xref: /openbmc/linux/arch/x86/kernel/process.c (revision 3e8bd1ba)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/apic.h>
34 #include <linux/uaccess.h>
35 #include <asm/mwait.h>
36 #include <asm/fpu/api.h>
37 #include <asm/fpu/sched.h>
38 #include <asm/fpu/xstate.h>
39 #include <asm/debugreg.h>
40 #include <asm/nmi.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mce.h>
43 #include <asm/vm86.h>
44 #include <asm/switch_to.h>
45 #include <asm/desc.h>
46 #include <asm/prctl.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/io_bitmap.h>
49 #include <asm/proto.h>
50 #include <asm/frame.h>
51 #include <asm/unwind.h>
52 #include <asm/tdx.h>
53 #include <asm/mmu_context.h>
54 #include <asm/shstk.h>
55 
56 #include "process.h"
57 
58 /*
59  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
60  * no more per-task TSS's. The TSS size is kept cacheline-aligned
61  * so they are allowed to end up in the .data..cacheline_aligned
62  * section. Since TSS's are completely CPU-local, we want them
63  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
64  */
65 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
66 	.x86_tss = {
67 		/*
68 		 * .sp0 is only used when entering ring 0 from a lower
69 		 * privilege level.  Since the init task never runs anything
70 		 * but ring 0 code, there is no need for a valid value here.
71 		 * Poison it.
72 		 */
73 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
74 
75 #ifdef CONFIG_X86_32
76 		.sp1 = TOP_OF_INIT_STACK,
77 
78 		.ss0 = __KERNEL_DS,
79 		.ss1 = __KERNEL_CS,
80 #endif
81 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
82 	 },
83 };
84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
85 
86 DEFINE_PER_CPU(bool, __tss_limit_invalid);
87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
88 
89 /*
90  * this gets called so that we can store lazy state into memory and copy the
91  * current task into the new thread.
92  */
93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
94 {
95 	memcpy(dst, src, arch_task_struct_size);
96 #ifdef CONFIG_VM86
97 	dst->thread.vm86 = NULL;
98 #endif
99 	/* Drop the copied pointer to current's fpstate */
100 	dst->thread.fpu.fpstate = NULL;
101 
102 	return 0;
103 }
104 
105 #ifdef CONFIG_X86_64
106 void arch_release_task_struct(struct task_struct *tsk)
107 {
108 	if (fpu_state_size_dynamic())
109 		fpstate_free(&tsk->thread.fpu);
110 }
111 #endif
112 
113 /*
114  * Free thread data structures etc..
115  */
116 void exit_thread(struct task_struct *tsk)
117 {
118 	struct thread_struct *t = &tsk->thread;
119 	struct fpu *fpu = &t->fpu;
120 
121 	if (test_thread_flag(TIF_IO_BITMAP))
122 		io_bitmap_exit(tsk);
123 
124 	free_vm86(t);
125 
126 	shstk_free(tsk);
127 	fpu__drop(fpu);
128 }
129 
130 static int set_new_tls(struct task_struct *p, unsigned long tls)
131 {
132 	struct user_desc __user *utls = (struct user_desc __user *)tls;
133 
134 	if (in_ia32_syscall())
135 		return do_set_thread_area(p, -1, utls, 0);
136 	else
137 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
138 }
139 
140 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
141 				     int (*fn)(void *), void *fn_arg)
142 {
143 	schedule_tail(prev);
144 
145 	/* Is this a kernel thread? */
146 	if (unlikely(fn)) {
147 		fn(fn_arg);
148 		/*
149 		 * A kernel thread is allowed to return here after successfully
150 		 * calling kernel_execve().  Exit to userspace to complete the
151 		 * execve() syscall.
