1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <trace/events/power.h> 28 #include <linux/hw_breakpoint.h> 29 #include <asm/cpu.h> 30 #include <asm/apic.h> 31 #include <linux/uaccess.h> 32 #include <asm/mwait.h> 33 #include <asm/fpu/internal.h> 34 #include <asm/debugreg.h> 35 #include <asm/nmi.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mce.h> 38 #include <asm/vm86.h> 39 #include <asm/switch_to.h> 40 #include <asm/desc.h> 41 #include <asm/prctl.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/io_bitmap.h> 44 #include <asm/proto.h> 45 #include <asm/frame.h> 46 47 #include "process.h" 48 49 /* 50 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 51 * no more per-task TSS's. The TSS size is kept cacheline-aligned 52 * so they are allowed to end up in the .data..cacheline_aligned 53 * section. Since TSS's are completely CPU-local, we want them 54 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 55 */ 56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 57 .x86_tss = { 58 /* 59 * .sp0 is only used when entering ring 0 from a lower 60 * privilege level. Since the init task never runs anything 61 * but ring 0 code, there is no need for a valid value here. 62 * Poison it. 63 */ 64 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 65 66 #ifdef CONFIG_X86_32 67 .sp1 = TOP_OF_INIT_STACK, 68 69 .ss0 = __KERNEL_DS, 70 .ss1 = __KERNEL_CS, 71 #endif 72 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 73 }, 74 }; 75 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 76 77 DEFINE_PER_CPU(bool, __tss_limit_invalid); 78 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 79 80 /* 81 * this gets called so that we can store lazy state into memory and copy the 82 * current task into the new thread. 83 */ 84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 85 { 86 memcpy(dst, src, arch_task_struct_size); 87 #ifdef CONFIG_VM86 88 dst->thread.vm86 = NULL; 89 #endif 90 91 return fpu__copy(dst, src); 92 } 93 94 /* 95 * Free thread data structures etc.. 96 */ 97 void exit_thread(struct task_struct *tsk) 98 { 99 struct thread_struct *t = &tsk->thread; 100 struct fpu *fpu = &t->fpu; 101 102 if (test_thread_flag(TIF_IO_BITMAP)) 103 io_bitmap_exit(tsk); 104 105 free_vm86(t); 106 107 fpu__drop(fpu); 108 } 109 110 static int set_new_tls(struct task_struct *p, unsigned long tls) 111 { 112 struct user_desc __user *utls = (struct user_desc __user *)tls; 113 114 if (in_ia32_syscall()) 115 return do_set_thread_area(p, -1, utls, 0); 116 else 117 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 118 } 119 120 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg, 121 struct task_struct *p, unsigned long tls) 122 { 123 struct inactive_task_frame *frame; 124 struct fork_frame *fork_frame; 125 struct pt_regs *childregs; 126 int ret = 0; 127 128 childregs = task_pt_regs(p); 129 fork_frame = container_of(childregs, struct fork_frame, regs); 130 frame = &fork_frame->frame; 131 132 frame->bp = encode_frame_pointer(childregs); 133 frame->ret_addr = (unsigned long) ret_from_fork; 134 p->thread.sp = (unsigned long) fork_frame; 135 p->thread.io_bitmap = NULL; 136 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 137 138 #ifdef CONFIG_X86_64 139 current_save_fsgs(); 140 p->thread.fsindex = current->thread.fsindex; 141 p->thread.fsbase = current->thread.fsbase; 142 p->thread.gsindex = current->thread.gsindex; 143 p->thread.gsbase = current->thread.gsbase; 144 145 savesegment(es, p->thread.es); 146 savesegment(ds, p->thread.ds); 147 #else 148 p->thread.sp0 = (unsigned long) (childregs + 1); 149 /* 150 * Clear all status flags including IF and set fixed bit. 64bit 151 * does not have this initialization as the frame does not contain 152 * flags. The flags consistency (especially vs. AC) is there 153 * ensured via objtool, which lacks 32bit support. 