xref: /openbmc/linux/arch/x86/kernel/process.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41 #include <asm/spec-ctrl.h>
42 
43 /*
44  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45  * no more per-task TSS's. The TSS size is kept cacheline-aligned
46  * so they are allowed to end up in the .data..cacheline_aligned
47  * section. Since TSS's are completely CPU-local, we want them
48  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49  */
50 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51 	.x86_tss = {
52 		/*
53 		 * .sp0 is only used when entering ring 0 from a lower
54 		 * privilege level.  Since the init task never runs anything
55 		 * but ring 0 code, there is no need for a valid value here.
56 		 * Poison it.
57 		 */
58 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 
60 		/*
61 		 * .sp1 is cpu_current_top_of_stack.  The init task never
62 		 * runs user code, but cpu_current_top_of_stack should still
63 		 * be well defined before the first context switch.
64 		 */
65 		.sp1 = TOP_OF_INIT_STACK,
66 
67 #ifdef CONFIG_X86_32
68 		.ss0 = __KERNEL_DS,
69 		.ss1 = __KERNEL_CS,
70 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
71 #endif
72 	 },
73 #ifdef CONFIG_X86_32
74 	 /*
75 	  * Note that the .io_bitmap member must be extra-big. This is because
76 	  * the CPU will access an additional byte beyond the end of the IO
77 	  * permission bitmap. The extra byte must be all 1 bits, and must
78 	  * be within the limit.
79 	  */
80 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
81 #endif
82 };
83 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
84 
85 DEFINE_PER_CPU(bool, __tss_limit_invalid);
86 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
87 
88 /*
89  * this gets called so that we can store lazy state into memory and copy the
90  * current task into the new thread.
91  */
92 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
93 {
94 	memcpy(dst, src, arch_task_struct_size);
95 #ifdef CONFIG_VM86
96 	dst->thread.vm86 = NULL;
97 #endif
98 
99 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
100 }
101 
102 /*
103  * Free current thread data structures etc..
104  */
105 void exit_thread(struct task_struct *tsk)
106 {
107 	struct thread_struct *t = &tsk->thread;
108 	unsigned long *bp = t->io_bitmap_ptr;
109 	struct fpu *fpu = &t->fpu;
110 
111 	if (bp) {
112 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
113 
114 		t->io_bitmap_ptr = NULL;
115 		clear_thread_flag(TIF_IO_BITMAP);
116 		/*
117 		 * Careful, clear this in the TSS too:
118 		 */
119 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
120 		t->io_bitmap_max = 0;
121 		put_cpu();
122 		kfree(bp);
123 	}
124 
125 	free_vm86(t);
126 
127 	fpu__drop(fpu);
128 }
129 
130 void flush_thread(void)
131 {
132 	struct task_struct *tsk = current;
133 
134 	flush_ptrace_hw_breakpoint(tsk);
135 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
136 
137 	fpu__clear(&tsk->thread.fpu);
138 }
139 
140 void disable_TSC(void)
141 {
142 	preempt_disable();
143 	if (!test_and_set_thread_flag(TIF_NOTSC))
144 		/*
145 		 * Must flip the CPU state synchronously with
146 		 * TIF_NOTSC in the current running context.
147 		 */
148 		cr4_set_bits(X86_CR4_TSD);
149 	preempt_enable();
150 }
151 
152 static void enable_TSC(void)
153 {
154 	preempt_disable();
155 	if (test_and_clear_thread_flag(TIF_NOTSC))
156 		/*
157 		 * Must flip the CPU state synchronously with
158 		 * TIF_NOTSC in the current running context.