152 		 */
153 		regs->ax = 0;
154 	}
155 
156 	syscall_exit_to_user_mode(regs);
157 }
158 
159 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
160 {
161 	unsigned long clone_flags = args->flags;
162 	unsigned long sp = args->stack;
163 	unsigned long tls = args->tls;
164 	struct inactive_task_frame *frame;
165 	struct fork_frame *fork_frame;
166 	struct pt_regs *childregs;
167 	unsigned long new_ssp;
168 	int ret = 0;
169 
170 	childregs = task_pt_regs(p);
171 	fork_frame = container_of(childregs, struct fork_frame, regs);
172 	frame = &fork_frame->frame;
173 
174 	frame->bp = encode_frame_pointer(childregs);
175 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
176 	p->thread.sp = (unsigned long) fork_frame;
177 	p->thread.io_bitmap = NULL;
178 	p->thread.iopl_warn = 0;
179 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
180 
181 #ifdef CONFIG_X86_64
182 	current_save_fsgs();
183 	p->thread.fsindex = current->thread.fsindex;
184 	p->thread.fsbase = current->thread.fsbase;
185 	p->thread.gsindex = current->thread.gsindex;
186 	p->thread.gsbase = current->thread.gsbase;
187 
188 	savesegment(es, p->thread.es);
189 	savesegment(ds, p->thread.ds);
190 
191 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
192 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
193 #else
194 	p->thread.sp0 = (unsigned long) (childregs + 1);
195 	savesegment(gs, p->thread.gs);
196 	/*
197 	 * Clear all status flags including IF and set fixed bit. 64bit
198 	 * does not have this initialization as the frame does not contain
199 	 * flags. The flags consistency (especially vs. AC) is there
200 	 * ensured via objtool, which lacks 32bit support.
201 	 */
202 	frame->flags = X86_EFLAGS_FIXED;
203 #endif
204 
205 	/*
206 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
207 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
208 	 * update it.
209 	 */
210 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
211 	if (IS_ERR_VALUE(new_ssp))
212 		return PTR_ERR((void *)new_ssp);
213 
214 	fpu_clone(p, clone_flags, args->fn, new_ssp);
215 
216 	/* Kernel thread ? */
217 	if (unlikely(p->flags & PF_KTHREAD)) {
218 		p->thread.pkru = pkru_get_init_value();
219 		memset(childregs, 0, sizeof(struct pt_regs));
220 		kthread_frame_init(frame, args->fn, args->fn_arg);
221 		return 0;
222 	}
223 
224 	/*
225 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
226 	 * is only valid when scheduled out.
227 	 */
228 	p->thread.pkru = read_pkru();
229 
230 	frame->bx = 0;
231 	*childregs = *current_pt_regs();
232 	childregs->ax = 0;
233 	if (sp)
234 		childregs->sp = sp;
235 
236 	if (unlikely(args->fn)) {
237 		/*
238 		 * A user space thread, but it doesn't return to
239 		 * ret_after_fork().
240 		 *
241 		 * In order to indicate that to tools like gdb,
242 		 * we reset the stack and instruction pointers.
243 		 *
244 		 * It does the same kernel frame setup to return to a kernel
245 		 * function that a kernel thread does.
246 		 */
247 		childregs->sp = 0;
248 		childregs->ip = 0;
249 		kthread_frame_init(frame, args->fn, args->fn_arg);
250 		return 0;
251 	}
252 
253 	/* Set a new TLS for the child thread? */
254 	if (clone_flags & CLONE_SETTLS)
255 		ret = set_new_tls(p, tls);
256 
257 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
258 		io_bitmap_share(p);
259 
260 	/*
261 	 * If copy_thread() if failing, don't leak the shadow stack possibly
262 	 * allocated in shstk_alloc_thread_stack() above.
263 	 */
264 	if (ret)
265 		shstk_free(p);
266 
267 	return ret;
268 }
269 
270 static void pkru_flush_thread(void)
271 {
272 	/*
273 	 * If PKRU is enabled the default PKRU value has to be loaded into
274 	 * the hardware right here (similar to context switch).