154 */ 155 frame->flags = X86_EFLAGS_FIXED; 156 #endif 157 158 /* Kernel thread ? */ 159 if (unlikely(p->flags & PF_KTHREAD)) { 160 memset(childregs, 0, sizeof(struct pt_regs)); 161 kthread_frame_init(frame, sp, arg); 162 return 0; 163 } 164 165 frame->bx = 0; 166 *childregs = *current_pt_regs(); 167 childregs->ax = 0; 168 if (sp) 169 childregs->sp = sp; 170 171 #ifdef CONFIG_X86_32 172 task_user_gs(p) = get_user_gs(current_pt_regs()); 173 #endif 174 175 if (unlikely(p->flags & PF_IO_WORKER)) { 176 /* 177 * An IO thread is a user space thread, but it doesn't 178 * return to ret_after_fork(). 179 * 180 * In order to indicate that to tools like gdb, 181 * we reset the stack and instruction pointers. 182 * 183 * It does the same kernel frame setup to return to a kernel 184 * function that a kernel thread does. 185 */ 186 childregs->sp = 0; 187 childregs->ip = 0; 188 kthread_frame_init(frame, sp, arg); 189 return 0; 190 } 191 192 /* Set a new TLS for the child thread? */ 193 if (clone_flags & CLONE_SETTLS) 194 ret = set_new_tls(p, tls); 195 196 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 197 io_bitmap_share(p); 198 199 return ret; 200 } 201 202 void flush_thread(void) 203 { 204 struct task_struct *tsk = current; 205 206 flush_ptrace_hw_breakpoint(tsk); 207 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 208 209 fpu__clear_all(&tsk->thread.fpu); 210 } 211 212 void disable_TSC(void) 213 { 214 preempt_disable(); 215 if (!test_and_set_thread_flag(TIF_NOTSC)) 216 /* 217 * Must flip the CPU state synchronously with 218 * TIF_NOTSC in the current running context. 219 */ 220 cr4_set_bits(X86_CR4_TSD); 221 preempt_enable(); 222 } 223 224 static void enable_TSC(void) 225 { 226 preempt_disable(); 227 if (test_and_clear_thread_flag(TIF_NOTSC)) 228 /* 229 * Must flip the CPU state synchronously with 230 * TIF_NOTSC in the current running context. 231 */ 232 cr4_clear_bits(X86_CR4_TSD); 233 preempt_enable(); 234 } 235 236 int get_tsc_mode(unsigned long adr) 237 { 238 unsigned int val; 239 240 if (test_thread_flag(TIF_NOTSC)) 241 val = PR_TSC_SIGSEGV; 242 else 243 val = PR_TSC_ENABLE; 244 245 return put_user(val, (unsigned int __user *)adr); 246 } 247 248 int set_tsc_mode(unsigned int val) 249 { 250 if (val == PR_TSC_SIGSEGV) 251 disable_TSC(); 252 else if (val == PR_TSC_ENABLE) 253 enable_TSC(); 254 else 255 return -EINVAL; 256 257 return 0; 258 } 259 260 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 261 262 static void set_cpuid_faulting(bool on) 263 { 264 u64 msrval; 265 266 msrval = this_cpu_read(msr_misc_features_shadow); 267 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 268 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 269 this_cpu_write(msr_misc_features_shadow, msrval); 270 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 271 } 272 273 static void disable_cpuid(void) 274 { 275 preempt_disable(); 276 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 277 /* 278 * Must flip the CPU state synchronously with 279 * TIF_NOCPUID in the current running context. 280 */ 281 set_cpuid_faulting(true); 282 } 283 preempt_enable(); 284 } 285 286 static void enable_cpuid(void) 287 { 288 preempt_disable(); 289 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 290 /* 291 * Must flip the CPU state synchronously with 292 * TIF_NOCPUID in the current running context. 