xref: /openbmc/linux/arch/x86/kernel/process.c (revision 349f631d)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45 #include <asm/frame.h>
46 
47 #include "process.h"
48 
49 /*
50  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51  * no more per-task TSS's. The TSS size is kept cacheline-aligned
52  * so they are allowed to end up in the .data..cacheline_aligned
53  * section. Since TSS's are completely CPU-local, we want them
54  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55  */
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 	.x86_tss = {
58 		/*
59 		 * .sp0 is only used when entering ring 0 from a lower
60 		 * privilege level.  Since the init task never runs anything
61 		 * but ring 0 code, there is no need for a valid value here.
62 		 * Poison it.
63 		 */
64 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65 
66 #ifdef CONFIG_X86_32
67 		.sp1 = TOP_OF_INIT_STACK,
68 
69 		.ss0 = __KERNEL_DS,
70 		.ss1 = __KERNEL_CS,
71 #endif
72 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
73 	 },
74 };
75 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
76 
77 DEFINE_PER_CPU(bool, __tss_limit_invalid);
78 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
79 
80 /*
81  * this gets called so that we can store lazy state into memory and copy the
82  * current task into the new thread.
83  */
84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
85 {
86 	memcpy(dst, src, arch_task_struct_size);
87 #ifdef CONFIG_VM86
88 	dst->thread.vm86 = NULL;
89 #endif
90 	return fpu_clone(dst);
91 }
92 
93 /*
94  * Free thread data structures etc..
95  */
96 void exit_thread(struct task_struct *tsk)
97 {
98 	struct thread_struct *t = &tsk->thread;
99 	struct fpu *fpu = &t->fpu;
100 
101 	if (test_thread_flag(TIF_IO_BITMAP))
102 		io_bitmap_exit(tsk);
103 
104 	free_vm86(t);
105 
106 	fpu__drop(fpu);
107 }
108 
109 static int set_new_tls(struct task_struct *p, unsigned long tls)
110 {
111 	struct user_desc __user *utls = (struct user_desc __user *)tls;
112 
113 	if (in_ia32_syscall())
114 		return do_set_thread_area(p, -1, utls, 0);
115 	else
116 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
117 }
118 
119 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
120 		struct task_struct *p, unsigned long tls)
121 {
122 	struct inactive_task_frame *frame;
123 	struct fork_frame *fork_frame;
124 	struct pt_regs *childregs;
125 	int ret = 0;
126 
127 	childregs = task_pt_regs(p);
128 	fork_frame = container_of(childregs, struct fork_frame, regs);
129 	frame = &fork_frame->frame;
130 
131 	frame->bp = encode_frame_pointer(childregs);
132 	frame->ret_addr = (unsigned long) ret_from_fork;
133 	p->thread.sp = (unsigned long) fork_frame;
134 	p->thread.io_bitmap = NULL;
135 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
136 
137 #ifdef CONFIG_X86_64
138 	current_save_fsgs();
139 	p->thread.fsindex = current->thread.fsindex;
140 	p->thread.fsbase = current->thread.fsbase;
141 	p->thread.gsindex = current->thread.gsindex;
142 	p->thread.gsbase = current->thread.gsbase;
143 
144 	savesegment(es, p->thread.es);
145 	savesegment(ds, p->thread.ds);
146 #else
147 	p->thread.sp0 = (unsigned long) (childregs + 1);
148 	/*
149 	 * Clear all status flags including IF and set fixed bit. 64bit
150 	 * does not have this initialization as the frame does not contain
151 	 * flags. The flags consistency (especially vs. AC) is there
152 	 * ensured via objtool, which lacks 32bit support.
153 	 */
154 	frame->flags = X86_EFLAGS_FIXED;
155 #endif
156 
157 	/* Kernel thread ? */
158 	if (unlikely(p->flags & PF_KTHREAD)) {
159 		p->thread.pkru = pkru_get_init_value();
160 		memset(childregs, 0, sizeof(struct pt_regs));
161 		kthread_frame_init(frame, sp, arg);
162 		return 0;
163 	}
164 
165 	/*
166 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
167 	 * is only valid when scheduled out.