275 	 */
276 	pkru_write_default();
277 }
278 
279 void flush_thread(void)
280 {
281 	struct task_struct *tsk = current;
282 
283 	flush_ptrace_hw_breakpoint(tsk);
284 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
285 
286 	fpu_flush_thread();
287 	pkru_flush_thread();
288 }
289 
290 void disable_TSC(void)
291 {
292 	preempt_disable();
293 	if (!test_and_set_thread_flag(TIF_NOTSC))
294 		/*
295 		 * Must flip the CPU state synchronously with
296 		 * TIF_NOTSC in the current running context.
297 		 */
298 		cr4_set_bits(X86_CR4_TSD);
299 	preempt_enable();
300 }
301 
302 static void enable_TSC(void)
303 {
304 	preempt_disable();
305 	if (test_and_clear_thread_flag(TIF_NOTSC))
306 		/*
307 		 * Must flip the CPU state synchronously with
308 		 * TIF_NOTSC in the current running context.
309 		 */
310 		cr4_clear_bits(X86_CR4_TSD);
311 	preempt_enable();
312 }
313 
314 int get_tsc_mode(unsigned long adr)
315 {
316 	unsigned int val;
317 
318 	if (test_thread_flag(TIF_NOTSC))
319 		val = PR_TSC_SIGSEGV;
320 	else
321 		val = PR_TSC_ENABLE;
322 
323 	return put_user(val, (unsigned int __user *)adr);
324 }
325 
326 int set_tsc_mode(unsigned int val)
327 {
328 	if (val == PR_TSC_SIGSEGV)
329 		disable_TSC();
330 	else if (val == PR_TSC_ENABLE)
331 		enable_TSC();
332 	else
333 		return -EINVAL;
334 
335 	return 0;
336 }
337 
338 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
339 
340 static void set_cpuid_faulting(bool on)
341 {
342 	u64 msrval;
343 
344 	msrval = this_cpu_read(msr_misc_features_shadow);
345 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
346 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
347 	this_cpu_write(msr_misc_features_shadow, msrval);
348 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
349 }
350 
351 static void disable_cpuid(void)
352 {
353 	preempt_disable();
354 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
355 		/*
356 		 * Must flip the CPU state synchronously with
357 		 * TIF_NOCPUID in the current running context.
358 		 */
359 		set_cpuid_faulting(true);
360 	}
361 	preempt_enable();
362 }
363 
364 static void enable_cpuid(void)
365 {
366 	preempt_disable();
367 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
368 		/*
369 		 * Must flip the CPU state synchronously with
370 		 * TIF_NOCPUID in the current running context.
371 		 */
372 		set_cpuid_faulting(false);
373 	}
374 	preempt_enable();
375 }
376 
377 static int get_cpuid_mode(void)
378 {
379 	return !test_thread_flag(TIF_NOCPUID);
380 }
381 
382 static int set_cpuid_mode(unsigned long cpuid_enabled)
383 {
384 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
385 		return -ENODEV;
386 
387 	if (cpuid_enabled)
388 		enable_cpuid();
389 	else
390 		disable_cpuid();
391 
392 	return 0;
393 }
394 
395 /*
396  * Called immediately after a successful exec.
397  */
398 void arch_setup_new_exec(void)
399 {
400 	/* If cpuid was previously disabled for this task, re-enable it. */
401 	if (test_thread_flag(TIF_NOCPUID))
402 		enable_cpuid();
403 
404 	/*
405 	 * Don't inherit TIF_SSBD across exec boundary when
406 	 * PR_SPEC_DISABLE_NOEXEC is used.
407 	 */
408 	if (test_thread_flag(TIF_SSBD) &&
409 	    task_spec_ssb_noexec(current)) {
410 		clear_thread_flag(TIF_SSBD);
411 		task_clear_spec_ssb_disable(current);
412 		task_clear_spec_ssb_noexec(current);
413 		speculation_ctrl_update(read_thread_flags());
414 	}
415 
416 	mm_reset_untag_mask(current->mm);
417 }
418 
419 #ifdef CONFIG_X86_IOPL_IOPERM
420 static inline void switch_to_bitmap(unsigned long tifp)
421 {
422 	/*
423 	 * Invalidate I/O bitmap if the previous task used it. This prevents
424 	 * any possible leakage of an active I/O bitmap.