159 		 */
160 		cr4_clear_bits(X86_CR4_TSD);
161 	preempt_enable();
162 }
163 
164 int get_tsc_mode(unsigned long adr)
165 {
166 	unsigned int val;
167 
168 	if (test_thread_flag(TIF_NOTSC))
169 		val = PR_TSC_SIGSEGV;
170 	else
171 		val = PR_TSC_ENABLE;
172 
173 	return put_user(val, (unsigned int __user *)adr);
174 }
175 
176 int set_tsc_mode(unsigned int val)
177 {
178 	if (val == PR_TSC_SIGSEGV)
179 		disable_TSC();
180 	else if (val == PR_TSC_ENABLE)
181 		enable_TSC();
182 	else
183 		return -EINVAL;
184 
185 	return 0;
186 }
187 
188 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
189 
190 static void set_cpuid_faulting(bool on)
191 {
192 	u64 msrval;
193 
194 	msrval = this_cpu_read(msr_misc_features_shadow);
195 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
196 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
197 	this_cpu_write(msr_misc_features_shadow, msrval);
198 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
199 }
200 
201 static void disable_cpuid(void)
202 {
203 	preempt_disable();
204 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
205 		/*
206 		 * Must flip the CPU state synchronously with
207 		 * TIF_NOCPUID in the current running context.
208 		 */
209 		set_cpuid_faulting(true);
210 	}
211 	preempt_enable();
212 }
213 
214 static void enable_cpuid(void)
215 {
216 	preempt_disable();
217 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
218 		/*
219 		 * Must flip the CPU state synchronously with
220 		 * TIF_NOCPUID in the current running context.
221 		 */
222 		set_cpuid_faulting(false);
223 	}
224 	preempt_enable();
225 }
226 
227 static int get_cpuid_mode(void)
228 {
229 	return !test_thread_flag(TIF_NOCPUID);
230 }
231 
232 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
233 {
234 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
235 		return -ENODEV;
236 
237 	if (cpuid_enabled)
238 		enable_cpuid();
239 	else
240 		disable_cpuid();
241 
242 	return 0;
243 }
244 
245 /*
246  * Called immediately after a successful exec.
247  */
248 void arch_setup_new_exec(void)
249 {
250 	/* If cpuid was previously disabled for this task, re-enable it. */
251 	if (test_thread_flag(TIF_NOCPUID))
252 		enable_cpuid();
253 }
254 
255 static inline void switch_to_bitmap(struct tss_struct *tss,
256 				    struct thread_struct *prev,
257 				    struct thread_struct *next,
258 				    unsigned long tifp, unsigned long tifn)
259 {
260 	if (tifn & _TIF_IO_BITMAP) {
261 		/*
262 		 * Copy the relevant range of the IO bitmap.
263 		 * Normally this is 128 bytes or less:
264 		 */
265 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
266 		       max(prev->io_bitmap_max, next->io_bitmap_max));
267 		/*
268 		 * Make sure that the TSS limit is correct for the CPU
269 		 * to notice the IO bitmap.
270 		 */
271 		refresh_tss_limit();
272 	} else if (tifp & _TIF_IO_BITMAP) {
273 		/*
274 		 * Clear any possible leftover bits:
275 		 */
276 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
277 	}
278 }
279 
280 #ifdef CONFIG_SMP
281 
282 struct ssb_state {
283 	struct ssb_state	*shared_state;
284 	raw_spinlock_t		lock;
285 	unsigned int		disable_state;
286 	unsigned long		local_state;
287 };
288 
289 #define LSTATE_SSB	0
290 
291 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
292 
293 void speculative_store_bypass_ht_init(void)
294 {
295 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
296 	unsigned int this_cpu = smp_processor_id();
297 	unsigned int cpu;
298 
299 	st->local_state = 0;
300 
301 	/*
302 	 * Shared state setup happens once on the first bringup
303 	 * of the CPU. It's not destroyed on CPU hotunplug.
304 	 */
305 	if (st->shared_state)
306 		return;
307 
308 	raw_spin_lock_init(&st->lock);
309 
310 	/*
311 	 * Go over HT siblings and check whether one of them has set up the
312 	 * shared state pointer already.
313 	 */
314 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
315 		if (cpu == this_cpu)
316 			continue;
317 
318 		if (!per_cpu(ssb_state, cpu).shared_state)
319 			continue;
320 
321 		/* Link it to the state of the sibling: */
322 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
323 		return;
324 	}
325 
326 	/*
327 	 * First HT sibling to come up on the core.  Link shared state of
328 	 * the first HT sibling to itself. The siblings on the same core
329 	 * which come up later will see the shared state pointer and link
330 	 * themself to the state of this CPU.
