xref: /openbmc/linux/arch/x86/kernel/process.c (revision 232b0b08)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/sched/idle.h>
11 #include <linux/sched/debug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/pm.h>
17 #include <linux/tick.h>
18 #include <linux/random.h>
19 #include <linux/user-return-notifier.h>
20 #include <linux/dmi.h>
21 #include <linux/utsname.h>
22 #include <linux/stackprotector.h>
23 #include <linux/tick.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 
41 /*
42  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
43  * no more per-task TSS's. The TSS size is kept cacheline-aligned
44  * so they are allowed to end up in the .data..cacheline_aligned
45  * section. Since TSS's are completely CPU-local, we want them
46  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
47  */
48 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
49 	.x86_tss = {
50 		.sp0 = TOP_OF_INIT_STACK,
51 #ifdef CONFIG_X86_32
52 		.ss0 = __KERNEL_DS,
53 		.ss1 = __KERNEL_CS,
54 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
55 #endif
56 	 },
57 #ifdef CONFIG_X86_32
58 	 /*
59 	  * Note that the .io_bitmap member must be extra-big. This is because
60 	  * the CPU will access an additional byte beyond the end of the IO
61 	  * permission bitmap. The extra byte must be all 1 bits, and must
62 	  * be within the limit.
63 	  */
64 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
65 #endif
66 #ifdef CONFIG_X86_32
67 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
68 #endif
69 };
70 EXPORT_PER_CPU_SYMBOL(cpu_tss);
71 
72 DEFINE_PER_CPU(bool, __tss_limit_invalid);
73 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
74 
75 /*
76  * this gets called so that we can store lazy state into memory and copy the
77  * current task into the new thread.
78  */
79 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
80 {
81 	memcpy(dst, src, arch_task_struct_size);
82 #ifdef CONFIG_VM86
83 	dst->thread.vm86 = NULL;
84 #endif
85 
86 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
87 }
88 
89 /*
90  * Free current thread data structures etc..
91  */
92 void exit_thread(struct task_struct *tsk)
93 {
94 	struct thread_struct *t = &tsk->thread;
95 	unsigned long *bp = t->io_bitmap_ptr;
96 	struct fpu *fpu = &t->fpu;
97 
98 	if (bp) {
99 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
100 
101 		t->io_bitmap_ptr = NULL;
102 		clear_thread_flag(TIF_IO_BITMAP);
103 		/*
104 		 * Careful, clear this in the TSS too:
105 		 */
106 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
107 		t->io_bitmap_max = 0;
108 		put_cpu();
109 		kfree(bp);
110 	}
111 
112 	free_vm86(t);
113 
114 	fpu__drop(fpu);
115 }
116 
117 void flush_thread(void)
118 {
119 	struct task_struct *tsk = current;
120 
121 	flush_ptrace_hw_breakpoint(tsk);
122 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
123 
124 	fpu__clear(&tsk->thread.fpu);
125 }
126 
127 static void hard_disable_TSC(void)
128 {
129 	cr4_set_bits(X86_CR4_TSD);
130 }
131 
132 void disable_TSC(void)
133 {
134 	preempt_disable();
135 	if (!test_and_set_thread_flag(TIF_NOTSC))
136 		/*
137 		 * Must flip the CPU state synchronously with
138 		 * TIF_NOTSC in the current running context.
139 		 */
140 		hard_disable_TSC();
141 	preempt_enable();
142 }
143 
144 static void hard_enable_TSC(void)
145 {
146 	cr4_clear_bits(X86_CR4_TSD);
147 }
148 
149 static void enable_TSC(void)
150 {
151 	preempt_disable();
152 	if (test_and_clear_thread_flag(TIF_NOTSC))
153 		/*
154 		 * Must flip the CPU state synchronously with
155 		 * TIF_NOTSC in the current running context.
156 		 */
157 		hard_enable_TSC();
158 	preempt_enable();
159 }
160 
161 int get_tsc_mode(unsigned long adr)
162 {
163 	unsigned int val;
164 
165 	if (test_thread_flag(TIF_NOTSC))
166 		val = PR_TSC_SIGSEGV;
167 	else
168 		val = PR_TSC_ENABLE;
169 
170 	return put_user(val, (unsigned int __user *)adr);
171 }
172 
173 int set_tsc_mode(unsigned int val)
174 {
175 	if (val == PR_TSC_SIGSEGV)
176 		disable_TSC();
177 	else if (val == PR_TSC_ENABLE)
178 		enable_TSC();
179 	else
180 		return -EINVAL;
181 
182 	return 0;
183 }
184 
185 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
186 		      struct tss_struct *tss)
187 {
188 	struct thread_struct *prev, *next;
189 
190 	prev = &prev_p->thread;
191 	next = &next_p->thread;
192 
193 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
194 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
195 		unsigned long debugctl = get_debugctlmsr();
196 
197 		debugctl &= ~DEBUGCTLMSR_BTF;
198 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
199 			debugctl |= DEBUGCTLMSR_BTF;
200 
201 		update_debugctlmsr(debugctl);
202 	}
203 
204 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
205 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
206 		/* prev and next are different */
207 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
208 			hard_disable_TSC();
209 		else
210 			hard_enable_TSC();
211 	}
212 
213 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
214 		/*
215 		 * Copy the relevant range of the IO bitmap.