293 */ 294 set_cpuid_faulting(false); 295 } 296 preempt_enable(); 297 } 298 299 static int get_cpuid_mode(void) 300 { 301 return !test_thread_flag(TIF_NOCPUID); 302 } 303 304 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 305 { 306 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 307 return -ENODEV; 308 309 if (cpuid_enabled) 310 enable_cpuid(); 311 else 312 disable_cpuid(); 313 314 return 0; 315 } 316 317 /* 318 * Called immediately after a successful exec. 319 */ 320 void arch_setup_new_exec(void) 321 { 322 /* If cpuid was previously disabled for this task, re-enable it. */ 323 if (test_thread_flag(TIF_NOCPUID)) 324 enable_cpuid(); 325 326 /* 327 * Don't inherit TIF_SSBD across exec boundary when 328 * PR_SPEC_DISABLE_NOEXEC is used. 329 */ 330 if (test_thread_flag(TIF_SSBD) && 331 task_spec_ssb_noexec(current)) { 332 clear_thread_flag(TIF_SSBD); 333 task_clear_spec_ssb_disable(current); 334 task_clear_spec_ssb_noexec(current); 335 speculation_ctrl_update(task_thread_info(current)->flags); 336 } 337 } 338 339 #ifdef CONFIG_X86_IOPL_IOPERM 340 static inline void switch_to_bitmap(unsigned long tifp) 341 { 342 /* 343 * Invalidate I/O bitmap if the previous task used it. This prevents 344 * any possible leakage of an active I/O bitmap. 345 * 346 * If the next task has an I/O bitmap it will handle it on exit to 347 * user mode. 348 */ 349 if (tifp & _TIF_IO_BITMAP) 350 tss_invalidate_io_bitmap(); 351 } 352 353 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 354 { 355 /* 356 * Copy at least the byte range of the incoming tasks bitmap which 357 * covers the permitted I/O ports. 358 * 359 * If the previous task which used an I/O bitmap had more bits 360 * permitted, then the copy needs to cover those as well so they 361 * get turned off. 362 */ 363 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 364 max(tss->io_bitmap.prev_max, iobm->max)); 365 366 /* 367 * Store the new max and the sequence number of this bitmap 368 * and a pointer to the bitmap itself. 369 */ 370 tss->io_bitmap.prev_max = iobm->max; 371 tss->io_bitmap.prev_sequence = iobm->sequence; 372 } 373 374 /** 375 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode 376 */ 377 void native_tss_update_io_bitmap(void) 378 { 379 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 380 struct thread_struct *t = ¤t->thread; 381 u16 *base = &tss->x86_tss.io_bitmap_base; 382 383 if (!test_thread_flag(TIF_IO_BITMAP)) { 384 native_tss_invalidate_io_bitmap(); 385 return; 386 } 387 388 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 389 *base = IO_BITMAP_OFFSET_VALID_ALL; 390 } else { 391 struct io_bitmap *iobm = t->io_bitmap; 392 393 /* 394 * Only copy bitmap data when the sequence number differs. The 395 * update time is accounted to the incoming task. 396 */ 397 if (tss->io_bitmap.prev_sequence != iobm->sequence) 398 tss_copy_io_bitmap(tss, iobm); 399 400 /* Enable the bitmap */ 401 *base = IO_BITMAP_OFFSET_VALID_MAP; 402 } 403 404 /* 405 * Make sure that the TSS limit is covering the IO bitmap. It might have 406 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 407 * access from user space to trigger a #GP because tbe bitmap is outside 408 * the TSS limit. 409 */ 410 refresh_tss_limit(); 411 } 412 #else /* CONFIG_X86_IOPL_IOPERM */ 413 static inline void switch_to_bitmap(unsigned long tifp) { } 414 #endif 415 416 #ifdef CONFIG_SMP 417 418 struct ssb_state { 419 struct ssb_state *shared_state; 420 raw_spinlock_t lock; 421 unsigned int disable_state; 422 unsigned long local_state; 423 }; 424 425 #define LSTATE_SSB 0 426 427 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 428 429 void speculative_store_bypass_ht_init(void) 430 { 431 struct ssb_state *st = this_cpu_ptr(&ssb_state); 432 unsigned int this_cpu = smp_processor_id(); 433 unsigned int cpu; 434 435 st->local_state = 0; 436 437 /* 438 * Shared state setup happens once on the first bringup 439 * of the CPU. It's not destroyed on CPU hotunplug. 440 */ 441 if (st->shared_state) 442 return; 443 444 raw_spin_lock_init(&st->lock); 445 446 /* 447 * Go over HT siblings and check whether one of them has set up the 448 * shared state pointer already. 