1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <trace/events/power.h> 28 #include <linux/hw_breakpoint.h> 29 #include <asm/cpu.h> 30 #include <asm/apic.h> 31 #include <asm/syscalls.h> 32 #include <linux/uaccess.h> 33 #include <asm/mwait.h> 34 #include <asm/fpu/internal.h> 35 #include <asm/debugreg.h> 36 #include <asm/nmi.h> 37 #include <asm/tlbflush.h> 38 #include <asm/mce.h> 39 #include <asm/vm86.h> 40 #include <asm/switch_to.h> 41 #include <asm/desc.h> 42 #include <asm/prctl.h> 43 #include <asm/spec-ctrl.h> 44 #include <asm/proto.h> 45 46 #include "process.h" 47 48 /* 49 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 50 * no more per-task TSS's. The TSS size is kept cacheline-aligned 51 * so they are allowed to end up in the .data..cacheline_aligned 52 * section. Since TSS's are completely CPU-local, we want them 53 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 54 */ 55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 56 .x86_tss = { 57 /* 58 * .sp0 is only used when entering ring 0 from a lower 59 * privilege level. Since the init task never runs anything 60 * but ring 0 code, there is no need for a valid value here. 61 * Poison it. 62 */ 63 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 64 65 /* 66 * .sp1 is cpu_current_top_of_stack. The init task never 67 * runs user code, but cpu_current_top_of_stack should still 68 * be well defined before the first context switch. 69 */ 70 .sp1 = TOP_OF_INIT_STACK, 71 72 #ifdef CONFIG_X86_32 73 .ss0 = __KERNEL_DS, 74 .ss1 = __KERNEL_CS, 75 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 76 #endif 77 }, 78 #ifdef CONFIG_X86_32 79 /* 80 * Note that the .io_bitmap member must be extra-big. This is because 81 * the CPU will access an additional byte beyond the end of the IO 82 * permission bitmap. The extra byte must be all 1 bits, and must 83 * be within the limit. 84 */ 85 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 86 #endif 87 }; 88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 89 90 DEFINE_PER_CPU(bool, __tss_limit_invalid); 91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 92 93 /* 94 * this gets called so that we can store lazy state into memory and copy the 95 * current task into the new thread. 96 */ 97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 98 { 99 memcpy(dst, src, arch_task_struct_size); 100 #ifdef CONFIG_VM86 101 dst->thread.vm86 = NULL; 102 #endif 103 104 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 105 } 106 107 /* 108 * Free current thread data structures etc.. 109 */ 110 void exit_thread(struct task_struct *tsk) 111 { 112 struct thread_struct *t = &tsk->thread; 113 unsigned long *bp = t->io_bitmap_ptr; 114 struct fpu *fpu = &t->fpu; 115 116 if (bp) { 117 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); 118 119 t->io_bitmap_ptr = NULL; 120 clear_thread_flag(TIF_IO_BITMAP); 121 /* 122 * Careful, clear this in the TSS too: 123 */ 124 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 125 t->io_bitmap_max = 0; 126 put_cpu(); 127 kfree(bp); 128 } 129 130 free_vm86(t); 131 132 fpu__drop(fpu); 133 } 134 135 void flush_thread(void) 136 { 137 struct task_struct *tsk = current; 138 139 flush_ptrace_hw_breakpoint(tsk); 140 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 141 142 fpu__clear(&tsk->thread.fpu); 143 } 144 145 void disable_TSC(void) 146 { 147 preempt_disable(); 148 if (!test_and_set_thread_flag(TIF_NOTSC)) 149 /* 150 * Must flip the CPU state synchronously with 151 * TIF_NOTSC in the current running context. 152 */ 153 cr4_set_bits(X86_CR4_TSD); 154 preempt_enable(); 155 } 156 157 static void enable_TSC(void) 158 { 159 preempt_disable(); 160 if (test_and_clear_thread_flag(TIF_NOTSC)) 161 /* 162 * Must flip the CPU state synchronously with 163 * TIF_NOTSC in the current running context. 164 */ 165 cr4_clear_bits(X86_CR4_TSD); 166 preempt_enable(); 167 } 168 169 int get_tsc_mode(unsigned long adr) 170 { 171 unsigned int val; 172 173 if (test_thread_flag(TIF_NOTSC)) 174 val = PR_TSC_SIGSEGV; 175 else 176 val = PR_TSC_ENABLE; 177 178 return put_user(val, (unsigned int __user *)adr); 179 } 180 181 int set_tsc_mode(unsigned int val) 182 { 183 if (val == PR_TSC_SIGSEGV) 184 disable_TSC(); 185 else if (val == PR_TSC_ENABLE) 186 enable_TSC(); 187 else 188 return -EINVAL; 189 190 return 0; 191 } 192 193 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 194 195 static void set_cpuid_faulting(bool on) 196 { 197 u64 msrval; 198 199 msrval = this_cpu_read(msr_misc_features_shadow); 200 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 201 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 202 this_cpu_write(msr_misc_features_shadow, msrval); 203 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 204 } 205 206 static void disable_cpuid(void) 207 { 208 preempt_disable(); 209 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 210 /* 211 * Must flip the CPU state synchronously with 212 * TIF_NOCPUID in the current running context. 