1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/errno.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/smp.h> 7 #include <linux/prctl.h> 8 #include <linux/slab.h> 9 #include <linux/sched.h> 10 #include <linux/sched/idle.h> 11 #include <linux/sched/debug.h> 12 #include <linux/sched/task.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/init.h> 15 #include <linux/export.h> 16 #include <linux/pm.h> 17 #include <linux/tick.h> 18 #include <linux/random.h> 19 #include <linux/user-return-notifier.h> 20 #include <linux/dmi.h> 21 #include <linux/utsname.h> 22 #include <linux/stackprotector.h> 23 #include <linux/tick.h> 24 #include <linux/cpuidle.h> 25 #include <trace/events/power.h> 26 #include <linux/hw_breakpoint.h> 27 #include <asm/cpu.h> 28 #include <asm/apic.h> 29 #include <asm/syscalls.h> 30 #include <linux/uaccess.h> 31 #include <asm/mwait.h> 32 #include <asm/fpu/internal.h> 33 #include <asm/debugreg.h> 34 #include <asm/nmi.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mce.h> 37 #include <asm/vm86.h> 38 #include <asm/switch_to.h> 39 #include <asm/desc.h> 40 41 /* 42 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 43 * no more per-task TSS's. The TSS size is kept cacheline-aligned 44 * so they are allowed to end up in the .data..cacheline_aligned 45 * section. Since TSS's are completely CPU-local, we want them 46 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 47 */ 48 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = { 49 .x86_tss = { 50 .sp0 = TOP_OF_INIT_STACK, 51 #ifdef CONFIG_X86_32 52 .ss0 = __KERNEL_DS, 53 .ss1 = __KERNEL_CS, 54 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 55 #endif 56 }, 57 #ifdef CONFIG_X86_32 58 /* 59 * Note that the .io_bitmap member must be extra-big. This is because 60 * the CPU will access an additional byte beyond the end of the IO 61 * permission bitmap. The extra byte must be all 1 bits, and must 62 * be within the limit. 63 */ 64 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 65 #endif 66 #ifdef CONFIG_X86_32 67 .SYSENTER_stack_canary = STACK_END_MAGIC, 68 #endif 69 }; 70 EXPORT_PER_CPU_SYMBOL(cpu_tss); 71 72 DEFINE_PER_CPU(bool, __tss_limit_invalid); 73 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 74 75 /* 76 * this gets called so that we can store lazy state into memory and copy the 77 * current task into the new thread. 78 */ 79 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 80 { 81 memcpy(dst, src, arch_task_struct_size); 82 #ifdef CONFIG_VM86 83 dst->thread.vm86 = NULL; 84 #endif 85 86 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 87 } 88 89 /* 90 * Free current thread data structures etc.. 91 */ 92 void exit_thread(struct task_struct *tsk) 93 { 94 struct thread_struct *t = &tsk->thread; 95 unsigned long *bp = t->io_bitmap_ptr; 96 struct fpu *fpu = &t->fpu; 97 98 if (bp) { 99 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu()); 100 101 t->io_bitmap_ptr = NULL; 102 clear_thread_flag(TIF_IO_BITMAP); 103 /* 104 * Careful, clear this in the TSS too: 105 */ 106 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 107 t->io_bitmap_max = 0; 108 put_cpu(); 109 kfree(bp); 110 } 111 112 free_vm86(t); 113 114 fpu__drop(fpu); 115 } 116 117 void flush_thread(void) 118 { 119 struct task_struct *tsk = current; 120 121 flush_ptrace_hw_breakpoint(tsk); 122 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 123 124 fpu__clear(&tsk->thread.fpu); 125 } 126 127 static void hard_disable_TSC(void) 128 { 129 cr4_set_bits(X86_CR4_TSD); 130 } 131 132 void disable_TSC(void) 133 { 134 preempt_disable(); 135 if (!test_and_set_thread_flag(TIF_NOTSC)) 136 /* 137 * Must flip the CPU state synchronously with 138 * TIF_NOTSC in the current running context. 139 */ 140 hard_disable_TSC(); 141 preempt_enable(); 142 } 143 144 static void hard_enable_TSC(void) 145 { 146 cr4_clear_bits(X86_CR4_TSD); 147 } 148 149 static void enable_TSC(void) 150 { 151 preempt_disable(); 152 if (test_and_clear_thread_flag(TIF_NOTSC)) 153 /* 154 * Must flip the CPU state synchronously with 155 * TIF_NOTSC in the current running context. 