449 */ 450 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 451 if (cpu == this_cpu) 452 continue; 453 454 if (!per_cpu(ssb_state, cpu).shared_state) 455 continue; 456 457 /* Link it to the state of the sibling: */ 458 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 459 return; 460 } 461 462 /* 463 * First HT sibling to come up on the core. Link shared state of 464 * the first HT sibling to itself. The siblings on the same core 465 * which come up later will see the shared state pointer and link 466 * themselves to the state of this CPU. 467 */ 468 st->shared_state = st; 469 } 470 471 /* 472 * Logic is: First HT sibling enables SSBD for both siblings in the core 473 * and last sibling to disable it, disables it for the whole core. This how 474 * MSR_SPEC_CTRL works in "hardware": 475 * 476 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 477 */ 478 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 479 { 480 struct ssb_state *st = this_cpu_ptr(&ssb_state); 481 u64 msr = x86_amd_ls_cfg_base; 482 483 if (!static_cpu_has(X86_FEATURE_ZEN)) { 484 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 485 wrmsrl(MSR_AMD64_LS_CFG, msr); 486 return; 487 } 488 489 if (tifn & _TIF_SSBD) { 490 /* 491 * Since this can race with prctl(), block reentry on the 492 * same CPU. 493 */ 494 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 495 return; 496 497 msr |= x86_amd_ls_cfg_ssbd_mask; 498 499 raw_spin_lock(&st->shared_state->lock); 500 /* First sibling enables SSBD: */ 501 if (!st->shared_state->disable_state) 502 wrmsrl(MSR_AMD64_LS_CFG, msr); 503 st->shared_state->disable_state++; 504 raw_spin_unlock(&st->shared_state->lock); 505 } else { 506 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 507 return; 508 509 raw_spin_lock(&st->shared_state->lock); 510 st->shared_state->disable_state--; 511 if (!st->shared_state->disable_state) 512 wrmsrl(MSR_AMD64_LS_CFG, msr); 513 raw_spin_unlock(&st->shared_state->lock); 514 } 515 } 516 #else 517 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 518 { 519 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 520 521 wrmsrl(MSR_AMD64_LS_CFG, msr); 522 } 523 #endif 524 525 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 526 { 527 /* 528 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 529 * so ssbd_tif_to_spec_ctrl() just works. 530 */ 531 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 532 } 533 534 /* 535 * Update the MSRs managing speculation control, during context switch. 536 * 537 * tifp: Previous task's thread flags 538 * tifn: Next task's thread flags 539 */ 540 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 541 unsigned long tifn) 542 { 543 unsigned long tif_diff = tifp ^ tifn; 544 u64 msr = x86_spec_ctrl_base; 545 bool updmsr = false; 546 547 lockdep_assert_irqs_disabled(); 548 549 /* Handle change of TIF_SSBD depending on the mitigation method. */ 550 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 551 if (tif_diff & _TIF_SSBD) 552 amd_set_ssb_virt_state(tifn); 553 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 554 if (tif_diff & _TIF_SSBD) 555 amd_set_core_ssb_state(tifn); 556 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 557 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 558 updmsr |= !!