1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <trace/events/power.h> 28 #include <linux/hw_breakpoint.h> 29 #include <asm/cpu.h> 30 #include <asm/apic.h> 31 #include <linux/uaccess.h> 32 #include <asm/mwait.h> 33 #include <asm/fpu/internal.h> 34 #include <asm/debugreg.h> 35 #include <asm/nmi.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mce.h> 38 #include <asm/vm86.h> 39 #include <asm/switch_to.h> 40 #include <asm/desc.h> 41 #include <asm/prctl.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/io_bitmap.h> 44 #include <asm/proto.h> 45 #include <asm/frame.h> 46 47 #include "process.h" 48 49 /* 50 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 51 * no more per-task TSS's. The TSS size is kept cacheline-aligned 52 * so they are allowed to end up in the .data..cacheline_aligned 53 * section. Since TSS's are completely CPU-local, we want them 54 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 55 */ 56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 57 .x86_tss = { 58 /* 59 * .sp0 is only used when entering ring 0 from a lower 60 * privilege level. Since the init task never runs anything 61 * but ring 0 code, there is no need for a valid value here. 62 * Poison it. 63 */ 64 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 65 66 #ifdef CONFIG_X86_32 67 .sp1 = TOP_OF_INIT_STACK, 68 69 .ss0 = __KERNEL_DS, 70 .ss1 = __KERNEL_CS, 71 #endif 72 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 73 }, 74 }; 75 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 76 77 DEFINE_PER_CPU(bool, __tss_limit_invalid); 78 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 79 80 /* 81 * this gets called so that we can store lazy state into memory and copy the 82 * current task into the new thread. 83 */ 84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 85 { 86 memcpy(dst, src, arch_task_struct_size); 87 #ifdef CONFIG_VM86 88 dst->thread.vm86 = NULL; 89 #endif 90 return fpu_clone(dst); 91 } 92 93 /* 94 * Free thread data structures etc.. 95 */ 96 void exit_thread(struct task_struct *tsk) 97 { 98 struct thread_struct *t = &tsk->thread; 99 struct fpu *fpu = &t->fpu; 100 101 if (test_thread_flag(TIF_IO_BITMAP)) 102 io_bitmap_exit(tsk); 103 104 free_vm86(t); 105 106 fpu__drop(fpu); 107 } 108 109 static int set_new_tls(struct task_struct *p, unsigned long tls) 110 { 111 struct user_desc __user *utls = (struct user_desc __user *)tls; 112 113 if (in_ia32_syscall()) 114 return do_set_thread_area(p, -1, utls, 0); 115 else 116 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 117 } 118 119 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg, 120 struct task_struct *p, unsigned long tls) 121 { 122 struct inactive_task_frame *frame; 123 struct fork_frame *fork_frame; 124 struct pt_regs *childregs; 125 int ret = 0; 126 127 childregs = task_pt_regs(p); 128 fork_frame = container_of(childregs, struct fork_frame, regs); 129 frame = &fork_frame->frame; 130 131 frame->bp = encode_frame_pointer(childregs); 132 frame->ret_addr = (unsigned long) ret_from_fork; 133 p->thread.sp = (unsigned long) fork_frame; 134 p->thread.io_bitmap = NULL; 135 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 136 137 #ifdef CONFIG_X86_64 138 current_save_fsgs(); 139 p->thread.fsindex = current->thread.fsindex; 140 p->thread.fsbase = current->thread.fsbase; 141 p->thread.gsindex = current->thread.gsindex; 142 p->thread.gsbase = current->thread.gsbase; 143 144 savesegment(es, p->thread.es); 145 savesegment(ds, p->thread.ds); 146 #else 147 p->thread.sp0 = (unsigned long) (childregs + 1); 148 /* 149 * Clear all status flags including IF and set fixed bit. 64bit 150 * does not have this initialization as the frame does not contain 151 * flags. The flags consistency (especially vs. AC) is there 152 * ensured via objtool, which lacks 32bit support. 