425 	 *
426 	 * If the next task has an I/O bitmap it will handle it on exit to
427 	 * user mode.
428 	 */
429 	if (tifp & _TIF_IO_BITMAP)
430 		tss_invalidate_io_bitmap();
431 }
432 
433 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
434 {
435 	/*
436 	 * Copy at least the byte range of the incoming tasks bitmap which
437 	 * covers the permitted I/O ports.
438 	 *
439 	 * If the previous task which used an I/O bitmap had more bits
440 	 * permitted, then the copy needs to cover those as well so they
441 	 * get turned off.
442 	 */
443 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
444 	       max(tss->io_bitmap.prev_max, iobm->max));
445 
446 	/*
447 	 * Store the new max and the sequence number of this bitmap
448 	 * and a pointer to the bitmap itself.
449 	 */
450 	tss->io_bitmap.prev_max = iobm->max;
451 	tss->io_bitmap.prev_sequence = iobm->sequence;
452 }
453 
454 /**
455  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
456  */
457 void native_tss_update_io_bitmap(void)
458 {
459 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
460 	struct thread_struct *t = &current->thread;
461 	u16 *base = &tss->x86_tss.io_bitmap_base;
462 
463 	if (!test_thread_flag(TIF_IO_BITMAP)) {
464 		native_tss_invalidate_io_bitmap();
465 		return;
466 	}
467 
468 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
469 		*base = IO_BITMAP_OFFSET_VALID_ALL;
470 	} else {
471 		struct io_bitmap *iobm = t->io_bitmap;
472 
473 		/*
474 		 * Only copy bitmap data when the sequence number differs. The
475 		 * update time is accounted to the incoming task.
476 		 */
477 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
478 			tss_copy_io_bitmap(tss, iobm);
479 
480 		/* Enable the bitmap */
481 		*base = IO_BITMAP_OFFSET_VALID_MAP;
482 	}
483 
484 	/*
485 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
486 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
487 	 * access from user space to trigger a #GP because tbe bitmap is outside
488 	 * the TSS limit.
489 	 */
490 	refresh_tss_limit();
491 }
492 #else /* CONFIG_X86_IOPL_IOPERM */
493 static inline void switch_to_bitmap(unsigned long tifp) { }
494 #endif
495 
496 #ifdef CONFIG_SMP
497 
498 struct ssb_state {
499 	struct ssb_state	*shared_state;
500 	raw_spinlock_t		lock;
501 	unsigned int		disable_state;
502 	unsigned long		local_state;
503 };
504 
505 #define LSTATE_SSB	0
506 
507 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
508 
509 void speculative_store_bypass_ht_init(void)
510 {
511 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
512 	unsigned int this_cpu = smp_processor_id();
513 	unsigned int cpu;
514 
515 	st->local_state = 0;
516 
517 	/*
518 	 * Shared state setup happens once on the first bringup
519 	 * of the CPU. It's not destroyed on CPU hotunplug.
520 	 */
521 	if (st->shared_state)
522 		return;
523 
524 	raw_spin_lock_init(&st->lock);
525 
526 	/*
527 	 * Go over HT siblings and check whether one of them has set up the
528 	 * shared state pointer already.
529 	 */
530 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
531 		if (cpu == this_cpu)
532 			continue;
533 
534 		if (!per_cpu(ssb_state, cpu).shared_state)
535 			continue;
536 
537 		/* Link it to the state of the sibling: */
538 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
539 		return;
540 	}
541 
542 	/*
543 	 * First HT sibling to come up on the core.  Link shared state of
544 	 * the first HT sibling to itself. The siblings on the same core
545 	 * which come up later will see the shared state pointer and link
546 	 * themselves to the state of this CPU.
