arch_align_stack(unsigned long sp) 533 { 534 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 535 sp -= get_random_int() % 8192; 536 return sp & ~0xf; 537 } 538 539 unsigned long arch_randomize_brk(struct mm_struct *mm) 540 { 541 unsigned long range_end = mm->brk + 0x02000000; 542 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 543 } 544 545