213 */ 214 set_cpuid_faulting(true); 215 } 216 preempt_enable(); 217 } 218 219 static void enable_cpuid(void) 220 { 221 preempt_disable(); 222 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 223 /* 224 * Must flip the CPU state synchronously with 225 * TIF_NOCPUID in the current running context. 226 */ 227 set_cpuid_faulting(false); 228 } 229 preempt_enable(); 230 } 231 232 static int get_cpuid_mode(void) 233 { 234 return !test_thread_flag(TIF_NOCPUID); 235 } 236 237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 238 { 239 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT)) 240 return -ENODEV; 241 242 if (cpuid_enabled) 243 enable_cpuid(); 244 else 245 disable_cpuid(); 246 247 return 0; 248 } 249 250 /* 251 * Called immediately after a successful exec. 252 */ 253 void arch_setup_new_exec(void) 254 { 255 /* If cpuid was previously disabled for this task, re-enable it. */ 256 if (test_thread_flag(TIF_NOCPUID)) 257 enable_cpuid(); 258 } 259 260 static inline void switch_to_bitmap(struct thread_struct *prev, 261 struct thread_struct *next, 262 unsigned long tifp, unsigned long tifn) 263 { 264 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 265 266 if (tifn & _TIF_IO_BITMAP) { 267 /* 268 * Copy the relevant range of the IO bitmap. 269 * Normally this is 128 bytes or less: 270 */ 271 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 272 max(prev->io_bitmap_max, next->io_bitmap_max)); 273 /* 274 * Make sure that the TSS limit is correct for the CPU 275 * to notice the IO bitmap. 276 */ 277 refresh_tss_limit(); 278 } else if (tifp & _TIF_IO_BITMAP) { 279 /* 280 * Clear any possible leftover bits: 281 */ 282 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 283 } 284 } 285 286 #ifdef CONFIG_SMP 287 288 struct ssb_state { 289 struct ssb_state *shared_state; 290 raw_spinlock_t lock; 291 unsigned int disable_state; 292 unsigned long local_state; 293 }; 294 295 #define LSTATE_SSB 0 296 297 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 298 299 void speculative_store_bypass_ht_init(void) 300 { 301 struct ssb_state *st = this_cpu_ptr(&ssb_state); 302 unsigned int this_cpu = smp_processor_id(); 303 unsigned int cpu; 304 305 st->local_state = 0; 306 307 /* 308 * Shared state setup happens once on the first bringup 309 * of the CPU. It's not destroyed on CPU hotunplug. 310 */ 311 if (st->shared_state) 312 return; 313 314 raw_spin_lock_init(&st->lock); 315 316 /* 317 * Go over HT siblings and check whether one of them has set up the 318 * shared state pointer already. 319 */ 320 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 321 if (cpu == this_cpu) 322 continue; 323 324 if (!per_cpu(ssb_state, cpu).shared_state) 325 continue; 326 327 /* Link it to the state of the sibling: */ 328 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 329 return; 330 } 331 332 /* 333 * First HT sibling to come up on the core. Link shared state of 334 * the first HT sibling to itself. The siblings on the same core 335 * which come up later will see the shared state pointer and link 336 * themself to the state of this CPU. 337 */ 338 st->shared_state = st; 339 } 340 341 /* 342 * Logic is: First HT sibling enables SSBD for both siblings in the core 343 * and last sibling to disable it, disables it for the whole core. This how 344 * MSR_SPEC_CTRL works in "hardware": 345 * 346 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 347 */ 348 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 349 { 350 struct ssb_state *st = this_cpu_ptr(&ssb_state); 351 u64 msr = x86_amd_ls_cfg_base; 352 353 if (!static_cpu_has(X86_FEATURE_ZEN)) { 354 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 355 wrmsrl(MSR_AMD64_LS_CFG, msr); 356 return; 357 } 358 359 if (tifn & _TIF_SSBD) { 360 /* 361 * Since this can race with prctl(), block reentry on the 362 * same CPU. 363 */ 364 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 365 return; 366 367 msr |= x86_amd_ls_cfg_ssbd_mask; 368 369 raw_spin_lock(&st->shared_state->lock); 370 /* First sibling enables SSBD: */ 371 if (!st->shared_state->disable_state) 372 wrmsrl(MSR_AMD64_LS_CFG, msr); 373 st->shared_state->disable_state++; 374 raw_spin_unlock(&st->shared_state->lock); 375 } else { 376 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 377 return; 378 379 raw_spin_lock(&st->shared_state->lock); 380 st->shared_state->disable_state--; 381 if (!st->shared_state->disable_state) 382 wrmsrl(MSR_AMD64_LS_CFG, msr); 383 raw_spin_unlock(&st->shared_state->lock); 384 } 385 } 386 #else 387 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 388 { 389 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 390 391 wrmsrl(MSR_AMD64_LS_CFG, msr); 392 } 393 #endif 394 395 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 396 { 397 /* 398 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 399 * so ssbd_tif_to_spec_ctrl() just works. 400 */ 401 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 402 } 403 404 /* 405 * Update the MSRs managing speculation control, during context switch. 406 * 407 * tifp: Previous task's thread flags 408 * tifn: Next task's thread flags 409 */ 410 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 411 unsigned long tifn) 412 { 413 unsigned long tif_diff = tifp ^ tifn; 414 u64 msr = x86_spec_ctrl_base; 415 bool updmsr = false; 416 417 /* 418 * If TIF_SSBD is different, select the proper mitigation 419 * method. Note that if SSBD mitigation is disabled or permanentely 420 * enabled this branch can't be taken because nothing can set 421 * TIF_SSBD. 422 */ 423 if (tif_diff & _TIF_SSBD) { 424 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 425 amd_set_ssb_virt_state(tifn); 426 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 427 amd_set_core_ssb_state(tifn); 428 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 429 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 430 msr |= ssbd_tif_to_spec_ctrl(tifn); 431 updmsr = true; 432 } 433 } 434 435 /* 436 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled, 437 * otherwise avoid the MSR write. 438 */ 439 if (IS_ENABLED(CONFIG_SMP) && 440 static_branch_unlikely(&switch_to_cond_stibp)) { 441 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 442 msr |= stibp_tif_to_spec_ctrl(tifn); 443 } 444 445 if (updmsr) 446 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 447 } 448 449 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 450 { 451 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 452 if (task_spec_ssb_disable(tsk)) 453 set_tsk_thread_flag(tsk, TIF_SSBD); 454 else 455 clear_tsk_thread_flag(tsk, TIF_SSBD); 456 457 if (task_spec_ib_disable(tsk)) 458 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 459 else 460 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 461 } 462 /* Return the updated threadinfo flags*/ 463 return task_thread_info(tsk)->flags; 464 } 465 466 void speculation_ctrl_update(unsigned long tif) 467 { 468 /* Forced update. Make sure all relevant TIF flags are different */ 469 preempt_disable(); 470 __speculation_ctrl_update(~tif, tif); 471 preempt_enable(); 472 } 473 474 /* Called from seccomp/prctl update */ 475 void speculation_ctrl_update_current(void) 476 { 477 preempt_disable(); 478 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 479 preempt_enable(); 480 } 481 482 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 483 { 484 struct thread_struct *prev, *next; 485 unsigned long tifp, tifn; 486 487 prev = &prev_p->thread; 488 next = &next_p->thread; 489 490 tifn = READ_ONCE(task_thread_info(next_p)->flags); 491 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 492 switch_to_bitmap(prev, next, tifp, tifn); 493 494 propagate_user_return_notify(prev_p, next_p); 495 496 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 497 arch_has_block_step()) { 498 unsigned long debugctl, msk; 499 500 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 501 debugctl &= ~DEBUGCTLMSR_BTF; 502 msk = tifn & _TIF_BLOCKSTEP; 503 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 504 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 505 } 506 507 if ((tifp ^ tifn) & _TIF_NOTSC) 508 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 509 510 if ((tifp ^ tifn) & _TIF_NOCPUID) 511 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 512 513 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 514 __speculation_ctrl_update(tifp, tifn); 515 } else { 516 speculation_ctrl_update_tif(prev_p); 517 tifn = speculation_ctrl_update_tif(next_p); 518 519 /* Enforce MSR update to ensure consistent state */ 520 __speculation_ctrl_update(~tifn, tifn); 521 } 522 } 523 524 /* 525 * Idle related variables and functions 526 */ 527 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 528 EXPORT_SYMBOL(boot_option_idle_override); 529 530 static void (*x86_idle)(void); 531 532 #ifndef CONFIG_SMP 533 static inline void play_dead(void) 534 { 535 BUG(); 536 } 537 #endif 538 539 void arch_cpu_idle_enter(void) 540 { 541 tsc_verify_tsc_adjust(false); 542 local_touch_nmi(); 543 } 544 545 void arch_cpu_idle_dead(void) 546 { 547 play_dead(); 548 } 549 550 /* 551 * Called from the generic idle code. 552 */ 553 void arch_cpu_idle(void) 554 { 555 x86_idle(); 556 } 557 558 /* 559 * We use this if we don't have any better idle routine.. 560 */ 561 void __cpuidle default_idle(void) 562 { 563 trace_cpu_idle_rcuidle(1, smp_processor_id()); 564 safe_halt(); 565 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 566 } 567 #ifdef CONFIG_APM_MODULE 568 EXPORT_SYMBOL(default_idle); 569 #endif 570 571 #ifdef CONFIG_XEN 572 bool xen_set_default_idle(void) 573 { 574 bool ret = !!x86_idle; 575 576 x86_idle = default_idle; 577 578 return ret; 579 } 580 #endif 581 582 void stop_this_cpu(void *dummy) 583 { 584 local_irq_disable(); 585 /* 586 * Remove this CPU: 587 */ 588 set_cpu_online(smp_processor_id(), false); 589 disable_local_APIC(); 590 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 591 592 /* 593 * Use wbinvd on processors that support SME. This provides support 594 * for performing a successful kexec when going from SME inactive 595 * to SME active (or vice-versa). The cache must be cleared so that 596 * if there are entries with the same physical address, both with and 597 * without the encryption bit, they don't race each other when flushed 598 * and potentially end up with the wrong entry being committed to 599 * memory. 600 */ 601 if (boot_cpu_has(X86_FEATURE_SME)) 602 native_wbinvd(); 603 for (;;) { 604 /* 605 * Use native_halt() so that memory contents don't change 606 * (stack usage and variables) after possibly issuing the 607 * native_wbinvd() above. 608 */ 609 native_halt(); 610 } 611 } 612 613 /* 614 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 615 * states (local apic timer and TSC stop). 616 */ 617 static void amd_e400_idle(void) 618 { 619 /* 620 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 621 * gets set after static_cpu_has() places have been converted via 622 * alternatives. 623 */ 624 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 625 default_idle(); 626 return; 627 } 628 629 tick_broadcast_enter(); 630 631 default_idle(); 632 633 /* 634 * The switch back from broadcast mode needs to be called with 635 * interrupts disabled. 636 */ 637 local_irq_disable(); 638 tick_broadcast_exit(); 639 local_irq_enable(); 640 } 641 642 /* 643 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 644 * We can't rely on cpuidle installing MWAIT, because it will not load 645 * on systems that support only C1 -- so the boot default must be MWAIT. 646 * 647 * Some AMD machines are the opposite, they depend on using HALT. 648 * 649 * So for default C1, which is used during boot until cpuidle loads, 650 * use MWAIT-C1 on Intel HW that has it, else use HALT. 651 */ 652 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 653 { 654 if (c->x86_vendor != X86_VENDOR_INTEL) 655 return 0; 656 657 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 658 return 0; 659 660 return 1; 661 } 662 663 /* 664 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 665 * with interrupts enabled and no flags, which is backwards compatible with the 666 * original MWAIT implementation. 667 */ 668 static __cpuidle void mwait_idle(void) 669 { 670 if (!current_set_polling_and_test()) { 671 trace_cpu_idle_rcuidle(1, smp_processor_id()); 672 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 673 mb(); /* quirk */ 674 clflush((void *)¤t_thread_info()->flags); 675 mb(); /* quirk */ 676 } 677 678 __monitor((void *)¤t_thread_info()->flags, 0, 0); 679 if (!need_resched()) 680 __sti_mwait(0, 0); 681 else 682 local_irq_enable(); 683 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 684 } else { 685 local_irq_enable(); 686 } 687 __current_clr_polling(); 688 } 689 690 void select_idle_routine(const struct cpuinfo_x86 *c) 691 { 692 #ifdef CONFIG_SMP 693 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 694 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 695 #endif 696 if (x86_idle || boot_option_idle_override == IDLE_POLL) 697 return; 698 699 