331 	 */
332 	st->shared_state = st;
333 }
334 
335 /*
336  * Logic is: First HT sibling enables SSBD for both siblings in the core
337  * and last sibling to disable it, disables it for the whole core. This how
338  * MSR_SPEC_CTRL works in "hardware":
339  *
340  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
341  */
342 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
343 {
344 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
345 	u64 msr = x86_amd_ls_cfg_base;
346 
347 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
348 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
349 		wrmsrl(MSR_AMD64_LS_CFG, msr);
350 		return;
351 	}
352 
353 	if (tifn & _TIF_SSBD) {
354 		/*
355 		 * Since this can race with prctl(), block reentry on the
356 		 * same CPU.
357 		 */
358 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
359 			return;
360 
361 		msr |= x86_amd_ls_cfg_ssbd_mask;
362 
363 		raw_spin_lock(&st->shared_state->lock);
364 		/* First sibling enables SSBD: */
365 		if (!st->shared_state->disable_state)
366 			wrmsrl(MSR_AMD64_LS_CFG, msr);
367 		st->shared_state->disable_state++;
368 		raw_spin_unlock(&st->shared_state->lock);
369 	} else {
370 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
371 			return;
372 
373 		raw_spin_lock(&st->shared_state->lock);
374 		st->shared_state->disable_state--;
375 		if (!st->shared_state->disable_state)
376 			wrmsrl(MSR_AMD64_LS_CFG, msr);
377 		raw_spin_unlock(&st->shared_state->lock);
378 	}
379 }
380 #else
381 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
382 {
383 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
384 
385 	wrmsrl(MSR_AMD64_LS_CFG, msr);
386 }
387 #endif
388 
389 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
390 {
391 	/*
392 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
393 	 * so ssbd_tif_to_spec_ctrl() just works.
394 	 */
395 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
396 }
397 
398 static __always_inline void intel_set_ssb_state(unsigned long tifn)
399 {
400 	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
401 
402 	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
403 }
404 
405 static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
406 {
407 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
408 		amd_set_ssb_virt_state(tifn);
409 	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
410 		amd_set_core_ssb_state(tifn);
411 	else
412 		intel_set_ssb_state(tifn);
413 }
414 
415 void speculative_store_bypass_update(unsigned long tif)
416 {
417 	preempt_disable();
418 	__speculative_store_bypass_update(tif);
419 	preempt_enable();
420 }
421 
422 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
423 		      struct tss_struct *tss)
424 {
425 	struct thread_struct *prev, *next;
426 	unsigned long tifp, tifn;
427 
428 	prev = &prev_p->thread;
429 	next = &next_p->thread;
430 
431 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
432 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
433 	switch_to_bitmap(tss, prev, next, tifp, tifn);
434 
435 	propagate_user_return_notify(prev_p, next_p);
436 
437 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
438 	    arch_has_block_step()) {
439 		unsigned long debugctl, msk;
440 
441 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
442 		debugctl &= ~DEBUGCTLMSR_BTF;
443 		msk = tifn & _TIF_BLOCKSTEP;
444 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
445 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
446 	}
447 
448 	if ((tifp ^ tifn) & _TIF_NOTSC)
449 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
450 
451 	if ((tifp ^ tifn) & _TIF_NOCPUID)
452 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
453 
454 	if ((tifp ^ tifn) & _TIF_SSBD)
455 		__speculative_store_bypass_update(tifn);
456 }
457 
458 /*
459  * Idle related variables and functions
460  */
461 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
462 EXPORT_SYMBOL(boot_option_idle_override);
463 
464 static void (*x86_idle)(void);
465 
466 #ifndef CONFIG_SMP
467 static inline void play_dead(void)
468 {
469 	BUG();
470 }
471 #endif
472 
473 void arch_cpu_idle_enter(void)
474 {
475 	tsc_verify_tsc_adjust(false);
476 	local_touch_nmi();
477 }
478 
479 void arch_cpu_idle_dead(void)
480 {
481 	play_dead();
482 }
483 
484 /*
485  * Called from the generic idle code.
486  */
487 void arch_cpu_idle(void)
488 {
489 	x86_idle();
490 }
491 
492 /*
493  * We use this if we don't have any better idle routine..