153 */ 154 frame->flags = X86_EFLAGS_FIXED; 155 #endif 156 157 /* Kernel thread ? */ 158 if (unlikely(p->flags & PF_KTHREAD)) { 159 p->thread.pkru = pkru_get_init_value(); 160 memset(childregs, 0, sizeof(struct pt_regs)); 161 kthread_frame_init(frame, sp, arg); 162 return 0; 163 } 164 165 /* 166 * Clone current's PKRU value from hardware. tsk->thread.pkru 167 * is only valid when scheduled out. 168 */ 169 p->thread.pkru = read_pkru(); 170 171 frame->bx = 0; 172 *childregs = *current_pt_regs(); 173 childregs->ax = 0; 174 if (sp) 175 childregs->sp = sp; 176 177 #ifdef CONFIG_X86_32 178 task_user_gs(p) = get_user_gs(current_pt_regs()); 179 #endif 180 181 if (unlikely(p->flags & PF_IO_WORKER)) { 182 /* 183 * An IO thread is a user space thread, but it doesn't 184 * return to ret_after_fork(). 185 * 186 * In order to indicate that to tools like gdb, 187 * we reset the stack and instruction pointers. 188 * 189 * It does the same kernel frame setup to return to a kernel 190 * function that a kernel thread does. 191 */ 192 childregs->sp = 0; 193 childregs->ip = 0; 194 kthread_frame_init(frame, sp, arg); 195 return 0; 196 } 197 198 /* Set a new TLS for the child thread? */ 199 if (clone_flags & CLONE_SETTLS) 200 ret = set_new_tls(p, tls); 201 202 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 203 io_bitmap_share(p); 204 205 return ret; 206 } 207 208 static void pkru_flush_thread(void) 209 { 210 /* 211 * If PKRU is enabled the default PKRU value has to be loaded into 212 * the hardware right here (similar to context switch). 213 */ 214 pkru_write_default(); 215 } 216 217 void flush_thread(void) 218 { 219 struct task_struct *tsk = current; 220 221 flush_ptrace_hw_breakpoint(tsk); 222 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 223 224 fpu_flush_thread(); 225 pkru_flush_thread(); 226 } 227 228 void disable_TSC(void) 229 { 230 preempt_disable(); 231 if (!test_and_set_thread_flag(TIF_NOTSC)) 232 /* 233 * Must flip the CPU state synchronously with 234 * TIF_NOTSC in the current running context. 235 */ 236 cr4_set_bits(X86_CR4_TSD); 237 preempt_enable(); 238 } 239 240 static void enable_TSC(void) 241 { 242 preempt_disable(); 243 if (test_and_clear_thread_flag(TIF_NOTSC)) 244 /* 245 * Must flip the CPU state synchronously with 246 * TIF_NOTSC in the current running context. 247 */ 248 cr4_clear_bits(X86_CR4_TSD); 249 preempt_enable(); 250 } 251 252 int get_tsc_mode(unsigned long adr) 253 { 254 unsigned int val; 255 256 if (test_thread_flag(TIF_NOTSC)) 257 val = PR_TSC_SIGSEGV; 258 else 259 val = PR_TSC_ENABLE; 260 261 return put_user(val, (unsigned int __user *)adr); 262 } 263 264 int set_tsc_mode(unsigned int val) 265 { 266 if (val == PR_TSC_SIGSEGV) 267 disable_TSC(); 268 else if (val == PR_TSC_ENABLE) 269 enable_TSC(); 270 else 271 return -EINVAL; 272 273 return 0; 274 } 275 276 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 277 278 static void set_cpuid_faulting(bool on) 279 { 280 u64 msrval; 281 282 msrval = this_cpu_read(msr_misc_features_shadow); 283 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 284 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 285 this_cpu_write(msr_misc_features_shadow, msrval); 286 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 287 } 288 289 static void disable_cpuid(void) 290 { 291 preempt_disable(); 292 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 293 /* 294 * Must flip the CPU state synchronously with 295 * TIF_NOCPUID in the current running context. 296 */ 297 set_cpuid_faulting(true); 298 } 299 preempt_enable(); 300 } 301 302 static void enable_cpuid(void) 303 { 304 preempt_disable(); 305 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 306 /* 307 * Must flip the CPU state synchronously with 308 * TIF_NOCPUID in the current running context. 