216 		 * Normally this is 128 bytes or less:
217 		 */
218 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
219 		       max(prev->io_bitmap_max, next->io_bitmap_max));
220 
221 		/*
222 		 * Make sure that the TSS limit is correct for the CPU
223 		 * to notice the IO bitmap.
224 		 */
225 		refresh_tss_limit();
226 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227 		/*
228 		 * Clear any possible leftover bits:
229 		 */
230 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231 	}
232 	propagate_user_return_notify(prev_p, next_p);
233 }
234 
235 /*
236  * Idle related variables and functions
237  */
238 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
239 EXPORT_SYMBOL(boot_option_idle_override);
240 
241 static void (*x86_idle)(void);
242 
243 #ifndef CONFIG_SMP
244 static inline void play_dead(void)
245 {
246 	BUG();
247 }
248 #endif
249 
250 void arch_cpu_idle_enter(void)
251 {
252 	tsc_verify_tsc_adjust(false);
253 	local_touch_nmi();
254 }
255 
256 void arch_cpu_idle_dead(void)
257 {
258 	play_dead();
259 }
260 
261 /*
262  * Called from the generic idle code.
263  */
264 void arch_cpu_idle(void)
265 {
266 	x86_idle();
267 }
268 
269 /*
270  * We use this if we don't have any better idle routine..
271  */
272 void __cpuidle default_idle(void)
273 {
274 	trace_cpu_idle_rcuidle(1, smp_processor_id());
275 	safe_halt();
276 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
277 }
278 #ifdef CONFIG_APM_MODULE
279 EXPORT_SYMBOL(default_idle);
280 #endif
281 
282 #ifdef CONFIG_XEN
283 bool xen_set_default_idle(void)
284 {
285 	bool ret = !!x86_idle;
286 
287 	x86_idle = default_idle;
288 
289 	return ret;
290 }
291 #endif
292 void stop_this_cpu(void *dummy)
293 {
294 	local_irq_disable();
295 	/*
296 	 * Remove this CPU:
297 	 */
298 	set_cpu_online(smp_processor_id(), false);
299 	disable_local_APIC();
300 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
301 
302 	for (;;)
303 		halt();
304 }
305 
306 /*
307  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
308  * states (local apic timer and TSC stop).
309  */
310 static void amd_e400_idle(void)
311 {
312 	/*
313 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
314 	 * gets set after static_cpu_has() places have been converted via
315 	 * alternatives.
316 	 */
317 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
318 		default_idle();
319 		return;
320 	}
321 
322 	tick_broadcast_enter();
323 
324 	default_idle();
325 
326 	/*
327 	 * The switch back from broadcast mode needs to be called with
328 	 * interrupts disabled.
329 	 */
330 	local_irq_disable();
331 	tick_broadcast_exit();
332 	local_irq_enable();
333 }
334 
335 /*
336  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
337  * We can't rely on cpuidle installing MWAIT, because it will not load
338  * on systems that support only C1 -- so the boot default must be MWAIT.
339  *
340  * Some AMD machines are the opposite, they depend on using HALT.
341  *
342  * So for default C1, which is used during boot until cpuidle loads,
343  * use MWAIT-C1 on Intel HW that has it, else use HALT.
344  */
345 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
346 {
347 	if (c->x86_vendor != X86_VENDOR_INTEL)
348 		return 0;
349 
350 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
351 		return 0;
352 
353 	return 1;
354 }
355 
356 /*
357  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
358  * with interrupts enabled and no flags, which is backwards compatible with the
359  * original MWAIT implementation.