494  */
495 void __cpuidle default_idle(void)
496 {
497 	trace_cpu_idle_rcuidle(1, smp_processor_id());
498 	safe_halt();
499 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
500 }
501 #ifdef CONFIG_APM_MODULE
502 EXPORT_SYMBOL(default_idle);
503 #endif
504 
505 #ifdef CONFIG_XEN
506 bool xen_set_default_idle(void)
507 {
508 	bool ret = !!x86_idle;
509 
510 	x86_idle = default_idle;
511 
512 	return ret;
513 }
514 #endif
515 
516 void stop_this_cpu(void *dummy)
517 {
518 	local_irq_disable();
519 	/*
520 	 * Remove this CPU:
521 	 */
522 	set_cpu_online(smp_processor_id(), false);
523 	disable_local_APIC();
524 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
525 
526 	/*
527 	 * Use wbinvd on processors that support SME. This provides support
528 	 * for performing a successful kexec when going from SME inactive
529 	 * to SME active (or vice-versa). The cache must be cleared so that
530 	 * if there are entries with the same physical address, both with and
531 	 * without the encryption bit, they don't race each other when flushed
532 	 * and potentially end up with the wrong entry being committed to
533 	 * memory.
534 	 */
535 	if (boot_cpu_has(X86_FEATURE_SME))
536 		native_wbinvd();
537 	for (;;) {
538 		/*
539 		 * Use native_halt() so that memory contents don't change
540 		 * (stack usage and variables) after possibly issuing the
541 		 * native_wbinvd() above.
542 		 */
543 		native_halt();
544 	}
545 }
546 
547 /*
548  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
549  * states (local apic timer and TSC stop).
550  */
551 static void amd_e400_idle(void)
552 {
553 	/*
554 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
555 	 * gets set after static_cpu_has() places have been converted via
556 	 * alternatives.
557 	 */
558 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
559 		default_idle();
560 		return;
561 	}
562 
563 	tick_broadcast_enter();
564 
565 	default_idle();
566 
567 	/*
568 	 * The switch back from broadcast mode needs to be called with
569 	 * interrupts disabled.
570 	 */
571 	local_irq_disable();
572 	tick_broadcast_exit();
573 	local_irq_enable();
574 }
575 
576 /*
577  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
578  * We can't rely on cpuidle installing MWAIT, because it will not load
579  * on systems that support only C1 -- so the boot default must be MWAIT.
580  *
581  * Some AMD machines are the opposite, they depend on using HALT.
582  *
583  * So for default C1, which is used during boot until cpuidle loads,
584  * use MWAIT-C1 on Intel HW that has it, else use HALT.
585  */
586 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
587 {
588 	if (c->x86_vendor != X86_VENDOR_INTEL)
589 		return 0;
590 
591 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
592 		return 0;
593 
594 	return 1;
595 }
596 
597 /*
598  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
599  * with interrupts enabled and no flags, which is backwards compatible with the
600  * original MWAIT implementation.
601  */
602 static __cpuidle void mwait_idle(void)
603 {
604 	if (!current_set_polling_and_test()) {
605 		trace_cpu_idle_rcuidle(1, smp_processor_id());
606 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
607 			mb(); /* quirk */
608 			clflush((void *)&current_thread_info()->flags);
609 			mb(); /* quirk */
610 		}
611 
612 		__monitor((void *)&current_thread_info()->flags, 0, 0);
613 		if (!need_resched())
614 			__sti_mwait(0, 0);
615 		else
616 			local_irq_enable();
617 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
618 	} else {
619 		local_irq_enable();
620 	}
621 	__current_clr_polling();
622 }
623 
624 void select_idle_routine(const struct cpuinfo_x86 *c)
625 {
626 #ifdef CONFIG_SMP
627 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
628 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
629 #endif
630 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
631 		return;
632 
633 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
634 		pr_info("using AMD E400 aware idle routine\n");
635 		x86_idle = amd_e400_idle;
636 	} else if (prefer_mwait_c1_over_halt(c)) {
637 		pr_info("using mwait in idle threads\n");
638 		x86_idle = mwait_idle;
639 	} else
640 		x86_idle = default_idle;
641 }
642 
643 void amd_e400_c1e_apic_setup(void)
644 {
645 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
646 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
647 		local_irq_disable();
648 		tick_broadcast_force();
649 		local_irq_enable();
650 	}
651 }
652 
653 void __init arch_post_acpi_subsys_init(void)
654 {
655 	u32 lo, hi;
656 
657 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
658 		return;
659 
660 	/*
661 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
662 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
663 	 * MSR_K8_INT_PENDING_MSG.