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 700 pr_info("using AMD E400 aware idle routine\n"); 701 x86_idle = amd_e400_idle; 702 } else if (prefer_mwait_c1_over_halt(c)) { 703 pr_info("using mwait in idle threads\n"); 704 x86_idle = mwait_idle; 705 } else 706 x86_idle = default_idle; 707 } 708 709 void amd_e400_c1e_apic_setup(void) 710 { 711 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 712 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 713 local_irq_disable(); 714 tick_broadcast_force(); 715 local_irq_enable(); 716 } 717 } 718 719 void __init arch_post_acpi_subsys_init(void) 720 { 721 u32 lo, hi; 722 723 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 724 return; 725 726 /* 727 * AMD E400 detection needs to happen after ACPI has been enabled. If 728 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 729 * MSR_K8_INT_PENDING_MSG. 730 */ 731 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 732 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 733 return; 734 735 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 736 737 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 738 mark_tsc_unstable("TSC halt in AMD C1E"); 739 pr_info("System has AMD C1E enabled\n"); 740 } 741 742 static int __init idle_setup(char *str) 743 { 744 if (!str) 745 return -EINVAL; 746 747 if (!strcmp(str, "poll")) { 748 pr_info("using polling idle threads\n"); 749 boot_option_idle_override = IDLE_POLL; 750 cpu_idle_poll_ctrl(true); 751 } else if (!strcmp(str, "halt")) { 752 /* 753 * When the boot option of idle=halt is added, halt is 754 * forced to be used for CPU idle. In such case CPU C2/C3 755 * won't be used again. 756 * To continue to load the CPU idle driver, don't touch 757 * the boot_option_idle_override. 758 */ 759 x86_idle = default_idle; 760 boot_option_idle_override = IDLE_HALT; 761 } else if (!strcmp(str, "nomwait")) { 762 /* 763 * If the boot option of "idle=nomwait" is added, 764 * it means that mwait will be disabled for CPU C2/C3 765 * states. In such case it won't touch the variable 766 * of boot_option_idle_override. 767 */ 768 boot_option_idle_override = IDLE_NOMWAIT; 769 } else 770 return -1; 771 772 return 0; 773 } 774 early_param("idle", idle_setup); 775 776 unsigned long arch_align_stack(unsigned long sp) 777 { 778 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 779 sp -= get_random_int() % 8192; 780 return sp & ~0xf; 781 } 782 783 unsigned long arch_randomize_brk(struct mm_struct *mm) 784 { 785 return randomize_page(mm->brk, 0x02000000); 786 } 787 788 /* 789 * Called from fs/proc with a reference on @p to find the function 790 * which called into schedule(). This needs to be done carefully 791 * because the task might wake up and we might look at a stack 792 * changing under us. 793 */ 794 unsigned long get_wchan(struct task_struct *p) 795 { 796 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 797 int count = 0; 798 799 if (p == current || p->state == TASK_RUNNING) 800 return 0; 801 802 if (!try_get_task_stack(p)) 803 return 0; 804 805 start = (unsigned long)task_stack_page(p); 806 if (!start) 807 goto out; 808 809 /* 810 * Layout of the stack page: 811 * 812 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 813 * PADDING 814 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 815 * stack 816 * ----------- bottom = start 817 * 818 * The tasks stack pointer points at the location where the 819 * framepointer is stored. The data on the stack is: 820 * ... IP FP ... IP FP 821 * 822 * We need to read FP and IP, so we need to adjust the upper 823 * bound by another unsigned long. 824 */ 825 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 826 top -= 2 * sizeof(unsigned long); 827 bottom = start; 828 829 sp = READ_ONCE(p->thread.sp); 830 if (sp < bottom || sp > top) 831 goto out; 832 833 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 834 do { 835 if (fp < bottom || fp > top) 836 goto out; 837 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 838 if (!in_sched_functions(ip)) { 839 ret = ip; 840 goto out; 841 } 842 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 843 } while (count++ < 16 && p->state != TASK_RUNNING); 844 845 out: 846 put_task_stack(p); 847 return ret; 848 } 849 850 long do_arch_prctl_common(struct task_struct *task, int option, 851 unsigned long cpuid_enabled) 852 { 853 switch (option) { 854 case ARCH_GET_CPUID: 855 return get_cpuid_mode(); 856 case ARCH_SET_CPUID: 857 return set_cpuid_mode(task, cpuid_enabled); 858 } 859 860 return -EINVAL; 861 } 862