309 */ 310 set_cpuid_faulting(false); 311 } 312 preempt_enable(); 313 } 314 315 static int get_cpuid_mode(void) 316 { 317 return !test_thread_flag(TIF_NOCPUID); 318 } 319 320 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 321 { 322 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 323 return -ENODEV; 324 325 if (cpuid_enabled) 326 enable_cpuid(); 327 else 328 disable_cpuid(); 329 330 return 0; 331 } 332 333 /* 334 * Called immediately after a successful exec. 335 */ 336 void arch_setup_new_exec(void) 337 { 338 /* If cpuid was previously disabled for this task, re-enable it. */ 339 if (test_thread_flag(TIF_NOCPUID)) 340 enable_cpuid(); 341 342 /* 343 * Don't inherit TIF_SSBD across exec boundary when 344 * PR_SPEC_DISABLE_NOEXEC is used. 345 */ 346 if (test_thread_flag(TIF_SSBD) && 347 task_spec_ssb_noexec(current)) { 348 clear_thread_flag(TIF_SSBD); 349 task_clear_spec_ssb_disable(current); 350 task_clear_spec_ssb_noexec(current); 351 speculation_ctrl_update(task_thread_info(current)->flags); 352 } 353 } 354 355 #ifdef CONFIG_X86_IOPL_IOPERM 356 static inline void switch_to_bitmap(unsigned long tifp) 357 { 358 /* 359 * Invalidate I/O bitmap if the previous task used it. This prevents 360 * any possible leakage of an active I/O bitmap. 361 * 362 * If the next task has an I/O bitmap it will handle it on exit to 363 * user mode. 364 */ 365 if (tifp & _TIF_IO_BITMAP) 366 tss_invalidate_io_bitmap(); 367 } 368 369 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 370 { 371 /* 372 * Copy at least the byte range of the incoming tasks bitmap which 373 * covers the permitted I/O ports. 374 * 375 * If the previous task which used an I/O bitmap had more bits 376 * permitted, then the copy needs to cover those as well so they 377 * get turned off. 378 */ 379 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 380 max(tss->io_bitmap.prev_max, iobm->max)); 381 382 /* 383 * Store the new max and the sequence number of this bitmap 384 * and a pointer to the bitmap itself. 385 */ 386 tss->io_bitmap.prev_max = iobm->max; 387 tss->io_bitmap.prev_sequence = iobm->sequence; 388 } 389 390 /** 391 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode 392 */ 393 void native_tss_update_io_bitmap(void) 394 { 395 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 396 struct thread_struct *t = ¤t->thread; 397 u16 *base = &tss->x86_tss.io_bitmap_base; 398 399 if (!test_thread_flag(TIF_IO_BITMAP)) { 400 native_tss_invalidate_io_bitmap(); 401 return; 402 } 403 404 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 405 *base = IO_BITMAP_OFFSET_VALID_ALL; 406 } else { 407 struct io_bitmap *iobm = t->io_bitmap; 408 409 /* 410 * Only copy bitmap data when the sequence number differs. The 411 * update time is accounted to the incoming task. 412 */ 413 if (tss->io_bitmap.prev_sequence != iobm->sequence) 414 tss_copy_io_bitmap(tss, iobm); 415 416 /* Enable the bitmap */ 417 *base = IO_BITMAP_OFFSET_VALID_MAP; 418 } 419 420 /* 421 * Make sure that the TSS limit is covering the IO bitmap. It might have 422 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 423 * access from user space to trigger a #GP because tbe bitmap is outside 424 * the TSS limit. 425 */ 426 refresh_tss_limit(); 427 } 428 #else /* CONFIG_X86_IOPL_IOPERM */ 429 static inline void switch_to_bitmap(unsigned long tifp) { } 430 #endif 431 432 #ifdef CONFIG_SMP 433 434 struct ssb_state { 435 struct ssb_state *shared_state; 436 raw_spinlock_t lock; 437 unsigned int disable_state; 438 unsigned long local_state; 439 }; 440 441 #define LSTATE_SSB 0 442 443 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 444 445 void speculative_store_bypass_ht_init(void) 446 { 447 struct ssb_state *st = this_cpu_ptr(&ssb_state); 448 unsigned int this_cpu = smp_processor_id(); 449 unsigned int cpu; 450 451 st->local_state = 0; 452 453 /* 454 * Shared state setup happens once on the first bringup 455 * of the CPU. It's not destroyed on CPU hotunplug. 