360  */
361 static __cpuidle void mwait_idle(void)
362 {
363 	if (!current_set_polling_and_test()) {
364 		trace_cpu_idle_rcuidle(1, smp_processor_id());
365 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
366 			mb(); /* quirk */
367 			clflush((void *)&current_thread_info()->flags);
368 			mb(); /* quirk */
369 		}
370 
371 		__monitor((void *)&current_thread_info()->flags, 0, 0);
372 		if (!need_resched())
373 			__sti_mwait(0, 0);
374 		else
375 			local_irq_enable();
376 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
377 	} else {
378 		local_irq_enable();
379 	}
380 	__current_clr_polling();
381 }
382 
383 void select_idle_routine(const struct cpuinfo_x86 *c)
384 {
385 #ifdef CONFIG_SMP
386 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
387 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
388 #endif
389 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
390 		return;
391 
392 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
393 		pr_info("using AMD E400 aware idle routine\n");
394 		x86_idle = amd_e400_idle;
395 	} else if (prefer_mwait_c1_over_halt(c)) {
396 		pr_info("using mwait in idle threads\n");
397 		x86_idle = mwait_idle;
398 	} else
399 		x86_idle = default_idle;
400 }
401 
402 void amd_e400_c1e_apic_setup(void)
403 {
404 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
405 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
406 		local_irq_disable();
407 		tick_broadcast_force();
408 		local_irq_enable();
409 	}
410 }
411 
412 void __init arch_post_acpi_subsys_init(void)
413 {
414 	u32 lo, hi;
415 
416 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
417 		return;
418 
419 	/*
420 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
421 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
422 	 * MSR_K8_INT_PENDING_MSG.
423 	 */
424 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
425 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
426 		return;
427 
428 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
429 
430 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
431 		mark_tsc_unstable("TSC halt in AMD C1E");
432 	pr_info("System has AMD C1E enabled\n");
433 }
434 
435 static int __init idle_setup(char *str)
436 {
437 	if (!str)
438 		return -EINVAL;
439 
440 	if (!strcmp(str, "poll")) {
441 		pr_info("using polling idle threads\n");
442 		boot_option_idle_override = IDLE_POLL;
443 		cpu_idle_poll_ctrl(true);
444 	} else if (!strcmp(str, "halt")) {
445 		/*
446 		 * When the boot option of idle=halt is added, halt is
447 		 * forced to be used for CPU idle. In such case CPU C2/C3
448 		 * won't be used again.
449 		 * To continue to load the CPU idle driver, don't touch
450 		 * the boot_option_idle_override.
451 		 */
452 		x86_idle = default_idle;
453 		boot_option_idle_override = IDLE_HALT;
454 	} else if (!strcmp(str, "nomwait")) {
455 		/*
456 		 * If the boot option of "idle=nomwait" is added,
457 		 * it means that mwait will be disabled for CPU C2/C3
458 		 * states. In such case it won't touch the variable
459 		 * of boot_option_idle_override.
460 		 */
461 		boot_option_idle_override = IDLE_NOMWAIT;
462 	} else
463 		return -1;
464 
465 	return 0;
466 }
467 early_param("idle", idle_setup);
468 
469 unsigned long arch_align_stack(unsigned long sp)
470 {
471 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
472 		sp -= get_random_int() % 8192;
473 	return sp & ~0xf;
474 }
475 
476 unsigned long arch_randomize_brk(struct mm_struct *mm)
477 {
478 	return randomize_page(mm->brk, 0x02000000);
479 }
480 
481 /*
482  * Return saved PC of a blocked thread.
483  * What is this good for? it will be always the scheduler or ret_from_fork.
484  */
485 unsigned long thread_saved_pc(struct task_struct *tsk)
486 {
487 	struct inactive_task_frame *frame =
488 		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
489 	return READ_ONCE_NOCHECK(frame->ret_addr);
490 }
491 
492 /*
493  * Called from fs/proc with a reference on @p to find the function
494  * which called into schedule(). This needs to be done carefully
495  * because the task might wake up and we might look at a stack
496  * changing under us.
497  */
498 unsigned long get_wchan(struct task_struct *p)
499 {
500 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
501 	int count = 0;
502 
503 	if (!p || p == current || p->state == TASK_RUNNING)
504 		return 0;
505 
506 	if (!try_get_task_stack(p))
507 		return 0;
508 
509 	start = (unsigned long)task_stack_page(p);
510 	if (!start)
511 		goto out;
512 
513 	/*
514 	 * Layout of the stack page:
515 	 *
516 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
517 	 * PADDING
518 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
519 	 * stack
520 	 * ----------- bottom = start
521 	 *
522 	 * The tasks stack pointer points at the location where the
523 	 * framepointer is stored. The data on the stack is:
524 	 * ... IP FP ... IP FP
525 	 *
526 	 * We need to read FP and IP, so we need to adjust the upper
527 	 * bound by another unsigned long.
528 	 */
529 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
530 	top -= 2 * sizeof(unsigned long);
531 	bottom = start;
532 
533 	sp = READ_ONCE(p->thread.sp);
534 	if (sp < bottom || sp > top)
535 		goto out;
536 
537 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
538 	do {
539 		if (fp < bottom || fp > top)
540 			goto out;
541 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
542 		if (!in_sched_functions(ip)) {
543 			ret = ip;
544 			goto out;
545 		}
546 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
547 	} while (count++ < 16 && p->state != TASK_RUNNING);
548 
549 out:
550 	put_task_stack(p);
551 	return ret;
552 }
553