156 */ 157 hard_enable_TSC(); 158 preempt_enable(); 159 } 160 161 int get_tsc_mode(unsigned long adr) 162 { 163 unsigned int val; 164 165 if (test_thread_flag(TIF_NOTSC)) 166 val = PR_TSC_SIGSEGV; 167 else 168 val = PR_TSC_ENABLE; 169 170 return put_user(val, (unsigned int __user *)adr); 171 } 172 173 int set_tsc_mode(unsigned int val) 174 { 175 if (val == PR_TSC_SIGSEGV) 176 disable_TSC(); 177 else if (val == PR_TSC_ENABLE) 178 enable_TSC(); 179 else 180 return -EINVAL; 181 182 return 0; 183 } 184 185 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 186 struct tss_struct *tss) 187 { 188 struct thread_struct *prev, *next; 189 190 prev = &prev_p->thread; 191 next = &next_p->thread; 192 193 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 194 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 195 unsigned long debugctl = get_debugctlmsr(); 196 197 debugctl &= ~DEBUGCTLMSR_BTF; 198 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 199 debugctl |= DEBUGCTLMSR_BTF; 200 201 update_debugctlmsr(debugctl); 202 } 203 204 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 205 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 206 /* prev and next are different */ 207 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 208 hard_disable_TSC(); 209 else 210 hard_enable_TSC(); 211 } 212 213 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 214 /* 215 * Copy the relevant range of the IO bitmap. 216 * Normally this is 128 bytes or less: 217 */ 218 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 219 max(prev->io_bitmap_max, next->io_bitmap_max)); 220 221 /* 222 * Make sure that the TSS limit is correct for the CPU 223 * to notice the IO bitmap. 224 */ 225 refresh_tss_limit(); 226 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 227 /* 228 * Clear any possible leftover bits: 229 */ 230 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 231 } 232 propagate_user_return_notify(prev_p, next_p); 233 } 234 235 /* 236 * Idle related variables and functions 237 */ 238 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 239 EXPORT_SYMBOL(boot_option_idle_override); 240 241 static void (*x86_idle)(void); 242 243 #ifndef CONFIG_SMP 244 static inline void play_dead(void) 245 { 246 BUG(); 247 } 248 #endif 249 250 void arch_cpu_idle_enter(void) 251 { 252 tsc_verify_tsc_adjust(false); 253 local_touch_nmi(); 254 } 255 256 void arch_cpu_idle_dead(void) 257 { 258 play_dead(); 259 } 260 261 /* 262 * Called from the generic idle code. 263 */ 264 void arch_cpu_idle(void) 265 { 266 x86_idle(); 267 } 268 269 /* 270 * We use this if we don't have any better idle routine.. 271 */ 272 void __cpuidle default_idle(void) 273 { 274 trace_cpu_idle_rcuidle(1, smp_processor_id()); 275 safe_halt(); 276 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 277 } 278 #ifdef CONFIG_APM_MODULE 279 EXPORT_SYMBOL(default_idle); 280 #endif 281 282 #ifdef CONFIG_XEN 283 bool xen_set_default_idle(void) 284 { 285 bool ret = !!x86_idle; 286 287 x86_idle = default_idle; 288 289 return ret; 290 } 291 #endif 292 void stop_this_cpu(void *dummy) 293 { 294 local_irq_disable(); 295 /* 296 * Remove this CPU: 297 */ 298 set_cpu_online(smp_processor_id(), false); 299 disable_local_APIC(); 300 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 301 302 for (;;) 303 halt(); 304 } 305 306 /* 307 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 308 * states (local apic timer and TSC stop). 309 */ 310 static void amd_e400_idle(void) 311 { 312 /* 313 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 314 * gets set after static_cpu_has() places have been converted via 315 * alternatives. 316 */ 317 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 318 default_idle(); 319 return; 320 } 321 322 tick_broadcast_enter(); 323 324 default_idle(); 325 326 /* 327 * The switch back from broadcast mode needs to be called with 328 * interrupts disabled. 329 */ 330 local_irq_disable(); 331 tick_broadcast_exit(); 332 local_irq_enable(); 333 } 334 335 /* 336 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 337 * We can't rely on cpuidle installing MWAIT, because it will not load 338 * on systems that support only C1 -- so the boot default must be MWAIT. 339 * 340 * Some AMD machines are the opposite, they depend on using HALT. 341 * 342 * So for default C1, which is used during boot until cpuidle loads, 343 * use MWAIT-C1 on Intel HW that has it, else use HALT. 344 */ 345 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 346 { 347 if (c->x86_vendor != X86_VENDOR_INTEL) 348 return 0; 349 350 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 351 return 0; 352 353 return 1; 354 } 355 356 /* 357 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 358 * with interrupts enabled and no flags, which is backwards compatible with the 359 * original MWAIT implementation. 