456 */ 457 if (st->shared_state) 458 return; 459 460 raw_spin_lock_init(&st->lock); 461 462 /* 463 * Go over HT siblings and check whether one of them has set up the 464 * shared state pointer already. 465 */ 466 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 467 if (cpu == this_cpu) 468 continue; 469 470 if (!per_cpu(ssb_state, cpu).shared_state) 471 continue; 472 473 /* Link it to the state of the sibling: */ 474 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 475 return; 476 } 477 478 /* 479 * First HT sibling to come up on the core. Link shared state of 480 * the first HT sibling to itself. The siblings on the same core 481 * which come up later will see the shared state pointer and link 482 * themselves to the state of this CPU. 483 */ 484 st->shared_state = st; 485 } 486 487 /* 488 * Logic is: First HT sibling enables SSBD for both siblings in the core 489 * and last sibling to disable it, disables it for the whole core. This how 490 * MSR_SPEC_CTRL works in "hardware": 491 * 492 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 493 */ 494 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 495 { 496 struct ssb_state *st = this_cpu_ptr(&ssb_state); 497 u64 msr = x86_amd_ls_cfg_base; 498 499 if (!static_cpu_has(X86_FEATURE_ZEN)) { 500 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 501 wrmsrl(MSR_AMD64_LS_CFG, msr); 502 return; 503 } 504 505 if (tifn & _TIF_SSBD) { 506 /* 507 * Since this can race with prctl(), block reentry on the 508 * same CPU. 509 */ 510 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 511 return; 512 513 msr |= x86_amd_ls_cfg_ssbd_mask; 514 515 raw_spin_lock(&st->shared_state->lock); 516 /* First sibling enables SSBD: */ 517 if (!st->shared_state->disable_state) 518 wrmsrl(MSR_AMD64_LS_CFG, msr); 519 st->shared_state->disable_state++; 520 raw_spin_unlock(&st->shared_state->lock); 521 } else { 522 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 523 return; 524 525 raw_spin_lock(&st->shared_state->lock); 526 st->shared_state->disable_state--; 527 if (!st->shared_state->disable_state) 528 wrmsrl(MSR_AMD64_LS_CFG, msr); 529 raw_spin_unlock(&st->shared_state->lock); 530 } 531 } 532 #else 533 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 534 { 535 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 536 537 wrmsrl(MSR_AMD64_LS_CFG, msr); 538 } 539 #endif 540 541 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 542 { 543 /* 544 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 545 * so ssbd_tif_to_spec_ctrl() just works. 546 */ 547 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 548 } 549 550 /* 551 * Update the MSRs managing speculation control, during context switch. 552 * 553 * tifp: Previous task's thread flags 554 * tifn: Next task's thread flags 555 */ 556 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 557 unsigned long tifn) 558 { 559 unsigned long tif_diff = tifp ^ tifn; 560 u64 msr = x86_spec_ctrl_base; 561 bool updmsr = false; 562 563 lockdep_assert_irqs_disabled(); 564 565 /* Handle change of TIF_SSBD depending on the mitigation method. */ 566 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 567 if (tif_diff & _TIF_SSBD) 568 amd_set_ssb_virt_state(tifn); 569 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 570 if (tif_diff & _TIF_SSBD) 571 amd_set_core_ssb_state(tifn); 572 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 573 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 574 updmsr |= !!