168 	 */
169 	p->thread.pkru = read_pkru();
170 
171 	frame->bx = 0;
172 	*childregs = *current_pt_regs();
173 	childregs->ax = 0;
174 	if (sp)
175 		childregs->sp = sp;
176 
177 #ifdef CONFIG_X86_32
178 	task_user_gs(p) = get_user_gs(current_pt_regs());
179 #endif
180 
181 	if (unlikely(p->flags & PF_IO_WORKER)) {
182 		/*
183 		 * An IO thread is a user space thread, but it doesn't
184 		 * return to ret_after_fork().
185 		 *
186 		 * In order to indicate that to tools like gdb,
187 		 * we reset the stack and instruction pointers.
188 		 *
189 		 * It does the same kernel frame setup to return to a kernel
190 		 * function that a kernel thread does.
191 		 */
192 		childregs->sp = 0;
193 		childregs->ip = 0;
194 		kthread_frame_init(frame, sp, arg);
195 		return 0;
196 	}
197 
198 	/* Set a new TLS for the child thread? */
199 	if (clone_flags & CLONE_SETTLS)
200 		ret = set_new_tls(p, tls);
201 
202 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
203 		io_bitmap_share(p);
204 
205 	return ret;
206 }
207 
208 static void pkru_flush_thread(void)
209 {
210 	/*
211 	 * If PKRU is enabled the default PKRU value has to be loaded into
212 	 * the hardware right here (similar to context switch).
213 	 */
214 	pkru_write_default();
215 }
216 
217 void flush_thread(void)
218 {
219 	struct task_struct *tsk = current;
220 
221 	flush_ptrace_hw_breakpoint(tsk);
222 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
223 
224 	fpu_flush_thread();
225 	pkru_flush_thread();
226 }
227 
228 void disable_TSC(void)
229 {
230 	preempt_disable();
231 	if (!test_and_set_thread_flag(TIF_NOTSC))
232 		/*
233 		 * Must flip the CPU state synchronously with
234 		 * TIF_NOTSC in the current running context.
235 		 */
236 		cr4_set_bits(X86_CR4_TSD);
237 	preempt_enable();
238 }
239 
240 static void enable_TSC(void)
241 {
242 	preempt_disable();
243 	if (test_and_clear_thread_flag(TIF_NOTSC))
244 		/*
245 		 * Must flip the CPU state synchronously with
246 		 * TIF_NOTSC in the current running context.
247 		 */
248 		cr4_clear_bits(X86_CR4_TSD);
249 	preempt_enable();
250 }
251 
252 int get_tsc_mode(unsigned long adr)
253 {
254 	unsigned int val;
255 
256 	if (test_thread_flag(TIF_NOTSC))
257 		val = PR_TSC_SIGSEGV;
258 	else
259 		val = PR_TSC_ENABLE;
260 
261 	return put_user(val, (unsigned int __user *)adr);
262 }
263 
264 int set_tsc_mode(unsigned int val)
265 {
266 	if (val == PR_TSC_SIGSEGV)
267 		disable_TSC();
268 	else if (val == PR_TSC_ENABLE)
269 		enable_TSC();
270 	else
271 		return -EINVAL;
272 
273 	return 0;
274 }
275 
276 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
277 
278 static void set_cpuid_faulting(bool on)
279 {
280 	u64 msrval;
281 
282 	msrval = this_cpu_read(msr_misc_features_shadow);
283 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
284 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
285 	this_cpu_write(msr_misc_features_shadow, msrval);
286 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
287 }
288 
289 static void disable_cpuid(void)
290 {
291 	preempt_disable();
292 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
293 		/*
294 		 * Must flip the CPU state synchronously with
295 		 * TIF_NOCPUID in the current running context.
296 		 */
297 		set_cpuid_faulting(true);
298 	}
299 	preempt_enable();
300 }
301 
302 static void enable_cpuid(void)
303 {
304 	preempt_disable();
305 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
306 		/*
307 		 * Must flip the CPU state synchronously with
308 		 * TIF_NOCPUID in the current running context.
