1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/cpu.h> 18 #include <asm/system.h> 19 #include <asm/apic.h> 20 #include <asm/syscalls.h> 21 #include <asm/idle.h> 22 #include <asm/uaccess.h> 23 #include <asm/i387.h> 24 #include <asm/fpu-internal.h> 25 #include <asm/debugreg.h> 26 27 struct kmem_cache *task_xstate_cachep; 28 EXPORT_SYMBOL_GPL(task_xstate_cachep); 29 30 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 31 { 32 int ret; 33 34 *dst = *src; 35 if (fpu_allocated(&src->thread.fpu)) { 36 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 37 ret = fpu_alloc(&dst->thread.fpu); 38 if (ret) 39 return ret; 40 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 41 } 42 return 0; 43 } 44 45 void free_thread_xstate(struct task_struct *tsk) 46 { 47 fpu_free(&tsk->thread.fpu); 48 } 49 50 void free_thread_info(struct thread_info *ti) 51 { 52 free_thread_xstate(ti->task); 53 free_pages((unsigned long)ti, THREAD_ORDER); 54 } 55 56 void arch_task_cache_init(void) 57 { 58 task_xstate_cachep = 59 kmem_cache_create("task_xstate", xstate_size, 60 __alignof__(union thread_xstate), 61 SLAB_PANIC | SLAB_NOTRACK, NULL); 62 } 63 64 /* 65 * Free current thread data structures etc.. 66 */ 67 void exit_thread(void) 68 { 69 struct task_struct *me = current; 70 struct thread_struct *t = &me->thread; 71 unsigned long *bp = t->io_bitmap_ptr; 72 73 if (bp) { 74 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 75 76 t->io_bitmap_ptr = NULL; 77 clear_thread_flag(TIF_IO_BITMAP); 78 /* 79 * Careful, clear this in the TSS too: 80 */ 81 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 82 t->io_bitmap_max = 0; 83 put_cpu(); 84 kfree(bp); 85 } 86 } 87 88 void show_regs(struct pt_regs *regs) 89 { 90 show_registers(regs); 91 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0); 92 } 93 94 void show_regs_common(void) 95 { 96 const char *vendor, *product, *board; 97 98 vendor = dmi_get_system_info(DMI_SYS_VENDOR); 99 if (!vendor) 100 vendor = ""; 101 product = dmi_get_system_info(DMI_PRODUCT_NAME); 102 if (!product) 103 product = ""; 104 105 /* Board Name is optional */ 106 board = dmi_get_system_info(DMI_BOARD_NAME); 107 108 printk(KERN_CONT "\n"); 109 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s", 110 current->pid, current->comm, print_tainted(), 111 init_utsname()->release, 112 (int)strcspn(init_utsname()->version, " "), 113 init_utsname()->version); 114 printk(KERN_CONT " %s %s", vendor, product); 115 if (board) 116 printk(KERN_CONT "/%s", board); 117 printk(KERN_CONT "\n"); 118 } 119 120 void flush_thread(void) 121 { 122 struct task_struct *tsk = current; 123 124 flush_ptrace_hw_breakpoint(tsk); 125 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 126 /* 127 * Forget coprocessor state.. 128 */ 129 tsk->fpu_counter = 0; 130 clear_fpu(tsk); 131 clear_used_math(); 132 } 133 134 static void hard_disable_TSC(void) 135 { 136 write_cr4(read_cr4() | X86_CR4_TSD); 137 } 138 139 void disable_TSC(void) 140 { 141 preempt_disable(); 142 if (!test_and_set_thread_flag(TIF_NOTSC)) 143 /* 144 * Must flip the CPU state synchronously with 145 * TIF_NOTSC in the current running context. 146 */ 147 hard_disable_TSC(); 148 preempt_enable(); 149 } 150 151 static void hard_enable_TSC(void) 152 { 153 write_cr4(read_cr4() & ~X86_CR4_TSD); 154 } 155 156 static void enable_TSC(void) 157 { 158 preempt_disable(); 159 if (test_and_clear_thread_flag(TIF_NOTSC)) 160 /* 161 * Must flip the CPU state synchronously with 162 * TIF_NOTSC in the current running context. 163 */ 164 hard_enable_TSC(); 165 preempt_enable(); 166 } 167 168 int get_tsc_mode(unsigned long adr) 169 { 170 unsigned int val; 171 172 if (test_thread_flag(TIF_NOTSC)) 173 val = PR_TSC_SIGSEGV; 174 else 175 val = PR_TSC_ENABLE; 176 177 return put_user(val, (unsigned int __user *)adr); 178 } 179 180 int set_tsc_mode(unsigned int val) 181 { 182 if (val == PR_TSC_SIGSEGV) 183 disable_TSC(); 184 else if (val == PR_TSC_ENABLE) 185 enable_TSC(); 186 else 187 return -EINVAL; 188 189 return 0; 190 } 191 192 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 193 struct tss_struct *tss) 194 { 195 struct thread_struct *prev, *next; 196 197 prev = &prev_p->thread; 198 next = &next_p->thread; 199 200 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 