(tif_diff & _TIF_SSBD); 575 msr |= ssbd_tif_to_spec_ctrl(tifn); 576 } 577 578 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 579 if (IS_ENABLED(CONFIG_SMP) && 580 static_branch_unlikely(&switch_to_cond_stibp)) { 581 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 582 msr |= stibp_tif_to_spec_ctrl(tifn); 583 } 584 585 if (updmsr) 586 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 587 } 588 589 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 590 { 591 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 592 if (task_spec_ssb_disable(tsk)) 593 set_tsk_thread_flag(tsk, TIF_SSBD); 594 else 595 clear_tsk_thread_flag(tsk, TIF_SSBD); 596 597 if (task_spec_ib_disable(tsk)) 598 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 599 else 600 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 601 } 602 /* Return the updated threadinfo flags*/ 603 return task_thread_info(tsk)->flags; 604 } 605 606 void speculation_ctrl_update(unsigned long tif) 607 { 608 unsigned long flags; 609 610 /* Forced update. Make sure all relevant TIF flags are different */ 611 local_irq_save(flags); 612 __speculation_ctrl_update(~tif, tif); 613 local_irq_restore(flags); 614 } 615 616 /* Called from seccomp/prctl update */ 617 void speculation_ctrl_update_current(void) 618 { 619 preempt_disable(); 620 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 621 preempt_enable(); 622 } 623 624 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 625 { 626 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 627 628 newval = cr4 ^ mask; 629 if (newval != cr4) { 630 this_cpu_write(cpu_tlbstate.cr4, newval); 631 __write_cr4(newval); 632 } 633 } 634 635 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 636 { 637 unsigned long tifp, tifn; 638 639 tifn = READ_ONCE(task_thread_info(next_p)->flags); 640 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 641 642 switch_to_bitmap(tifp); 643 644 propagate_user_return_notify(prev_p, next_p); 645 646 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 647 arch_has_block_step()) { 648 unsigned long debugctl, msk; 649 650 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 651 debugctl &= ~DEBUGCTLMSR_BTF; 652 msk = tifn & _TIF_BLOCKSTEP; 653 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 654 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 655 } 656 657 if ((tifp ^ tifn) & _TIF_NOTSC) 658 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 659 660 if ((tifp ^ tifn) & _TIF_NOCPUID) 661 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 662 663 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 664 __speculation_ctrl_update(tifp, tifn); 665 } else { 666 speculation_ctrl_update_tif(prev_p); 667 tifn = speculation_ctrl_update_tif(next_p); 668 669 /* Enforce MSR update to ensure consistent state */ 670 __speculation_ctrl_update(~tifn, tifn); 671 } 672 673 if ((tifp ^ tifn) & _TIF_SLD) 674 switch_to_sld(tifn); 675 } 676 677 /* 678 * Idle related variables and functions 679 */ 680 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 681 EXPORT_SYMBOL(boot_option_idle_override); 682 683 static void (*x86_idle)(void); 684 685 #ifndef CONFIG_SMP 686 static inline void play_dead(void) 687 { 688 BUG(); 689 } 690 #endif 691 692 void arch_cpu_idle_enter(void) 693 { 694 tsc_verify_tsc_adjust(false); 695 local_touch_nmi(); 696 } 697 698 void arch_cpu_idle_dead(void) 699 { 700 play_dead(); 701 } 702 703 /* 704 * Called from the generic idle code. 705 */ 706 void arch_cpu_idle(void) 707 { 708 x86_idle(); 709 } 710 711 /* 712 * We use this if we don't have any better idle routine.. 713 */ 714 void __cpuidle default_idle(void) 715 { 716 raw_safe_halt(); 717 } 718 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 719 EXPORT_SYMBOL(default_idle); 720 #endif 721 722 #ifdef CONFIG_XEN 723 bool xen_set_default_idle(void) 724 { 725 bool ret = !!x86_idle; 726 727 x86_idle = default_idle; 728 729 return ret; 730 } 731 #endif 732 733 void stop_this_cpu(void *dummy) 734 { 735 local_irq_disable(); 736 /* 737 * Remove this CPU: 738 */ 739 set_cpu_online(smp_processor_id(), false); 740 disable_local_APIC(); 741 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 742 743 /* 744 * Use wbinvd on processors that support SME. This provides support 745 * for performing a successful kexec when going from SME inactive 746 * to SME active (or vice-versa). The cache must be cleared so that 747 * if there are entries with the same physical address, both with and 748 * without the encryption bit, they don't race each other when flushed 749 * and potentially end up with the wrong entry being committed to 750 * memory. 