xref: /openbmc/linux/arch/x86/kernel/process.c (revision 1eb4c977)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/cpu.h>
18 #include <asm/system.h>
19 #include <asm/apic.h>
20 #include <asm/syscalls.h>
21 #include <asm/idle.h>
22 #include <asm/uaccess.h>
23 #include <asm/i387.h>
24 #include <asm/fpu-internal.h>
25 #include <asm/debugreg.h>
26 
27 struct kmem_cache *task_xstate_cachep;
28 EXPORT_SYMBOL_GPL(task_xstate_cachep);
29 
30 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
31 {
32 	int ret;
33 
34 	*dst = *src;
35 	if (fpu_allocated(&src->thread.fpu)) {
36 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
37 		ret = fpu_alloc(&dst->thread.fpu);
38 		if (ret)
39 			return ret;
40 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
41 	}
42 	return 0;
43 }
44 
45 void free_thread_xstate(struct task_struct *tsk)
46 {
47 	fpu_free(&tsk->thread.fpu);
48 }
49 
50 void free_thread_info(struct thread_info *ti)
51 {
52 	free_thread_xstate(ti->task);
53 	free_pages((unsigned long)ti, THREAD_ORDER);
54 }
55 
56 void arch_task_cache_init(void)
57 {
58         task_xstate_cachep =
59         	kmem_cache_create("task_xstate", xstate_size,
60 				  __alignof__(union thread_xstate),
61 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
62 }
63 
64 /*
65  * Free current thread data structures etc..
66  */
67 void exit_thread(void)
68 {
69 	struct task_struct *me = current;
70 	struct thread_struct *t = &me->thread;
71 	unsigned long *bp = t->io_bitmap_ptr;
72 
73 	if (bp) {
74 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
75 
76 		t->io_bitmap_ptr = NULL;
77 		clear_thread_flag(TIF_IO_BITMAP);
78 		/*
79 		 * Careful, clear this in the TSS too:
80 		 */
81 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
82 		t->io_bitmap_max = 0;
83 		put_cpu();
84 		kfree(bp);
85 	}
86 }
87 
88 void show_regs(struct pt_regs *regs)
89 {
90 	show_registers(regs);
91 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
92 }
93 
94 void show_regs_common(void)
95 {
96 	const char *vendor, *product, *board;
97 
98 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
99 	if (!vendor)
100 		vendor = "";
101 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
102 	if (!product)
103 		product = "";
104 
105 	/* Board Name is optional */
106 	board = dmi_get_system_info(DMI_BOARD_NAME);
107 
108 	printk(KERN_CONT "\n");
109 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
110 		current->pid, current->comm, print_tainted(),
111 		init_utsname()->release,
112 		(int)strcspn(init_utsname()->version, " "),
113 		init_utsname()->version);
114 	printk(KERN_CONT " %s %s", vendor, product);
115 	if (board)
116 		printk(KERN_CONT "/%s", board);
117 	printk(KERN_CONT "\n");
118 }
119 
120 void flush_thread(void)
121 {
122 	struct task_struct *tsk = current;
123 
124 	flush_ptrace_hw_breakpoint(tsk);
125 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
126 	/*
127 	 * Forget coprocessor state..
128 	 */
129 	tsk->fpu_counter = 0;
130 	clear_fpu(tsk);
131 	clear_used_math();
132 }
133 
134 static void hard_disable_TSC(void)
135 {
136 	write_cr4(read_cr4() | X86_CR4_TSD);
137 }
138 
139 void disable_TSC(void)
140 {
141 	preempt_disable();
142 	if (!test_and_set_thread_flag(TIF_NOTSC))
143 		/*
144 		 * Must flip the CPU state synchronously with
145 		 * TIF_NOTSC in the current running context.
146 		 */
147 		hard_disable_TSC();
148 	preempt_enable();
149 }
150 
151 static void hard_enable_TSC(void)
152 {
153 	write_cr4(read_cr4() & ~X86_CR4_TSD);
154 }
155 
156 static void enable_TSC(void)
157 {
158 	preempt_disable();
159 	if (test_and_clear_thread_flag(TIF_NOTSC))
160 		/*
161 		 * Must flip the CPU state synchronously with
162 		 * TIF_NOTSC in the current running context.