201 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 202 unsigned long debugctl = get_debugctlmsr(); 203 204 debugctl &= ~DEBUGCTLMSR_BTF; 205 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 206 debugctl |= DEBUGCTLMSR_BTF; 207 208 update_debugctlmsr(debugctl); 209 } 210 211 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 212 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 213 /* prev and next are different */ 214 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 215 hard_disable_TSC(); 216 else 217 hard_enable_TSC(); 218 } 219 220 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 221 /* 222 * Copy the relevant range of the IO bitmap. 223 * Normally this is 128 bytes or less: 224 */ 225 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 226 max(prev->io_bitmap_max, next->io_bitmap_max)); 227 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 228 /* 229 * Clear any possible leftover bits: 230 */ 231 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 232 } 233 propagate_user_return_notify(prev_p, next_p); 234 } 235 236 int sys_fork(struct pt_regs *regs) 237 { 238 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 239 } 240 241 /* 242 * This is trivial, and on the face of it looks like it 243 * could equally well be done in user mode. 244 * 245 * Not so, for quite unobvious reasons - register pressure. 246 * In user mode vfork() cannot have a stack frame, and if 247 * done by calling the "clone()" system call directly, you 248 * do not have enough call-clobbered registers to hold all 249 * the information you need. 250 */ 251 int sys_vfork(struct pt_regs *regs) 252 { 253 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 254 NULL, NULL); 255 } 256 257 long 258 sys_clone(unsigned long clone_flags, unsigned long newsp, 259 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 260 { 261 if (!newsp) 262 newsp = regs->sp; 263 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 264 } 265 266 /* 267 * This gets run with %si containing the 268 * function to call, and %di containing 269 * the "args". 270 */ 271 extern void kernel_thread_helper(void); 272 273 /* 274 * Create a kernel thread 275 */ 276 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 277 { 278 struct pt_regs regs; 279 280 memset(®s, 0, sizeof(regs)); 281 282 regs.si = (unsigned long) fn; 283 regs.di = (unsigned long) arg; 284 285 #ifdef CONFIG_X86_32 286 regs.ds = __USER_DS; 287 regs.es = __USER_DS; 288 regs.fs = __KERNEL_PERCPU; 289 regs.gs = __KERNEL_STACK_CANARY; 290 #else 291 regs.ss = __KERNEL_DS; 292 #endif 293 294 regs.orig_ax = -1; 295 regs.ip = (unsigned long) kernel_thread_helper; 296 regs.cs = __KERNEL_CS | get_kernel_rpl(); 297 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1; 298 299 /* Ok, create the new process.. */ 300 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 301 } 302 EXPORT_SYMBOL(kernel_thread); 303 304 /* 305 * sys_execve() executes a new program. 306 */ 307 long sys_execve(const char __user *name, 308 const char __user *const __user *argv, 309 const char __user *const __user *envp, struct pt_regs *regs) 310 { 311 long error; 312 char *filename; 313 314 filename = getname(name); 315 error = PTR_ERR(filename); 316 if (IS_ERR(filename)) 317 return error; 318 error = do_execve(filename, argv, envp, regs); 319 320 #ifdef CONFIG_X86_32 321 if (error == 0) { 322 /* Make sure we don't return using sysenter.. */ 323 set_thread_flag(TIF_IRET); 324 } 325 #endif 326 327 putname(filename); 328 return error; 329 } 330 331 /* 332 * Idle related variables and functions 333 */ 334 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 335 EXPORT_SYMBOL(boot_option_idle_override); 336 337 /* 338 * Powermanagement idle function, if any.. 339 */ 340 void (*pm_idle)(void); 341 #ifdef CONFIG_APM_MODULE 342 EXPORT_SYMBOL(pm_idle); 343 #endif 344 345 #ifdef CONFIG_X86_32 346 /* 347 * This halt magic was a workaround for ancient floppy DMA 348 * wreckage. It should be safe to remove. 349 */ 350 static int hlt_counter; 351 void disable_hlt(void) 352 { 353 hlt_counter++; 354 } 355 EXPORT_SYMBOL(disable_hlt); 356 357 void enable_hlt(void) 358 { 359 hlt_counter--; 360 } 361 EXPORT_SYMBOL(enable_hlt); 362 363 static inline int hlt_use_halt(void) 364 { 365 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 366 } 367 #else 368 static inline int hlt_use_halt(void) 369 { 370 return 1; 371 } 372 #endif 373 374 /* 375 * We use this if we don't have any better 376 * idle routine.. 