751 */ 752 if (boot_cpu_has(X86_FEATURE_SME)) 753 native_wbinvd(); 754 for (;;) { 755 /* 756 * Use native_halt() so that memory contents don't change 757 * (stack usage and variables) after possibly issuing the 758 * native_wbinvd() above. 759 */ 760 native_halt(); 761 } 762 } 763 764 /* 765 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 766 * states (local apic timer and TSC stop). 767 * 768 * XXX this function is completely buggered vs RCU and tracing. 769 */ 770 static void amd_e400_idle(void) 771 { 772 /* 773 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 774 * gets set after static_cpu_has() places have been converted via 775 * alternatives. 776 */ 777 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 778 default_idle(); 779 return; 780 } 781 782 tick_broadcast_enter(); 783 784 default_idle(); 785 786 /* 787 * The switch back from broadcast mode needs to be called with 788 * interrupts disabled. 789 */ 790 raw_local_irq_disable(); 791 tick_broadcast_exit(); 792 raw_local_irq_enable(); 793 } 794 795 /* 796 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 797 * We can't rely on cpuidle installing MWAIT, because it will not load 798 * on systems that support only C1 -- so the boot default must be MWAIT. 799 * 800 * Some AMD machines are the opposite, they depend on using HALT. 801 * 802 * So for default C1, which is used during boot until cpuidle loads, 803 * use MWAIT-C1 on Intel HW that has it, else use HALT. 804 */ 805 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 806 { 807 if (c->x86_vendor != X86_VENDOR_INTEL) 808 return 0; 809 810 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) 811 return 0; 812 813 return 1; 814 } 815 816 /* 817 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 818 * with interrupts enabled and no flags, which is backwards compatible with the 819 * original MWAIT implementation. 820 */ 821 static __cpuidle void mwait_idle(void) 822 { 823 if (!current_set_polling_and_test()) { 824 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 825 mb(); /* quirk */ 826 clflush((void *)¤t_thread_info()->flags); 827 mb(); /* quirk */ 828 } 829 830 __monitor((void *)¤t_thread_info()->flags, 0, 0); 831 if (!need_resched()) 832 __sti_mwait(0, 0); 833 else 834 raw_local_irq_enable(); 835 } else { 836 raw_local_irq_enable(); 837 } 838 __current_clr_polling(); 839 } 840 841 void select_idle_routine(const struct cpuinfo_x86 *c) 842 { 843 #ifdef CONFIG_SMP 844 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 845 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 846 #endif 847 if (x86_idle || boot_option_idle_override == IDLE_POLL) 848 return; 849 850 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 851 pr_info("using AMD E400 aware idle routine\n"); 852 x86_idle = amd_e400_idle; 853 } else if (prefer_mwait_c1_over_halt(c)) { 854 pr_info("using mwait in idle threads\n"); 855 x86_idle = mwait_idle; 856 } else 857 x86_idle = default_idle; 858 } 859 860 void amd_e400_c1e_apic_setup(void) 861 { 862 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 863 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 864 local_irq_disable(); 865 tick_broadcast_force(); 866 local_irq_enable(); 867 } 868 } 869 870 void __init arch_post_acpi_subsys_init(void) 871 { 872 u32 lo, hi; 873 874 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 875 