547 	 */
548 	st->shared_state = st;
549 }
550 
551 /*
552  * Logic is: First HT sibling enables SSBD for both siblings in the core
553  * and last sibling to disable it, disables it for the whole core. This how
554  * MSR_SPEC_CTRL works in "hardware":
555  *
556  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
557  */
558 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
559 {
560 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
561 	u64 msr = x86_amd_ls_cfg_base;
562 
563 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
564 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
565 		wrmsrl(MSR_AMD64_LS_CFG, msr);
566 		return;
567 	}
568 
569 	if (tifn & _TIF_SSBD) {
570 		/*
571 		 * Since this can race with prctl(), block reentry on the
572 		 * same CPU.
573 		 */
574 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
575 			return;
576 
577 		msr |= x86_amd_ls_cfg_ssbd_mask;
578 
579 		raw_spin_lock(&st->shared_state->lock);
580 		/* First sibling enables SSBD: */
581 		if (!st->shared_state->disable_state)
582 			wrmsrl(MSR_AMD64_LS_CFG, msr);
583 		st->shared_state->disable_state++;
584 		raw_spin_unlock(&st->shared_state->lock);
585 	} else {
586 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
587 			return;
588 
589 		raw_spin_lock(&st->shared_state->lock);
590 		st->shared_state->disable_state--;
591 		if (!st->shared_state->disable_state)
592 			wrmsrl(MSR_AMD64_LS_CFG, msr);
593 		raw_spin_unlock(&st->shared_state->lock);
594 	}
595 }
596 #else
597 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
598 {
599 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
600 
601 	wrmsrl(MSR_AMD64_LS_CFG, msr);
602 }
603 #endif
604 
605 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
606 {
607 	/*
608 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
609 	 * so ssbd_tif_to_spec_ctrl() just works.
610 	 */
611 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
612 }
613 
614 /*
615  * Update the MSRs managing speculation control, during context switch.
616  *
617  * tifp: Previous task's thread flags
618  * tifn: Next task's thread flags
619  */
620 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
621 						      unsigned long tifn)
622 {
623 	unsigned long tif_diff = tifp ^ tifn;
624 	u64 msr = x86_spec_ctrl_base;
625 	bool updmsr = false;
626 
627 	lockdep_assert_irqs_disabled();
628 
629 	/* Handle change of TIF_SSBD depending on the mitigation method. */
630 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
631 		if (tif_diff & _TIF_SSBD)
632 			amd_set_ssb_virt_state(tifn);
633 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
634 		if (tif_diff & _TIF_SSBD)
635 			amd_set_core_ssb_state(tifn);
636 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
637 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
638 		updmsr |= !!(tif_diff & _TIF_SSBD);
639 		msr |= ssbd_tif_to_spec_ctrl(tifn);
640 	}
641 
642 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
643 	if (IS_ENABLED(CONFIG_SMP) &&
644 	    static_branch_unlikely(&switch_to_cond_stibp)) {
645 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
646 		msr |= stibp_tif_to_spec_ctrl(tifn);
647 	}
648 
649 	if (updmsr)
650 		update_spec_ctrl_cond(msr);
651 }
652 
653 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
654 {
655 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
656 		if (task_spec_ssb_disable(tsk))
657 			set_tsk_thread_flag(tsk, TIF_SSBD);
658 		else
659 			clear_tsk_thread_flag(tsk, TIF_SSBD);
660 
661 		if (task_spec_ib_disable(tsk))
662 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
663 		else
664 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
665 	}
666 	/* Return the updated threadinfo flags*/
667 	return read_task_thread_flags(tsk);
668 }
669 
670 void speculation_ctrl_update(unsigned long tif)
671 {
672 	unsigned long flags;
673 
674 	/* Forced update. Make sure all relevant TIF flags are different */
675 	local_irq_save(flags);
676 	__speculation_ctrl_update(~tif, tif);
677 	local_irq_restore(flags);
678 }
679 
680 /* Called from seccomp/prctl update */