377 */ 378 void default_idle(void) 379 { 380 if (hlt_use_halt()) { 381 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); 382 trace_cpu_idle_rcuidle(1, smp_processor_id()); 383 current_thread_info()->status &= ~TS_POLLING; 384 /* 385 * TS_POLLING-cleared state must be visible before we 386 * test NEED_RESCHED: 387 */ 388 smp_mb(); 389 390 if (!need_resched()) 391 safe_halt(); /* enables interrupts racelessly */ 392 else 393 local_irq_enable(); 394 current_thread_info()->status |= TS_POLLING; 395 trace_power_end_rcuidle(smp_processor_id()); 396 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 397 } else { 398 local_irq_enable(); 399 /* loop is done by the caller */ 400 cpu_relax(); 401 } 402 } 403 #ifdef CONFIG_APM_MODULE 404 EXPORT_SYMBOL(default_idle); 405 #endif 406 407 bool set_pm_idle_to_default(void) 408 { 409 bool ret = !!pm_idle; 410 411 pm_idle = default_idle; 412 413 return ret; 414 } 415 void stop_this_cpu(void *dummy) 416 { 417 local_irq_disable(); 418 /* 419 * Remove this CPU: 420 */ 421 set_cpu_online(smp_processor_id(), false); 422 disable_local_APIC(); 423 424 for (;;) { 425 if (hlt_works(smp_processor_id())) 426 halt(); 427 } 428 } 429 430 static void do_nothing(void *unused) 431 { 432 } 433 434 /* 435 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 436 * pm_idle and update to new pm_idle value. Required while changing pm_idle 437 * handler on SMP systems. 438 * 439 * Caller must have changed pm_idle to the new value before the call. Old 440 * pm_idle value will not be used by any CPU after the return of this function. 441 */ 442 void cpu_idle_wait(void) 443 { 444 smp_mb(); 445 /* kick all the CPUs so that they exit out of pm_idle */ 446 smp_call_function(do_nothing, NULL, 1); 447 } 448 EXPORT_SYMBOL_GPL(cpu_idle_wait); 449 450 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 451 static void mwait_idle(void) 452 { 453 if (!need_resched()) { 454 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); 455 trace_cpu_idle_rcuidle(1, smp_processor_id()); 456 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) 457 clflush((void *)¤t_thread_info()->flags); 458 459 __monitor((void *)¤t_thread_info()->flags, 0, 0); 460 smp_mb(); 461 if (!need_resched()) 462 __sti_mwait(0, 0); 463 else 464 local_irq_enable(); 465 trace_power_end_rcuidle(smp_processor_id()); 466 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 467 } else 468 local_irq_enable(); 469 } 470 471 /* 472 * On SMP it's slightly faster (but much more power-consuming!) 473 * to poll the ->work.need_resched flag instead of waiting for the 474 * cross-CPU IPI to arrive. Use this option with caution. 475 */ 476 static void poll_idle(void) 477 { 478 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id()); 479 trace_cpu_idle_rcuidle(0, smp_processor_id()); 480 local_irq_enable(); 481 while (!need_resched()) 482 cpu_relax(); 483 trace_power_end_rcuidle(smp_processor_id()); 484 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 485 } 486 487 /* 488 * mwait selection logic: 489 * 490 * It depends on the CPU. For AMD CPUs that support MWAIT this is 491 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 492 * then depend on a clock divisor and current Pstate of the core. If 493 * all cores of a processor are in halt state (C1) the processor can 494 * enter the C1E (C1 enhanced) state. If mwait is used this will never 495 * happen. 496 * 497 * idle=mwait overrides this decision and forces the usage of mwait. 