(tif_diff & _TIF_SSBD); 559 msr |= ssbd_tif_to_spec_ctrl(tifn); 560 } 561 562 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 563 if (IS_ENABLED(CONFIG_SMP) && 564 static_branch_unlikely(&switch_to_cond_stibp)) { 565 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 566 msr |= stibp_tif_to_spec_ctrl(tifn); 567 } 568 569 if (updmsr) 570 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 571 } 572 573 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 574 { 575 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 576 if (task_spec_ssb_disable(tsk)) 577 set_tsk_thread_flag(tsk, TIF_SSBD); 578 else 579 clear_tsk_thread_flag(tsk, TIF_SSBD); 580 581 if (task_spec_ib_disable(tsk)) 582 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 583 else 584 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 585 } 586 /* Return the updated threadinfo flags*/ 587 return task_thread_info(tsk)->flags; 588 } 589 590 void speculation_ctrl_update(unsigned long tif) 591 { 592 unsigned long flags; 593 594 /* Forced update. Make sure all relevant TIF flags are different */ 595 local_irq_save(flags); 596 __speculation_ctrl_update(~tif, tif); 597 local_irq_restore(flags); 598 } 599 600 /* Called from seccomp/prctl update */ 601 void speculation_ctrl_update_current(void) 602 { 603 preempt_disable(); 604 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 605 preempt_enable(); 606 } 607 608 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 609 { 610 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 611 612 newval = cr4 ^ mask; 613 if (newval != cr4) { 614 this_cpu_write(cpu_tlbstate.cr4, newval); 615 __write_cr4(newval); 616 } 617 } 618 619 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 620 { 621 unsigned long tifp, tifn; 622 623 tifn = READ_ONCE(task_thread_info(next_p)->flags); 624 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 625 626 switch_to_bitmap(tifp); 627 628 propagate_user_return_notify(prev_p, next_p); 629 630 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 631 arch_has_block_step()) { 632 unsigned long debugctl, msk; 633 634 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 635 debugctl &= ~DEBUGCTLMSR_BTF; 636 msk = tifn & _TIF_BLOCKSTEP; 637 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 638 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 639 } 640 641 if ((tifp ^ tifn) & _TIF_NOTSC) 642 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 643 644 if ((tifp ^ tifn) & _TIF_NOCPUID) 645 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 646 647 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 648 __speculation_ctrl_update(tifp, tifn); 649 } else { 650 speculation_ctrl_update_tif(prev_p); 651 tifn = speculation_ctrl_update_tif(next_p); 652 653 /* Enforce MSR update to ensure consistent state */ 654 __speculation_ctrl_update(~tifn, tifn); 655 } 656 657 if ((tifp ^ tifn) & _TIF_SLD) 658 switch_to_sld(tifn); 659 } 660 661 /* 662 * Idle related variables and functions 663 */ 664 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 665 EXPORT_SYMBOL(boot_option_idle_override); 666 667 static void (*x86_idle)(void); 668 669 #ifndef CONFIG_SMP 670 static inline void play_dead(void) 671 { 672 BUG(); 673 } 674 #endif 675 676 void arch_cpu_idle_enter(void) 677 { 678 tsc_verify_tsc_adjust(false); 679 local_touch_nmi(); 680 } 681 682 void arch_cpu_idle_dead(void) 683 { 684 play_dead(); 685 } 686 687 /* 688 * Called from the generic idle code. 689 */ 690 void arch_cpu_idle(void) 691 { 692 x86_idle(); 693 } 694 695 /* 696 * We use this if we don't have any better idle routine.. 697 */ 698 void __cpuidle default_idle(void) 699 { 700 raw_safe_halt(); 701 } 702 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 703 EXPORT_SYMBOL(default_idle); 704 #endif 705 706 #ifdef CONFIG_XEN 707 bool xen_set_default_idle(void) 708 { 709 bool ret = !!x86_idle; 710 711 x86_idle = default_idle; 712 713 return ret; 714 } 715 #endif 716 717 void stop_this_cpu(void *dummy) 718 { 719 local_irq_disable(); 720 /* 721 * Remove this CPU: 722 */ 723 set_cpu_online(smp_processor_id(), false); 724 disable_local_APIC(); 725 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 726 727 /* 728 * Use wbinvd on processors that support SME. This provides support 729 * for performing a successful kexec when going from SME inactive 730 * to SME active (or vice-versa). The cache must be cleared so that 731 * if there are entries with the same physical address, both with and 732 * without the encryption bit, they don't race each other when flushed 733 * and potentially end up with the wrong entry being committed to 734 * memory. 