309 		 */
310 		set_cpuid_faulting(false);
311 	}
312 	preempt_enable();
313 }
314 
315 static int get_cpuid_mode(void)
316 {
317 	return !test_thread_flag(TIF_NOCPUID);
318 }
319 
320 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
321 {
322 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
323 		return -ENODEV;
324 
325 	if (cpuid_enabled)
326 		enable_cpuid();
327 	else
328 		disable_cpuid();
329 
330 	return 0;
331 }
332 
333 /*
334  * Called immediately after a successful exec.
335  */
336 void arch_setup_new_exec(void)
337 {
338 	/* If cpuid was previously disabled for this task, re-enable it. */
339 	if (test_thread_flag(TIF_NOCPUID))
340 		enable_cpuid();
341 
342 	/*
343 	 * Don't inherit TIF_SSBD across exec boundary when
344 	 * PR_SPEC_DISABLE_NOEXEC is used.
345 	 */
346 	if (test_thread_flag(TIF_SSBD) &&
347 	    task_spec_ssb_noexec(current)) {
348 		clear_thread_flag(TIF_SSBD);
349 		task_clear_spec_ssb_disable(current);
350 		task_clear_spec_ssb_noexec(current);
351 		speculation_ctrl_update(task_thread_info(current)->flags);
352 	}
353 }
354 
355 #ifdef CONFIG_X86_IOPL_IOPERM
356 static inline void switch_to_bitmap(unsigned long tifp)
357 {
358 	/*
359 	 * Invalidate I/O bitmap if the previous task used it. This prevents
360 	 * any possible leakage of an active I/O bitmap.
361 	 *
362 	 * If the next task has an I/O bitmap it will handle it on exit to
363 	 * user mode.
364 	 */
365 	if (tifp & _TIF_IO_BITMAP)
366 		tss_invalidate_io_bitmap();
367 }
368 
369 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
370 {
371 	/*
372 	 * Copy at least the byte range of the incoming tasks bitmap which
373 	 * covers the permitted I/O ports.
374 	 *
375 	 * If the previous task which used an I/O bitmap had more bits
376 	 * permitted, then the copy needs to cover those as well so they
377 	 * get turned off.
378 	 */
379 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
380 	       max(tss->io_bitmap.prev_max, iobm->max));
381 
382 	/*
383 	 * Store the new max and the sequence number of this bitmap
384 	 * and a pointer to the bitmap itself.
385 	 */
386 	tss->io_bitmap.prev_max = iobm->max;
387 	tss->io_bitmap.prev_sequence = iobm->sequence;
388 }
389 
390 /**
391  * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
392  */
393 void native_tss_update_io_bitmap(void)
394 {
395 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
396 	struct thread_struct *t = &current->thread;
397 	u16 *base = &tss->x86_tss.io_bitmap_base;
398 
399 	if (!test_thread_flag(TIF_IO_BITMAP)) {
400 		native_tss_invalidate_io_bitmap();
401 		return;
402 	}
403 
404 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
405 		*base = IO_BITMAP_OFFSET_VALID_ALL;
406 	} else {
407 		struct io_bitmap *iobm = t->io_bitmap;
408 
409 		/*
410 		 * Only copy bitmap data when the sequence number differs. The
411 		 * update time is accounted to the incoming task.
412 		 */
413 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
414 			tss_copy_io_bitmap(tss, iobm);
415 
416 		/* Enable the bitmap */
417 		*base = IO_BITMAP_OFFSET_VALID_MAP;
418 	}
419 
420 	/*
421 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
422 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
423 	 * access from user space to trigger a #GP because tbe bitmap is outside
424 	 * the TSS limit.