664 	 */
665 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
666 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
667 		return;
668 
669 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
670 
671 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
672 		mark_tsc_unstable("TSC halt in AMD C1E");
673 	pr_info("System has AMD C1E enabled\n");
674 }
675 
676 static int __init idle_setup(char *str)
677 {
678 	if (!str)
679 		return -EINVAL;
680 
681 	if (!strcmp(str, "poll")) {
682 		pr_info("using polling idle threads\n");
683 		boot_option_idle_override = IDLE_POLL;
684 		cpu_idle_poll_ctrl(true);
685 	} else if (!strcmp(str, "halt")) {
686 		/*
687 		 * When the boot option of idle=halt is added, halt is
688 		 * forced to be used for CPU idle. In such case CPU C2/C3
689 		 * won't be used again.
690 		 * To continue to load the CPU idle driver, don't touch
691 		 * the boot_option_idle_override.
692 		 */
693 		x86_idle = default_idle;
694 		boot_option_idle_override = IDLE_HALT;
695 	} else if (!strcmp(str, "nomwait")) {
696 		/*
697 		 * If the boot option of "idle=nomwait" is added,
698 		 * it means that mwait will be disabled for CPU C2/C3
699 		 * states. In such case it won't touch the variable
700 		 * of boot_option_idle_override.
701 		 */
702 		boot_option_idle_override = IDLE_NOMWAIT;
703 	} else
704 		return -1;
705 
706 	return 0;
707 }
708 early_param("idle", idle_setup);
709 
710 unsigned long arch_align_stack(unsigned long sp)
711 {
712 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
713 		sp -= get_random_int() % 8192;
714 	return sp & ~0xf;
715 }
716 
717 unsigned long arch_randomize_brk(struct mm_struct *mm)
718 {
719 	return randomize_page(mm->brk, 0x02000000);
720 }
721 
722 /*
723  * Called from fs/proc with a reference on @p to find the function
724  * which called into schedule(). This needs to be done carefully
725  * because the task might wake up and we might look at a stack
726  * changing under us.
727  */
728 unsigned long get_wchan(struct task_struct *p)
729 {
730 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
731 	int count = 0;
732 
733 	if (!p || p == current || p->state == TASK_RUNNING)
734 		return 0;
735 
736 	if (!try_get_task_stack(p))
737 		return 0;
738 
739 	start = (unsigned long)task_stack_page(p);
740 	if (!start)
741 		goto out;
742 
743 	/*
744 	 * Layout of the stack page:
745 	 *
746 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
747 	 * PADDING
748 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
749 	 * stack
750 	 * ----------- bottom = start
751 	 *
752 	 * The tasks stack pointer points at the location where the
753 	 * framepointer is stored. The data on the stack is:
754 	 * ... IP FP ... IP FP
755 	 *
756 	 * We need to read FP and IP, so we need to adjust the upper
757 	 * bound by another unsigned long.
758 	 */
759 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
760 	top -= 2 * sizeof(unsigned long);
761 	bottom = start;
762 
763 	sp = READ_ONCE(p->thread.sp);
764 	if (sp < bottom || sp > top)
765 		goto out;
766 
767 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
768 	do {
769 		if (fp < bottom || fp > top)
770 			goto out;
771 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
772 		if (!in_sched_functions(ip)) {
773 			ret = ip;
774 			goto out;
775 		}
776 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
777 	} while (count++ < 16 && p->state != TASK_RUNNING);
778 
779 out:
780 	put_task_stack(p);
781 	return ret;
782 }
783 
784 long do_arch_prctl_common(struct task_struct *task, int option,
785 			  unsigned long cpuid_enabled)
786 {
787 	switch (option) {
788 	case ARCH_GET_CPUID:
789 		return get_cpuid_mode();
790 	case ARCH_SET_CPUID:
791 		return set_cpuid_mode(task, cpuid_enabled);
792 	}
793 
794 	return -EINVAL;
795 }
796