360 */ 361 static __cpuidle void mwait_idle(void) 362 { 363 if (!current_set_polling_and_test()) { 364 trace_cpu_idle_rcuidle(1, smp_processor_id()); 365 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 366 mb(); /* quirk */ 367 clflush((void *)¤t_thread_info()->flags); 368 mb(); /* quirk */ 369 } 370 371 __monitor((void *)¤t_thread_info()->flags, 0, 0); 372 if (!need_resched()) 373 __sti_mwait(0, 0); 374 else 375 local_irq_enable(); 376 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 377 } else { 378 local_irq_enable(); 379 } 380 __current_clr_polling(); 381 } 382 383 void select_idle_routine(const struct cpuinfo_x86 *c) 384 { 385 #ifdef CONFIG_SMP 386 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 387 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 388 #endif 389 if (x86_idle || boot_option_idle_override == IDLE_POLL) 390 return; 391 392 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 393 pr_info("using AMD E400 aware idle routine\n"); 394 x86_idle = amd_e400_idle; 395 } else if (prefer_mwait_c1_over_halt(c)) { 396 pr_info("using mwait in idle threads\n"); 397 x86_idle = mwait_idle; 398 } else 399 x86_idle = default_idle; 400 } 401 402 void amd_e400_c1e_apic_setup(void) 403 { 404 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 405 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 406 local_irq_disable(); 407 tick_broadcast_force(); 408 local_irq_enable(); 409 } 410 } 411 412 void __init arch_post_acpi_subsys_init(void) 413 { 414 u32 lo, hi; 415 416 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 417 return; 418 419 /* 420 * AMD E400 detection needs to happen after ACPI has been enabled. If 421 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 422 * MSR_K8_INT_PENDING_MSG. 423 */ 424 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 425 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 426 return; 427 428 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 429 430 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 431 mark_tsc_unstable("TSC halt in AMD C1E"); 432 pr_info("System has AMD C1E enabled\n"); 433 } 434 435 static int __init idle_setup(char *str) 436 { 437 if (!str) 438 return -EINVAL; 439 440 if (!strcmp(str, "poll")) { 441 pr_info("using polling idle threads\n"); 442 boot_option_idle_override = IDLE_POLL; 443 cpu_idle_poll_ctrl(true); 444 } else if (!strcmp(str, "halt")) { 445 /* 446 * When the boot option of idle=halt is added, halt is 447 * forced to be used for CPU idle. In such case CPU C2/C3 448 * won't be used again. 449 * To continue to load the CPU idle driver, don't touch 450 * the boot_option_idle_override. 451 */ 452 x86_idle = default_idle; 453 boot_option_idle_override = IDLE_HALT; 454 } else if (!strcmp(str, "nomwait")) { 455 /* 456 * If the boot option of "idle=nomwait" is added, 457 * it means that mwait will be disabled for CPU C2/C3 458 * states. In such case it won't touch the variable 459 * of boot_option_idle_override. 460 */ 461 boot_option_idle_override = IDLE_NOMWAIT; 462 } else 463 return -1; 464 465 return 0; 466 } 467 early_param("idle", idle_setup); 468 469 unsigned long arch_align_stack(unsigned long sp) 470 { 471 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 472 sp -= get_random_int() % 8192; 473 return sp & ~0xf; 474 } 475 476 unsigned long arch_randomize_brk(struct mm_struct *mm) 477 { 478 return randomize_page(mm->brk, 0x02000000); 479 } 480 481 /* 482 * Return saved PC of a blocked thread. 483 * What is this good for? it will be always the scheduler or ret_from_fork. 484 */ 485 unsigned long thread_saved_pc(struct task_struct *tsk) 486 { 487 struct inactive_task_frame *frame = 488 (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp); 489 return READ_ONCE_NOCHECK(frame->ret_addr); 490 } 491 492 /* 493 * Called from fs/proc with a reference on @p to find the function 494 * which called into schedule(). This needs to be done carefully 495 * because the task might wake up and we might look at a stack 496 * changing under us. 497 */ 498 unsigned long get_wchan(struct task_struct *p) 499 { 500 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 501 int count = 0; 502 503 if (!p || p == current || p->state == TASK_RUNNING) 504 return 0; 505 506 if (!try_get_task_stack(p)) 507 return 0; 508 509 start = (unsigned long)task_stack_page(p); 510 if (!start) 511 goto out; 512 513 /* 514 * Layout of the stack page: 515 * 516 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 517 * PADDING 518 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 519 * stack 520 * ----------- bottom = start 521 * 522 * The tasks stack pointer points at the location where the 523 * framepointer is stored. The data on the stack is: 524 * ... IP FP ... IP FP 525 * 526 * We need to read FP and IP, so we need to adjust the upper 527 * bound by another unsigned long. 528 */ 529 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 530 top -= 2 * sizeof(unsigned long); 531 bottom = start; 532 533 sp = READ_ONCE(p->thread.sp); 534 if (sp < bottom || sp > top) 535 goto out; 536 537 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 538 do { 539 if (fp < bottom || fp > top) 540 goto out; 541 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 542 if (!in_sched_functions(ip)) { 543 ret = ip; 544 goto out; 545 } 546 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 547 } while (count++ < 16 && p->state != TASK_RUNNING); 548 549 out: 550 put_task_stack(p); 551 return ret; 552 } 553