681 void speculation_ctrl_update_current(void)
682 {
683 	preempt_disable();
684 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
685 	preempt_enable();
686 }
687 
688 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
689 {
690 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
691 
692 	newval = cr4 ^ mask;
693 	if (newval != cr4) {
694 		this_cpu_write(cpu_tlbstate.cr4, newval);
695 		__write_cr4(newval);
696 	}
697 }
698 
699 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
700 {
701 	unsigned long tifp, tifn;
702 
703 	tifn = read_task_thread_flags(next_p);
704 	tifp = read_task_thread_flags(prev_p);
705 
706 	switch_to_bitmap(tifp);
707 
708 	propagate_user_return_notify(prev_p, next_p);
709 
710 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
711 	    arch_has_block_step()) {
712 		unsigned long debugctl, msk;
713 
714 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
715 		debugctl &= ~DEBUGCTLMSR_BTF;
716 		msk = tifn & _TIF_BLOCKSTEP;
717 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
718 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
719 	}
720 
721 	if ((tifp ^ tifn) & _TIF_NOTSC)
722 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
723 
724 	if ((tifp ^ tifn) & _TIF_NOCPUID)
725 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
726 
727 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
728 		__speculation_ctrl_update(tifp, tifn);
729 	} else {
730 		speculation_ctrl_update_tif(prev_p);
731 		tifn = speculation_ctrl_update_tif(next_p);
732 
733 		/* Enforce MSR update to ensure consistent state */
734 		__speculation_ctrl_update(~tifn, tifn);
735 	}
736 }
737 
738 /*
739  * Idle related variables and functions
740  */
741 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
742 EXPORT_SYMBOL(boot_option_idle_override);
743 
744 /*
745  * We use this if we don't have any better idle routine..
746  */
747 void __cpuidle default_idle(void)
748 {
749 	raw_safe_halt();
750 	raw_local_irq_disable();
751 }
752 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
753 EXPORT_SYMBOL(default_idle);
754 #endif
755 
756 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
757 
758 static bool x86_idle_set(void)
759 {
760 	return !!static_call_query(x86_idle);
761 }
762 
763 #ifndef CONFIG_SMP
764 static inline void __noreturn play_dead(void)
765 {
766 	BUG();
767 }
768 #endif
769 
770 void arch_cpu_idle_enter(void)
771 {
772 	tsc_verify_tsc_adjust(false);
773 	local_touch_nmi();
774 }
775 
776 void __noreturn arch_cpu_idle_dead(void)
777 {
778 	play_dead();
779 }
780 
781 /*
782  * Called from the generic idle code.
783  */
784 void __cpuidle arch_cpu_idle(void)
785 {
786 	static_call(x86_idle)();
787 }
788 EXPORT_SYMBOL_GPL(arch_cpu_idle);
789 
790 #ifdef CONFIG_XEN
791 bool xen_set_default_idle(void)
792 {
793 	bool ret = x86_idle_set();
794 
795 	static_call_update(x86_idle, default_idle);
796 
797 	return ret;
798 }
799 #endif
800 
801 struct cpumask cpus_stop_mask;
802 
803 void __noreturn stop_this_cpu(void *dummy)
804 {
805 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
806 	unsigned int cpu = smp_processor_id();
807 
808 	local_irq_disable();
809 
810 	/*
811 	 * Remove this CPU from the online mask and disable it
812 	 * unconditionally. This might be redundant in case that the reboot
813 	 * vector was handled late and stop_other_cpus() sent an NMI.
814 	 *
815 	 * According to SDM and APM NMIs can be accepted even after soft
816 	 * disabling the local APIC.
817 	 */
818 	set_cpu_online(cpu, false);
819 	disable_local_APIC();
820 	mcheck_cpu_clear(c);
821 
822 	/*
823 	 * Use wbinvd on processors that support SME. This provides support
824 	 * for performing a successful kexec when going from SME inactive
825 	 * to SME active (or vice-versa). The cache must be cleared so that
826 	 * if there are entries with the same physical address, both with and
827 	 * without the encryption bit, they don't race each other when flushed
828 	 * and potentially end up with the wrong entry being committed to
829 	 * memory.