163 		 */
164 		hard_enable_TSC();
165 	preempt_enable();
166 }
167 
168 int get_tsc_mode(unsigned long adr)
169 {
170 	unsigned int val;
171 
172 	if (test_thread_flag(TIF_NOTSC))
173 		val = PR_TSC_SIGSEGV;
174 	else
175 		val = PR_TSC_ENABLE;
176 
177 	return put_user(val, (unsigned int __user *)adr);
178 }
179 
180 int set_tsc_mode(unsigned int val)
181 {
182 	if (val == PR_TSC_SIGSEGV)
183 		disable_TSC();
184 	else if (val == PR_TSC_ENABLE)
185 		enable_TSC();
186 	else
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
193 		      struct tss_struct *tss)
194 {
195 	struct thread_struct *prev, *next;
196 
197 	prev = &prev_p->thread;
198 	next = &next_p->thread;
199 
200 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
201 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
202 		unsigned long debugctl = get_debugctlmsr();
203 
204 		debugctl &= ~DEBUGCTLMSR_BTF;
205 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
206 			debugctl |= DEBUGCTLMSR_BTF;
207 
208 		update_debugctlmsr(debugctl);
209 	}
210 
211 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
212 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
213 		/* prev and next are different */
214 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
215 			hard_disable_TSC();
216 		else
217 			hard_enable_TSC();
218 	}
219 
220 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
221 		/*
222 		 * Copy the relevant range of the IO bitmap.
223 		 * Normally this is 128 bytes or less:
224 		 */
225 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
226 		       max(prev->io_bitmap_max, next->io_bitmap_max));
227 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
228 		/*
229 		 * Clear any possible leftover bits:
230 		 */
231 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
232 	}
233 	propagate_user_return_notify(prev_p, next_p);
234 }
235 
236 int sys_fork(struct pt_regs *regs)
237 {
238 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
239 }
240 
241 /*
242  * This is trivial, and on the face of it looks like it
243  * could equally well be done in user mode.
244  *
245  * Not so, for quite unobvious reasons - register pressure.
246  * In user mode vfork() cannot have a stack frame, and if
247  * done by calling the "clone()" system call directly, you
248  * do not have enough call-clobbered registers to hold all
249  * the information you need.
250  */
251 int sys_vfork(struct pt_regs *regs)
252 {
253 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
254 		       NULL, NULL);
255 }
256 
257 long
258 sys_clone(unsigned long clone_flags, unsigned long newsp,
259 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
260 {
261 	if (!newsp)
262 		newsp = regs->sp;
263 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
264 }
265 
266 /*
267  * This gets run with %si containing the
268  * function to call, and %di containing
269  * the "args".
270  */
271 extern void kernel_thread_helper(void);
272 
273 /*
274  * Create a kernel thread
275  */
276 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
277 {
278 	struct pt_regs regs;
279 
280 	memset(&regs, 0, sizeof(regs));
281 
282 	regs.si = (unsigned long) fn;
283 	regs.di = (unsigned long) arg;
284 
285 #ifdef CONFIG_X86_32
286 	regs.ds = __USER_DS;
287 	regs.es = __USER_DS;
288 	regs.fs = __KERNEL_PERCPU;
289 	regs.gs = __KERNEL_STACK_CANARY;
290 #else
291 	regs.ss = __KERNEL_DS;
292 #endif
293 
294 	regs.orig_ax = -1;
295 	regs.ip = (unsigned long) kernel_thread_helper;
296 	regs.cs = __KERNEL_CS | get_kernel_rpl();
297 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
298 
299 	/* Ok, create the new process.. */
300 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
301 }
302 EXPORT_SYMBOL(kernel_thread);
303 
304 /*
305  * sys_execve() executes a new program.
306  */
307 long sys_execve(const char __user *name,
308 		const char __user *const __user *argv,
309 		const char __user *const __user *envp, struct pt_regs *regs)
310 {
311 	long error;
312 	char *filename;
313 
314 	filename = getname(name);
315 	error = PTR_ERR(filename);
316 	if (IS_ERR(filename))
317 		return error;
318 	error = do_execve(filename, argv, envp, regs);
319 
320 #ifdef CONFIG_X86_32
321 	if (error == 0) {
322 		/* Make sure we don't return using sysenter.. */
323                 set_thread_flag(TIF_IRET);
324         }
325 #endif
326 
327 	putname(filename);
328 	return error;
329 }
330 
331 /*
332  * Idle related variables and functions
333  */
334 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
335 EXPORT_SYMBOL(boot_option_idle_override);
336 
337 /*
338  * Powermanagement idle function, if any..
339  */
340 void (*pm_idle)(void);
341 #ifdef CONFIG_APM_MODULE
342 EXPORT_SYMBOL(pm_idle);
343 #endif
344 
345 #ifdef CONFIG_X86_32
346 /*
347  * This halt magic was a workaround for ancient floppy DMA
348  * wreckage. It should be safe to remove.