735 */ 736 if (boot_cpu_has(X86_FEATURE_SME)) 737 native_wbinvd(); 738 for (;;) { 739 /* 740 * Use native_halt() so that memory contents don't change 741 * (stack usage and variables) after possibly issuing the 742 * native_wbinvd() above. 743 */ 744 native_halt(); 745 } 746 } 747 748 /* 749 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 750 * states (local apic timer and TSC stop). 751 * 752 * XXX this function is completely buggered vs RCU and tracing. 753 */ 754 static void amd_e400_idle(void) 755 { 756 /* 757 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 758 * gets set after static_cpu_has() places have been converted via 759 * alternatives. 760 */ 761 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 762 default_idle(); 763 return; 764 } 765 766 tick_broadcast_enter(); 767 768 default_idle(); 769 770 /* 771 * The switch back from broadcast mode needs to be called with 772 * interrupts disabled. 773 */ 774 raw_local_irq_disable(); 775 tick_broadcast_exit(); 776 raw_local_irq_enable(); 777 } 778 779 /* 780 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 781 * We can't rely on cpuidle installing MWAIT, because it will not load 782 * on systems that support only C1 -- so the boot default must be MWAIT. 783 * 784 * Some AMD machines are the opposite, they depend on using HALT. 785 * 786 * So for default C1, which is used during boot until cpuidle loads, 787 * use MWAIT-C1 on Intel HW that has it, else use HALT. 788 */ 789 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 790 { 791 if (c->x86_vendor != X86_VENDOR_INTEL) 792 return 0; 793 794 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) 795 return 0; 796 797 return 1; 798 } 799 800 /* 801 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 802 * with interrupts enabled and no flags, which is backwards compatible with the 803 * original MWAIT implementation. 804 */ 805 static __cpuidle void mwait_idle(void) 806 { 807 if (!current_set_polling_and_test()) { 808 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 809 mb(); /* quirk */ 810 clflush((void *)¤t_thread_info()->flags); 811 mb(); /* quirk */ 812 } 813 814 __monitor((void *)¤t_thread_info()->flags, 0, 0); 815 if (!need_resched()) 816 __sti_mwait(0, 0); 817 else 818 raw_local_irq_enable(); 819 } else { 820 raw_local_irq_enable(); 821 } 822 __current_clr_polling(); 823 } 824 825 void select_idle_routine(const struct cpuinfo_x86 *c) 826 { 827 #ifdef CONFIG_SMP 828 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 829 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 830 #endif 831 if (x86_idle || boot_option_idle_override == IDLE_POLL) 832 return; 833 834 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 835 pr_info("using AMD E400 aware idle routine\n"); 836 x86_idle = amd_e400_idle; 837 } else if (prefer_mwait_c1_over_halt(c)) { 838 pr_info("using mwait in idle threads\n"); 839 x86_idle = mwait_idle; 840 } else 841 x86_idle = default_idle; 842 } 843 844 void amd_e400_c1e_apic_setup(void) 845 { 846 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 847 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 848 local_irq_disable(); 849 tick_broadcast_force(); 850 local_irq_enable(); 851 } 852 } 853 854 void __init arch_post_acpi_subsys_init(void) 855 { 856 u32 lo, hi; 857 858 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 859 return; 860 861 /* 862 * AMD E400 detection needs to happen