830 	 *
831 	 * Test the CPUID bit directly because the machine might've cleared
832 	 * X86_FEATURE_SME due to cmdline options.
833 	 */
834 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
835 		native_wbinvd();
836 
837 	/*
838 	 * This brings a cache line back and dirties it, but
839 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
840 	 * observed that all CPUs reported stop. This write will invalidate
841 	 * the related cache line on this CPU.
842 	 */
843 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
844 
845 	for (;;) {
846 		/*
847 		 * Use native_halt() so that memory contents don't change
848 		 * (stack usage and variables) after possibly issuing the
849 		 * native_wbinvd() above.
850 		 */
851 		native_halt();
852 	}
853 }
854 
855 /*
856  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
857  * states (local apic timer and TSC stop).
858  *
859  * XXX this function is completely buggered vs RCU and tracing.
860  */
861 static void amd_e400_idle(void)
862 {
863 	/*
864 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
865 	 * gets set after static_cpu_has() places have been converted via
866 	 * alternatives.
867 	 */
868 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
869 		default_idle();
870 		return;
871 	}
872 
873 	tick_broadcast_enter();
874 
875 	default_idle();
876 
877 	tick_broadcast_exit();
878 }
879 
880 /*
881  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
882  * exists and whenever MONITOR/MWAIT extensions are present there is at
883  * least one C1 substate.
884  *
885  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
886  * is passed to kernel commandline parameter.
887  */
888 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
889 {
890 	u32 eax, ebx, ecx, edx;
891 
892 	/* User has disallowed the use of MWAIT. Fallback to HALT */
893 	if (boot_option_idle_override == IDLE_NOMWAIT)
894 		return 0;
895 
896 	/* MWAIT is not supported on this platform. Fallback to HALT */
897 	if (!cpu_has(c, X86_FEATURE_MWAIT))
898 		return 0;
899 
900 	/* Monitor has a bug. Fallback to HALT */
901 	if (boot_cpu_has_bug(X86_BUG_MONITOR))
902 		return 0;
903 
904 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
905 
906 	/*
907 	 * If MWAIT extensions are not available, it is safe to use MWAIT
908 	 * with EAX=0, ECX=0.
909 	 */
910 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
911 		return 1;
912 
913 	/*
914 	 * If MWAIT extensions are available, there should be at least one
915 	 * MWAIT C1 substate present.
916 	 */
917 	return (edx & MWAIT_C1_SUBSTATE_MASK);
918 }
919 
920 /*
921  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
922  * with interrupts enabled and no flags, which is backwards compatible with the
923  * original MWAIT implementation.
924  */
925 static __cpuidle void mwait_idle(void)
926 {
927 	if (!current_set_polling_and_test()) {
928 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
929 			mb(); /* quirk */
930 			clflush((void *)&current_thread_info()->flags);
931 			mb(); /* quirk */
932 		}
933 
934 		__monitor((void *)&current_thread_info()->flags, 0, 0);
935 		if (!need_resched()) {
936 			__sti_mwait(0, 0);
937 			raw_local_irq_disable();
938 		}
939 	}
940 	__current_clr_polling();
941 }
942 
943 void select_idle_routine(const struct cpuinfo_x86 *c)
944 {
945 #ifdef CONFIG_SMP
946 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
947 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
948 #endif
949 	if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
950 		return;
951 
952 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
953 		pr_info("using AMD E400 aware idle routine\n");
954 		static_call_update(x86_idle, amd_e400_idle);
955 	} else if (prefer_mwait_c1_over_halt(c)) {
956 		pr_info("using mwait in idle threads\n");
957 		static_call_update(x86_idle, mwait_idle);
958 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
959 		pr_info("using TDX aware idle routine\n");
960 		static_call_update(x86_idle, tdx_safe_halt);
961 	} else
962 		static_call_update(x86_idle, default_idle);
963 }
964 
965 void amd_e400_c1e_apic_setup(void)
966 {
967 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
968 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
969 		local_irq_disable();
970 		tick_broadcast_force();
971 		local_irq_enable();
972 	}
973 }
974 
975 void __init arch_post_acpi_subsys_init(void)
976 {
977 	u32 lo, hi;
978 
979 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
980 		return;
981 
982 	/*
983 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
984 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
985 	 * MSR_K8_INT_PENDING_MSG.