425 	 */
426 	refresh_tss_limit();
427 }
428 #else /* CONFIG_X86_IOPL_IOPERM */
429 static inline void switch_to_bitmap(unsigned long tifp) { }
430 #endif
431 
432 #ifdef CONFIG_SMP
433 
434 struct ssb_state {
435 	struct ssb_state	*shared_state;
436 	raw_spinlock_t		lock;
437 	unsigned int		disable_state;
438 	unsigned long		local_state;
439 };
440 
441 #define LSTATE_SSB	0
442 
443 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
444 
445 void speculative_store_bypass_ht_init(void)
446 {
447 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
448 	unsigned int this_cpu = smp_processor_id();
449 	unsigned int cpu;
450 
451 	st->local_state = 0;
452 
453 	/*
454 	 * Shared state setup happens once on the first bringup
455 	 * of the CPU. It's not destroyed on CPU hotunplug.
456 	 */
457 	if (st->shared_state)
458 		return;
459 
460 	raw_spin_lock_init(&st->lock);
461 
462 	/*
463 	 * Go over HT siblings and check whether one of them has set up the
464 	 * shared state pointer already.
465 	 */
466 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
467 		if (cpu == this_cpu)
468 			continue;
469 
470 		if (!per_cpu(ssb_state, cpu).shared_state)
471 			continue;
472 
473 		/* Link it to the state of the sibling: */
474 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
475 		return;
476 	}
477 
478 	/*
479 	 * First HT sibling to come up on the core.  Link shared state of
480 	 * the first HT sibling to itself. The siblings on the same core
481 	 * which come up later will see the shared state pointer and link
482 	 * themselves to the state of this CPU.
483 	 */
484 	st->shared_state = st;
485 }
486 
487 /*
488  * Logic is: First HT sibling enables SSBD for both siblings in the core
489  * and last sibling to disable it, disables it for the whole core. This how
490  * MSR_SPEC_CTRL works in "hardware":
491  *
492  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
493  */
494 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
495 {
496 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
497 	u64 msr = x86_amd_ls_cfg_base;
498 
499 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
500 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
501 		wrmsrl(MSR_AMD64_LS_CFG, msr);
502 		return;
503 	}
504 
505 	if (tifn & _TIF_SSBD) {
506 		/*
507 		 * Since this can race with prctl(), block reentry on the
508 		 * same CPU.
509 		 */
510 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
511 			return;
512 
513 		msr |= x86_amd_ls_cfg_ssbd_mask;
514 
515 		raw_spin_lock(&st->shared_state->lock);
516 		/* First sibling enables SSBD: */
517 		if (!st->shared_state->disable_state)
518 			wrmsrl(MSR_AMD64_LS_CFG, msr);
519 		st->shared_state->disable_state++;
520 		raw_spin_unlock(&st->shared_state->lock);
521 	} else {
522 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
523 			return;
524 
525 		raw_spin_lock(&st->shared_state->lock);
526 		st->shared_state->disable_state--;
527 		if (!st->shared_state->disable_state)
528 			wrmsrl(MSR_AMD64_LS_CFG, msr);
529 		raw_spin_unlock(&st->shared_state->lock);
530 	}
531 }
532 #else
533 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
534 {
535 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
536 
537 	wrmsrl(MSR_AMD64_LS_CFG, msr);
538 }
539 #endif
540 
541 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
542 {
543 	/*
544 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
545 	 * so ssbd_tif_to_spec_ctrl() just works.
546 	 */
547 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
548 }
549 
550 /*
551  * Update the MSRs managing speculation control, during context switch.