349  */
350 static int hlt_counter;
351 void disable_hlt(void)
352 {
353 	hlt_counter++;
354 }
355 EXPORT_SYMBOL(disable_hlt);
356 
357 void enable_hlt(void)
358 {
359 	hlt_counter--;
360 }
361 EXPORT_SYMBOL(enable_hlt);
362 
363 static inline int hlt_use_halt(void)
364 {
365 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
366 }
367 #else
368 static inline int hlt_use_halt(void)
369 {
370 	return 1;
371 }
372 #endif
373 
374 /*
375  * We use this if we don't have any better
376  * idle routine..
377  */
378 void default_idle(void)
379 {
380 	if (hlt_use_halt()) {
381 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
382 		trace_cpu_idle_rcuidle(1, smp_processor_id());
383 		current_thread_info()->status &= ~TS_POLLING;
384 		/*
385 		 * TS_POLLING-cleared state must be visible before we
386 		 * test NEED_RESCHED:
387 		 */
388 		smp_mb();
389 
390 		if (!need_resched())
391 			safe_halt();	/* enables interrupts racelessly */
392 		else
393 			local_irq_enable();
394 		current_thread_info()->status |= TS_POLLING;
395 		trace_power_end_rcuidle(smp_processor_id());
396 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
397 	} else {
398 		local_irq_enable();
399 		/* loop is done by the caller */
400 		cpu_relax();
401 	}
402 }
403 #ifdef CONFIG_APM_MODULE
404 EXPORT_SYMBOL(default_idle);
405 #endif
406 
407 bool set_pm_idle_to_default(void)
408 {
409 	bool ret = !!pm_idle;
410 
411 	pm_idle = default_idle;
412 
413 	return ret;
414 }
415 void stop_this_cpu(void *dummy)
416 {
417 	local_irq_disable();
418 	/*
419 	 * Remove this CPU:
420 	 */
421 	set_cpu_online(smp_processor_id(), false);
422 	disable_local_APIC();
423 
424 	for (;;) {
425 		if (hlt_works(smp_processor_id()))
426 			halt();
427 	}
428 }
429 
430 static void do_nothing(void *unused)
431 {
432 }
433 
434 /*
435  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
436  * pm_idle and update to new pm_idle value. Required while changing pm_idle
437  * handler on SMP systems.
438  *
439  * Caller must have changed pm_idle to the new value before the call. Old
440  * pm_idle value will not be used by any CPU after the return of this function.
441  */
442 void cpu_idle_wait(void)
443 {
444 	smp_mb();
445 	/* kick all the CPUs so that they exit out of pm_idle */
446 	smp_call_function(do_nothing, NULL, 1);
447 }
448 EXPORT_SYMBOL_GPL(cpu_idle_wait);
449 
450 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
451 static void mwait_idle(void)
452 {
453 	if (!need_resched()) {
454 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
455 		trace_cpu_idle_rcuidle(1, smp_processor_id());
456 		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
457 			clflush((void *)&current_thread_info()->flags);
458 
459 		__monitor((void *)&current_thread_info()->flags, 0, 0);
460 		smp_mb();
461 		if (!need_resched())
462 			__sti_mwait(0, 0);
463 		else
464 			local_irq_enable();
465 		trace_power_end_rcuidle(smp_processor_id());
466 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
467 	} else
468 		local_irq_enable();
469 }
470 
471 /*
472  * On SMP it's slightly faster (but much more power-consuming!)
473  * to poll the ->work.need_resched flag instead of waiting for the
474  * cross-CPU IPI to arrive. Use this option with caution.
475  */
476 static void poll_idle(void)
477 {
478 	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
479 	trace_cpu_idle_rcuidle(0, smp_processor_id());
480 	local_irq_enable();
481 	while (!need_resched())
482 		cpu_relax();
483 	trace_power_end_rcuidle(smp_processor_id());
484 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
485 }
486 
487 /*
488  * mwait selection logic:
489  *
490  * It depends on the CPU. For AMD CPUs that support MWAIT this is
491  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
492  * then depend on a clock divisor and current Pstate of the core. If
493  * all cores of a processor are in halt state (C1) the processor can
494  * enter the C1E (C1 enhanced) state. If mwait is used this will never
495  * happen.
496  *
497  * idle=mwait overrides this decision and forces the usage of mwait.