986 	 */
987 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
988 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
989 		return;
990 
991 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
992 
993 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
994 		mark_tsc_unstable("TSC halt in AMD C1E");
995 	pr_info("System has AMD C1E enabled\n");
996 }
997 
998 static int __init idle_setup(char *str)
999 {
1000 	if (!str)
1001 		return -EINVAL;
1002 
1003 	if (!strcmp(str, "poll")) {
1004 		pr_info("using polling idle threads\n");
1005 		boot_option_idle_override = IDLE_POLL;
1006 		cpu_idle_poll_ctrl(true);
1007 	} else if (!strcmp(str, "halt")) {
1008 		/*
1009 		 * When the boot option of idle=halt is added, halt is
1010 		 * forced to be used for CPU idle. In such case CPU C2/C3
1011 		 * won't be used again.
1012 		 * To continue to load the CPU idle driver, don't touch
1013 		 * the boot_option_idle_override.
1014 		 */
1015 		static_call_update(x86_idle, default_idle);
1016 		boot_option_idle_override = IDLE_HALT;
1017 	} else if (!strcmp(str, "nomwait")) {
1018 		/*
1019 		 * If the boot option of "idle=nomwait" is added,
1020 		 * it means that mwait will be disabled for CPU C1/C2/C3
1021 		 * states.
1022 		 */
1023 		boot_option_idle_override = IDLE_NOMWAIT;
1024 	} else
1025 		return -1;
1026 
1027 	return 0;
1028 }
1029 early_param("idle", idle_setup);
1030 
1031 unsigned long arch_align_stack(unsigned long sp)
1032 {
1033 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1034 		sp -= get_random_u32_below(8192);
1035 	return sp & ~0xf;
1036 }
1037 
1038 unsigned long arch_randomize_brk(struct mm_struct *mm)
1039 {
1040 	return randomize_page(mm->brk, 0x02000000);
1041 }
1042 
1043 /*
1044  * Called from fs/proc with a reference on @p to find the function
1045  * which called into schedule(). This needs to be done carefully
1046  * because the task might wake up and we might look at a stack
1047  * changing under us.
1048  */
1049 unsigned long __get_wchan(struct task_struct *p)
1050 {
1051 	struct unwind_state state;
1052 	unsigned long addr = 0;
1053 
1054 	if (!try_get_task_stack(p))
1055 		return 0;
1056 
1057 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1058 	     unwind_next_frame(&state)) {
1059 		addr = unwind_get_return_address(&state);
1060 		if (!addr)
1061 			break;
1062 		if (in_sched_functions(addr))
1063 			continue;
1064 		break;
1065 	}
1066 
1067 	put_task_stack(p);
1068 
1069 	return addr;
1070 }
1071 
1072 long do_arch_prctl_common(int option, unsigned long arg2)
1073 {
1074 	switch (option) {
1075 	case ARCH_GET_CPUID:
1076 		return get_cpuid_mode();
1077 	case ARCH_SET_CPUID:
1078 		return set_cpuid_mode(arg2);
1079 	case ARCH_GET_XCOMP_SUPP:
1080 	case ARCH_GET_XCOMP_PERM:
1081 	case ARCH_REQ_XCOMP_PERM:
1082 	case ARCH_GET_XCOMP_GUEST_PERM:
1083 	case ARCH_REQ_XCOMP_GUEST_PERM:
1084 		return fpu_xstate_prctl(option, arg2);
1085 	}
1086 
1087 	return -EINVAL;
1088 }
1089