return; 876 877 /* 878 * AMD E400 detection needs to happen after ACPI has been enabled. If 879 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 880 * MSR_K8_INT_PENDING_MSG. 881 */ 882 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 883 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 884 return; 885 886 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 887 888 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 889 mark_tsc_unstable("TSC halt in AMD C1E"); 890 pr_info("System has AMD C1E enabled\n"); 891 } 892 893 static int __init idle_setup(char *str) 894 { 895 if (!str) 896 return -EINVAL; 897 898 if (!strcmp(str, "poll")) { 899 pr_info("using polling idle threads\n"); 900 boot_option_idle_override = IDLE_POLL; 901 cpu_idle_poll_ctrl(true); 902 } else if (!strcmp(str, "halt")) { 903 /* 904 * When the boot option of idle=halt is added, halt is 905 * forced to be used for CPU idle. In such case CPU C2/C3 906 * won't be used again. 907 * To continue to load the CPU idle driver, don't touch 908 * the boot_option_idle_override. 909 */ 910 x86_idle = default_idle; 911 boot_option_idle_override = IDLE_HALT; 912 } else if (!strcmp(str, "nomwait")) { 913 /* 914 * If the boot option of "idle=nomwait" is added, 915 * it means that mwait will be disabled for CPU C2/C3 916 * states. In such case it won't touch the variable 917 * of boot_option_idle_override. 918 */ 919 boot_option_idle_override = IDLE_NOMWAIT; 920 } else 921 return -1; 922 923 return 0; 924 } 925 early_param("idle", idle_setup); 926 927 unsigned long arch_align_stack(unsigned long sp) 928 { 929 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 930 sp -= get_random_int() % 8192; 931 return sp & ~0xf; 932 } 933 934 unsigned long arch_randomize_brk(struct mm_struct *mm) 935 { 936 return randomize_page(mm->brk, 0x02000000); 937 } 938 939 /* 940 * Called from fs/proc with a reference on @p to find the function 941 * which called into schedule(). This needs to be done carefully 942 * because the task might wake up and we might look at a stack 943 * changing under us. 944 */ 945 unsigned long get_wchan(struct task_struct *p) 946 { 947 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 948 int count = 0; 949 950 if (p == current || task_is_running(p)) 951 return 0; 952 953 if (!try_get_task_stack(p)) 954 return 0; 955 956 start = (unsigned long)task_stack_page(p); 957 if (!start) 958 goto out; 959 960 /* 961 * Layout of the stack page: 962 * 963 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 964 * PADDING 965 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 966 * stack 967 * ----------- bottom = start 968 * 969 * The tasks stack pointer points at the location where the 970 * framepointer is stored. The data on the stack is: 971 * ... IP FP ... IP FP 972 * 973 * We need to read FP and IP, so we need to adjust the upper 974 * bound by another unsigned long. 975 */ 976 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 977 top -= 2 * sizeof(unsigned long); 978 bottom = start; 979 980 sp = READ_ONCE(p->thread.sp); 981 if (sp < bottom || sp > top) 982 goto out; 983 984 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 985 do { 986 if (fp < bottom || fp > top) 987 goto out; 988 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 989 if (!in_sched_functions(ip)) { 990 ret = ip; 991 goto out; 992 } 993 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 994 } while (count++ < 16 && !task_is_running(p)); 995 996 out: 997 put_task_stack(p); 998 return ret; 999 } 1000 1001 long do_arch_prctl_common(struct task_struct *task, int option, 1002 unsigned long cpuid_enabled) 1003 { 1004 switch (option) { 1005 case ARCH_GET_CPUID: 1006 return get_cpuid_mode(); 1007 case ARCH_SET_CPUID: 1008 return set_cpuid_mode(task, cpuid_enabled); 1009 } 1010 1011 return -EINVAL; 1012 } 1013