498  */
499 
500 #define MWAIT_INFO			0x05
501 #define MWAIT_ECX_EXTENDED_INFO		0x01
502 #define MWAIT_EDX_C1			0xf0
503 
504 int mwait_usable(const struct cpuinfo_x86 *c)
505 {
506 	u32 eax, ebx, ecx, edx;
507 
508 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
509 		return 1;
510 
511 	if (c->cpuid_level < MWAIT_INFO)
512 		return 0;
513 
514 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
515 	/* Check, whether EDX has extended info about MWAIT */
516 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
517 		return 1;
518 
519 	/*
520 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
521 	 * C1  supports MWAIT
522 	 */
523 	return (edx & MWAIT_EDX_C1);
524 }
525 
526 bool amd_e400_c1e_detected;
527 EXPORT_SYMBOL(amd_e400_c1e_detected);
528 
529 static cpumask_var_t amd_e400_c1e_mask;
530 
531 void amd_e400_remove_cpu(int cpu)
532 {
533 	if (amd_e400_c1e_mask != NULL)
534 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
535 }
536 
537 /*
538  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
539  * pending message MSR. If we detect C1E, then we handle it the same
540  * way as C3 power states (local apic timer and TSC stop)
541  */
542 static void amd_e400_idle(void)
543 {
544 	if (need_resched())
545 		return;
546 
547 	if (!amd_e400_c1e_detected) {
548 		u32 lo, hi;
549 
550 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
551 
552 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
553 			amd_e400_c1e_detected = true;
554 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
555 				mark_tsc_unstable("TSC halt in AMD C1E");
556 			printk(KERN_INFO "System has AMD C1E enabled\n");
557 		}
558 	}
559 
560 	if (amd_e400_c1e_detected) {
561 		int cpu = smp_processor_id();
562 
563 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
564 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
565 			/*
566 			 * Force broadcast so ACPI can not interfere.
567 			 */
568 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
569 					   &cpu);
570 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
571 			       cpu);
572 		}
573 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
574 
575 		default_idle();
576 
577 		/*
578 		 * The switch back from broadcast mode needs to be
579 		 * called with interrupts disabled.
580 		 */
581 		 local_irq_disable();
582 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
583 		 local_irq_enable();
584 	} else
585 		default_idle();
586 }
587 
588 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
589 {
590 #ifdef CONFIG_SMP
591 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
592 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
593 			" performance may degrade.\n");
594 	}
595 #endif
596 	if (pm_idle)
597 		return;
598 
599 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
600 		/*
601 		 * One CPU supports mwait => All CPUs supports mwait
602 		 */
603 		printk(KERN_INFO "using mwait in idle threads.\n");
604 		pm_idle = mwait_idle;
605 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
606 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
607 		printk(KERN_INFO "using AMD E400 aware idle routine\n");
608 		pm_idle = amd_e400_idle;
609 	} else
610 		pm_idle = default_idle;
611 }
612 
613 void __init init_amd_e400_c1e_mask(void)
614 {
615 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
616 	if (pm_idle == amd_e400_idle)
617 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
618 }
619 
620 static int __init idle_setup(char *str)
621 {
622 	if (!str)
623 		return -EINVAL;
624 
625 	if (!strcmp(str, "poll")) {
626 		printk("using polling idle threads.\n");
627 		pm_idle = poll_idle;
628 		boot_option_idle_override = IDLE_POLL;
629 	} else if (!strcmp(str, "mwait")) {
630 		boot_option_idle_override = IDLE_FORCE_MWAIT;
631 		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
632 	} else if (!strcmp(str, "halt")) {
633 		/*
634 		 * When the boot option of idle=halt is added, halt is
635 		 * forced to be used for CPU idle. In such case CPU C2/C3
636 		 * won't be used again.
637 		 * To continue to load the CPU idle driver, don't touch
638 		 * the boot_option_idle_override.
639 		 */
640 		pm_idle = default_idle;
641 		boot_option_idle_override = IDLE_HALT;
642 	} else if (!strcmp(str, "nomwait")) {
643 		/*
644 		 * If the boot option of "idle=nomwait" is added,
645 		 * it means that mwait will be disabled for CPU C2/C3
646 		 * states. In such case it won't touch the variable
647 		 * of boot_option_idle_override.
648 		 */
649 		boot_option_idle_override = IDLE_NOMWAIT;
650 	} else
651 		return -1;
652 
653 	return 0;
654 }
655 early_param("idle", idle_setup);
656 
657 unsigned long arch_align_stack(unsigned long sp)
658 {
659 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
660 		sp -= get_random_int() % 8192;
661 	return sp & ~0xf;
662 }
663 
664 unsigned long arch_randomize_brk(struct mm_struct *mm)
665 {
666 	unsigned long range_end = mm->brk + 0x02000000;
667 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
668 }
669 
670