552  *
553  * tifp: Previous task's thread flags
554  * tifn: Next task's thread flags
555  */
556 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
557 						      unsigned long tifn)
558 {
559 	unsigned long tif_diff = tifp ^ tifn;
560 	u64 msr = x86_spec_ctrl_base;
561 	bool updmsr = false;
562 
563 	lockdep_assert_irqs_disabled();
564 
565 	/* Handle change of TIF_SSBD depending on the mitigation method. */
566 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
567 		if (tif_diff & _TIF_SSBD)
568 			amd_set_ssb_virt_state(tifn);
569 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
570 		if (tif_diff & _TIF_SSBD)
571 			amd_set_core_ssb_state(tifn);
572 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
573 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
574 		updmsr |= !!(tif_diff & _TIF_SSBD);
575 		msr |= ssbd_tif_to_spec_ctrl(tifn);
576 	}
577 
578 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
579 	if (IS_ENABLED(CONFIG_SMP) &&
580 	    static_branch_unlikely(&switch_to_cond_stibp)) {
581 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
582 		msr |= stibp_tif_to_spec_ctrl(tifn);
583 	}
584 
585 	if (updmsr)
586 		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
587 }
588 
589 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
590 {
591 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
592 		if (task_spec_ssb_disable(tsk))
593 			set_tsk_thread_flag(tsk, TIF_SSBD);
594 		else
595 			clear_tsk_thread_flag(tsk, TIF_SSBD);
596 
597 		if (task_spec_ib_disable(tsk))
598 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
599 		else
600 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
601 	}
602 	/* Return the updated threadinfo flags*/
603 	return task_thread_info(tsk)->flags;
604 }
605 
606 void speculation_ctrl_update(unsigned long tif)
607 {
608 	unsigned long flags;
609 
610 	/* Forced update. Make sure all relevant TIF flags are different */
611 	local_irq_save(flags);
612 	__speculation_ctrl_update(~tif, tif);
613 	local_irq_restore(flags);
614 }
615 
616 /* Called from seccomp/prctl update */
617 void speculation_ctrl_update_current(void)
618 {
619 	preempt_disable();
620 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
621 	preempt_enable();
622 }
623 
624 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
625 {
626 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
627 
628 	newval = cr4 ^ mask;
629 	if (newval != cr4) {
630 		this_cpu_write(cpu_tlbstate.cr4, newval);
631 		__write_cr4(newval);
632 	}
633 }
634 
635 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
636 {
637 	unsigned long tifp, tifn;
638 
639 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
640 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
641 
642 	switch_to_bitmap(tifp);
643 
644 	propagate_user_return_notify(prev_p, next_p);
645 
646 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
647 	    arch_has_block_step()) {
648 		unsigned long debugctl, msk;
649 
650 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
651 		debugctl &= ~DEBUGCTLMSR_BTF;
652 		msk = tifn & _TIF_BLOCKSTEP;
653 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
654 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
655 	}
656 
657 	if ((tifp ^ tifn) & _TIF_NOTSC)
658 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
659 
660 	if ((tifp ^ tifn) & _TIF_NOCPUID)
661 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
662 
663 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
664 		__speculation_ctrl_update(tifp, tifn);
665 	} else {
666 		speculation_ctrl_update_tif(prev_p);
667 		tifn = speculation_ctrl_update_tif(next_p);
668 
669 		/* Enforce MSR update to ensure consistent state */
670 		__speculation_ctrl_update(~tifn, tifn);
671 	}
672 
673 	if ((tifp ^ tifn) & _TIF_SLD)
674 		switch_to_sld(tifn);
675 }
676 
677 /*
678  * Idle related variables and functions
679  */
680 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
681 EXPORT_SYMBOL(boot_option_idle_override);
682 
683 static void (*x86_idle)(void);
684 
685 #ifndef CONFIG_SMP
686 static inline void play_dead(void)
687 {
688 	BUG();
689 }
690 #endif
691 
692 void arch_cpu_idle_enter(void)
693 {
694 	tsc_verify_tsc_adjust(false);
695 	local_touch_nmi();
696 }
697 
698 void arch_cpu_idle_dead(void)
699 {
700 	play_dead();
701 }
702 
703 /*
704  * Called from the generic idle code.
705  */
706 void arch_cpu_idle(void)
707 {
708 	x86_idle();
709 }
710 
711 /*
712  * We use this if we don't have any better idle routine..