after ACPI has been enabled. If 863 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 864 * MSR_K8_INT_PENDING_MSG. 865 */ 866 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 867 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 868 return; 869 870 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 871 872 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 873 mark_tsc_unstable("TSC halt in AMD C1E"); 874 pr_info("System has AMD C1E enabled\n"); 875 } 876 877 static int __init idle_setup(char *str) 878 { 879 if (!str) 880 return -EINVAL; 881 882 if (!strcmp(str, "poll")) { 883 pr_info("using polling idle threads\n"); 884 boot_option_idle_override = IDLE_POLL; 885 cpu_idle_poll_ctrl(true); 886 } else if (!strcmp(str, "halt")) { 887 /* 888 * When the boot option of idle=halt is added, halt is 889 * forced to be used for CPU idle. In such case CPU C2/C3 890 * won't be used again. 891 * To continue to load the CPU idle driver, don't touch 892 * the boot_option_idle_override. 893 */ 894 x86_idle = default_idle; 895 boot_option_idle_override = IDLE_HALT; 896 } else if (!strcmp(str, "nomwait")) { 897 /* 898 * If the boot option of "idle=nomwait" is added, 899 * it means that mwait will be disabled for CPU C2/C3 900 * states. In such case it won't touch the variable 901 * of boot_option_idle_override. 902 */ 903 boot_option_idle_override = IDLE_NOMWAIT; 904 } else 905 return -1; 906 907 return 0; 908 } 909 early_param("idle", idle_setup); 910 911 unsigned long arch_align_stack(unsigned long sp) 912 { 913 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 914 sp -= get_random_int() % 8192; 915 return sp & ~0xf; 916 } 917 918 unsigned long arch_randomize_brk(struct mm_struct *mm) 919 { 920 return randomize_page(mm->brk, 0x02000000); 921 } 922 923 /* 924 * Called from fs/proc with a reference on @p to find the function 925 * which called into schedule(). This needs to be done carefully 926 * because the task might wake up and we might look at a stack 927 * changing under us. 928 */ 929 unsigned long get_wchan(struct task_struct *p) 930 { 931 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 932 int count = 0; 933 934 if (p == current || p->state == TASK_RUNNING) 935 return 0; 936 937 if (!try_get_task_stack(p)) 938 return 0; 939 940 start = (unsigned long)task_stack_page(p); 941 if (!start) 942 goto out; 943 944 /* 945 * Layout of the stack page: 946 * 947 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 948 * PADDING 949 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 950 * stack 951 * ----------- bottom = start 952 * 953 * The tasks stack pointer points at the location where the 954 * framepointer is stored. The data on the stack is: 955 * ... IP FP ... IP FP 956 * 957 * We need to read FP and IP, so we need to adjust the upper 958 * bound by another unsigned long. 959 */ 960 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 961 top -= 2 * sizeof(unsigned long); 962 bottom = start; 963 964 sp = READ_ONCE(p->thread.sp); 965 if (sp < bottom || sp > top) 966 goto out; 967 968 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 969 do { 970 if (fp < bottom || fp > top) 971 goto out; 972 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 973 if (!in_sched_functions(ip)) { 974 ret = ip; 975 goto out; 976 } 977 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 978 } while (count++ < 16 && p->state != TASK_RUNNING); 979 980 out: 981 put_task_stack(p); 982 return ret; 983 } 984 985 long do_arch_prctl_common(struct task_struct *task, int option, 986 unsigned long cpuid_enabled) 987 { 988 switch (option) { 989 case ARCH_GET_CPUID: 990 return get_cpuid_mode(); 991 case ARCH_SET_CPUID: 992 return set_cpuid_mode(task, cpuid_enabled); 993 } 994 995 return -EINVAL; 996 } 997