498 */ 499 500 #define MWAIT_INFO 0x05 501 #define MWAIT_ECX_EXTENDED_INFO 0x01 502 #define MWAIT_EDX_C1 0xf0 503 504 int mwait_usable(const struct cpuinfo_x86 *c) 505 { 506 u32 eax, ebx, ecx, edx; 507 508 if (boot_option_idle_override == IDLE_FORCE_MWAIT) 509 return 1; 510 511 if (c->cpuid_level < MWAIT_INFO) 512 return 0; 513 514 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 515 /* Check, whether EDX has extended info about MWAIT */ 516 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 517 return 1; 518 519 /* 520 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 521 * C1 supports MWAIT 522 */ 523 return (edx & MWAIT_EDX_C1); 524 } 525 526 bool amd_e400_c1e_detected; 527 EXPORT_SYMBOL(amd_e400_c1e_detected); 528 529 static cpumask_var_t amd_e400_c1e_mask; 530 531 void amd_e400_remove_cpu(int cpu) 532 { 533 if (amd_e400_c1e_mask != NULL) 534 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 535 } 536 537 /* 538 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 539 * pending message MSR. If we detect C1E, then we handle it the same 540 * way as C3 power states (local apic timer and TSC stop) 541 */ 542 static void amd_e400_idle(void) 543 { 544 if (need_resched()) 545 return; 546 547 if (!amd_e400_c1e_detected) { 548 u32 lo, hi; 549 550 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 551 552 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 553 amd_e400_c1e_detected = true; 554 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 555 mark_tsc_unstable("TSC halt in AMD C1E"); 556 printk(KERN_INFO "System has AMD C1E enabled\n"); 557 } 558 } 559 560 if (amd_e400_c1e_detected) { 561 int cpu = smp_processor_id(); 562 563 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 564 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 565 /* 566 * Force broadcast so ACPI can not interfere. 567 */ 568 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 569 &cpu); 570 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 571 cpu); 572 } 573 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 574 575 default_idle(); 576 577 /* 578 * The switch back from broadcast mode needs to be 579 * called with interrupts disabled. 580 */ 581 local_irq_disable(); 582 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 583 local_irq_enable(); 584 } else 585 default_idle(); 586 } 587 588 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 589 { 590 #ifdef CONFIG_SMP 591 if (pm_idle == poll_idle && smp_num_siblings > 1) { 592 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 593 " performance may degrade.\n"); 594 } 595 #endif 596 if (pm_idle) 597 return; 598 599 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 600 /* 601 * One CPU supports mwait => All CPUs supports mwait 602 */ 603 printk(KERN_INFO "using mwait in idle threads.\n"); 604 pm_idle = mwait_idle; 605 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 606 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 607 printk(KERN_INFO "using AMD E400 aware idle routine\n"); 608 pm_idle = amd_e400_idle; 609 } else 610 pm_idle = default_idle; 611 } 612 613 void __init init_amd_e400_c1e_mask(void) 614 { 615 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 616 if (pm_idle == amd_e400_idle) 617 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 618 } 619 620 static int __init idle_setup(char *str) 621 { 622 if (!str) 623 return -EINVAL; 624 625 if (!strcmp(str, "poll")) { 626 printk("using polling idle threads.\n"); 627 pm_idle = poll_idle; 628 boot_option_idle_override = IDLE_POLL; 629 } else if (!strcmp(str, "mwait")) { 630 boot_option_idle_override = IDLE_FORCE_MWAIT; 631 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n"); 632 } else if (!strcmp(str, "halt")) { 633 /* 634 * When the boot option of idle=halt is added, halt is 635 * forced to be used for CPU idle. In such case CPU C2/C3 636 * won't be used again. 637 * To continue to load the CPU idle driver, don't touch 638 * the boot_option_idle_override. 639 */ 640 pm_idle = default_idle; 641 boot_option_idle_override = IDLE_HALT; 642 } else if (!strcmp(str, "nomwait")) { 643 /* 644 * If the boot option of "idle=nomwait" is added, 645 * it means that mwait will be disabled for CPU C2/C3 646 * states. In such case it won't touch the variable 647 * of boot_option_idle_override. 648 */ 649 boot_option_idle_override = IDLE_NOMWAIT; 650 } else 651 return -1; 652 653 return 0; 654 } 655 early_param("idle", idle_setup); 656 657 unsigned long arch_align_stack(unsigned long sp) 658 { 659 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 660 sp -= get_random_int() % 8192; 661 return sp & ~0xf; 662 } 663 664 unsigned long arch_randomize_brk(struct mm_struct *mm) 665 { 666 unsigned long range_end = mm->brk + 0x02000000; 667 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 668 } 669 670