713  */
714 void __cpuidle default_idle(void)
715 {
716 	raw_safe_halt();
717 }
718 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
719 EXPORT_SYMBOL(default_idle);
720 #endif
721 
722 #ifdef CONFIG_XEN
723 bool xen_set_default_idle(void)
724 {
725 	bool ret = !!x86_idle;
726 
727 	x86_idle = default_idle;
728 
729 	return ret;
730 }
731 #endif
732 
733 void stop_this_cpu(void *dummy)
734 {
735 	local_irq_disable();
736 	/*
737 	 * Remove this CPU:
738 	 */
739 	set_cpu_online(smp_processor_id(), false);
740 	disable_local_APIC();
741 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
742 
743 	/*
744 	 * Use wbinvd on processors that support SME. This provides support
745 	 * for performing a successful kexec when going from SME inactive
746 	 * to SME active (or vice-versa). The cache must be cleared so that
747 	 * if there are entries with the same physical address, both with and
748 	 * without the encryption bit, they don't race each other when flushed
749 	 * and potentially end up with the wrong entry being committed to
750 	 * memory.
751 	 */
752 	if (boot_cpu_has(X86_FEATURE_SME))
753 		native_wbinvd();
754 	for (;;) {
755 		/*
756 		 * Use native_halt() so that memory contents don't change
757 		 * (stack usage and variables) after possibly issuing the
758 		 * native_wbinvd() above.
759 		 */
760 		native_halt();
761 	}
762 }
763 
764 /*
765  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
766  * states (local apic timer and TSC stop).
767  *
768  * XXX this function is completely buggered vs RCU and tracing.
769  */
770 static void amd_e400_idle(void)
771 {
772 	/*
773 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
774 	 * gets set after static_cpu_has() places have been converted via
775 	 * alternatives.
776 	 */
777 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
778 		default_idle();
779 		return;
780 	}
781 
782 	tick_broadcast_enter();
783 
784 	default_idle();
785 
786 	/*
787 	 * The switch back from broadcast mode needs to be called with
788 	 * interrupts disabled.
789 	 */
790 	raw_local_irq_disable();
791 	tick_broadcast_exit();
792 	raw_local_irq_enable();
793 }
794 
795 /*
796  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
797  * We can't rely on cpuidle installing MWAIT, because it will not load
798  * on systems that support only C1 -- so the boot default must be MWAIT.
799  *
800  * Some AMD machines are the opposite, they depend on using HALT.
801  *
802  * So for default C1, which is used during boot until cpuidle loads,
803  * use MWAIT-C1 on Intel HW that has it, else use HALT.
804  */
805 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
806 {
807 	if (c->x86_vendor != X86_VENDOR_INTEL)
808 		return 0;
809 
810 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
811 		return 0;
812 
813 	return 1;
814 }
815 
816 /*
817  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
818  * with interrupts enabled and no flags, which is backwards compatible with the
819  * original MWAIT implementation.
820  */
821 static __cpuidle void mwait_idle(void)
822 {
823 	if (!current_set_polling_and_test()) {
824 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
825 			mb(); /* quirk */
826 			clflush((void *)&current_thread_info()->flags);
827 			mb(); /* quirk */
828 		}
829 
830 		__monitor((void *)&current_thread_info()->flags, 0, 0);
831 		if (!need_resched())
832 			__sti_mwait(0, 0);
833 		else
834 			raw_local_irq_enable();
835 	} else {
836 		raw_local_irq_enable();
837 	}
838 	__current_clr_polling();
839 }
840 
841 void select_idle_routine(const struct cpuinfo_x86 *c)
842 {
843 #ifdef CONFIG_SMP
844 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
845 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
846 #endif
847 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
848 		return;
849 
850 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
851 		pr_info("using AMD E400 aware idle routine\n");
852 		x86_idle = amd_e400_idle;
853 	} else if (prefer_mwait_c1_over_halt(c)) {
854 		pr_info("using mwait in idle threads\n");
855 		x86_idle = mwait_idle;
856 	} else
857 		x86_idle = default_idle;
858 }
859 
860 void amd_e400_c1e_apic_setup(void)
861 {
862 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
863 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
864 		local_irq_disable();
865 		tick_broadcast_force();
866 		local_irq_enable();
867 	}
868 }
869 
870 void __init arch_post_acpi_subsys_init(void)
871 {
872 	u32 lo, hi;
873 
874 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
875 		return;
876 
877 	/*
878 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
879 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
880 	 * MSR_K8_INT_PENDING_MSG.
881 	 */
882 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
883 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
884 		return;
885 
886 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
887 
888 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
889 		mark_tsc_unstable("TSC halt in AMD C1E");
890 	pr_info("System has AMD C1E enabled\n");
891 }
892 
893 static int __init idle_setup(char *str)
894 {
895 	if (!str)
896 		return -EINVAL;
897 
898 	if (!strcmp(str, "poll")) {
899 		pr_info("using polling idle threads\n");
900 		boot_option_idle_override = IDLE_POLL;
901 		cpu_idle_poll_ctrl(true);
902 	} else if (!strcmp(str, "halt")) {
903 		/*
904 		 * When the boot option of idle=halt is added, halt is
905 		 * forced to be used for CPU idle. In such case CPU C2/C3
906 		 * won't be used again.
907 		 * To continue to load the CPU idle driver, don't touch
908 		 * the boot_option_idle_override.
909 		 */
910 		x86_idle = default_idle;
911 		boot_option_idle_override = IDLE_HALT;
912 	} else if (!strcmp(str, "nomwait")) {
913 		/*
914 		 * If the boot option of "idle=nomwait" is added,
915 		 * it means that mwait will be disabled for CPU C2/C3
916 		 * states. In such case it won't touch the variable
917 		 * of boot_option_idle_override.
918 		 */
919 		boot_option_idle_override = IDLE_NOMWAIT;
920 	} else
921 		return -1;
922 
923 	return 0;
924 }
925 early_param("idle", idle_setup);
926 
927 unsigned long arch_align_stack(unsigned long sp)
928 {
929 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
930 		sp -= get_random_int() % 8192;
931 	return sp & ~0xf;
932 }
933 
934 unsigned long arch_randomize_brk(struct mm_struct *mm)
935 {
936 	return randomize_page(mm->brk, 0x02000000);
937 }
938 
939 /*
940  * Called from fs/proc with a reference on @p to find the function
941  * which called into schedule(). This needs to be done carefully
942  * because the task might wake up and we might look at a stack
943  * changing under us.
944  */
945 unsigned long get_wchan(struct task_struct *p)
946 {
947 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
948 	int count = 0;
949 
950 	if (p == current || task_is_running(p))
951 		return 0;
952 
953 	if (!try_get_task_stack(p))
954 		return 0;
955 
956 	start = (unsigned long)task_stack_page(p);
957 	if (!start)
958 		goto out;
959 
960 	/*
961 	 * Layout of the stack page:
962 	 *
963 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
964 	 * PADDING
965 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
966 	 * stack
967 	 * ----------- bottom = start
968 	 *
969 	 * The tasks stack pointer points at the location where the
970 	 * framepointer is stored. The data on the stack is:
971 	 * ... IP FP ... IP FP
972 	 *
973 	 * We need to read FP and IP, so we need to adjust the upper
974 	 * bound by another unsigned long.
975 	 */
976 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
977 	top -= 2 * sizeof(unsigned long);
978 	bottom = start;
979 
980 	sp = READ_ONCE(p->thread.sp);
981 	if (sp < bottom || sp > top)
982 		goto out;
983 
984 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
985 	do {
986 		if (fp < bottom || fp > top)
987 			goto out;
988 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
989 		if (!in_sched_functions(ip)) {
990 			ret = ip;
991 			goto out;
992 		}
993 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
994 	} while (count++ < 16 && !task_is_running(p));
995 
996 out:
997 	put_task_stack(p);
998 	return ret;
999 }
1000 
1001 long do_arch_prctl_common(struct task_struct *task, int option,
1002 			  unsigned long cpuid_enabled)
1003 {
1004 	switch (option) {
1005 	case ARCH_GET_CPUID:
1006 		return get_cpuid_mode();
1007 	case ARCH_SET_CPUID:
1008 		return set_cpuid_mode(task, cpuid_enabled);
1009 	}
1010 
1011 	return -EINVAL;
1012 }
1013