xref: /openbmc/linux/arch/x86/kernel/process.c (revision 161f4089)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 
32 /*
33  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34  * no more per-task TSS's. The TSS size is kept cacheline-aligned
35  * so they are allowed to end up in the .data..cacheline_aligned
36  * section. Since TSS's are completely CPU-local, we want them
37  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38  */
39 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40 
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44 
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 	atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50 
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 	atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57 
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60 
61 /*
62  * this gets called so that we can store lazy state into memory and copy the
63  * current task into the new thread.
64  */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 	int ret;
68 
69 	*dst = *src;
70 	if (fpu_allocated(&src->thread.fpu)) {
71 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 		ret = fpu_alloc(&dst->thread.fpu);
73 		if (ret)
74 			return ret;
75 		fpu_copy(dst, src);
76 	}
77 	return 0;
78 }
79 
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 	fpu_free(&tsk->thread.fpu);
83 }
84 
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 	free_thread_xstate(tsk);
88 }
89 
90 void arch_task_cache_init(void)
91 {
92         task_xstate_cachep =
93         	kmem_cache_create("task_xstate", xstate_size,
94 				  __alignof__(union thread_xstate),
95 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
96 }
97 
98 /*
99  * Free current thread data structures etc..
100  */
101 void exit_thread(void)
102 {
103 	struct task_struct *me = current;
104 	struct thread_struct *t = &me->thread;
105 	unsigned long *bp = t->io_bitmap_ptr;
106 
107 	if (bp) {
108 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109 
110 		t->io_bitmap_ptr = NULL;
111 		clear_thread_flag(TIF_IO_BITMAP);
112 		/*
113 		 * Careful, clear this in the TSS too:
114 		 */
115 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 		t->io_bitmap_max = 0;
117 		put_cpu();
118 		kfree(bp);
119 	}
120 
121 	drop_fpu(me);
122 }
123 
124 void flush_thread(void)
125 {
126 	struct task_struct *tsk = current;
127 
128 	flush_ptrace_hw_breakpoint(tsk);
129 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
130 	drop_init_fpu(tsk);
131 	/*
132 	 * Free the FPU state for non xsave platforms. They get reallocated
133 	 * lazily at the first use.
134 	 */
135 	if (!use_eager_fpu())
136 		free_thread_xstate(tsk);
137 }
138 
139 static void hard_disable_TSC(void)
140 {
141 	write_cr4(read_cr4() | X86_CR4_TSD);
142 }
143 
144 void disable_TSC(void)
145 {
146 	preempt_disable();
147 	if (!test_and_set_thread_flag(TIF_NOTSC))
148 		/*
149 		 * Must flip the CPU state synchronously with
150 		 * TIF_NOTSC in the current running context.
151 		 */
152 		hard_disable_TSC();
153 	preempt_enable();
154 }
155 
156 static void hard_enable_TSC(void)
157 {
158 	write_cr4(read_cr4() & ~X86_CR4_TSD);
159 }
160 
161 static void enable_TSC(void)
162 {
163 	preempt_disable();
164 	if (test_and_clear_thread_flag(TIF_NOTSC))
165 		/*
166 		 * Must flip the CPU state synchronously with
167 		 * TIF_NOTSC in the current running context.
168 		 */
169 		hard_enable_TSC();
170 	preempt_enable();
171 }
172 
173 int get_tsc_mode(unsigned long adr)
174 {
175 	unsigned int val;
176 
177 	if (test_thread_flag(TIF_NOTSC))
178 		val = PR_TSC_SIGSEGV;
179 	else
180 		val = PR_TSC_ENABLE;
181 
182 	return put_user(val, (unsigned int __user *)adr);
183 }
184 
185 int set_tsc_mode(unsigned int val)
186 {
187 	if (val == PR_TSC_SIGSEGV)
188 		disable_TSC();
189 	else if (val == PR_TSC_ENABLE)
190 		enable_TSC();
191 	else
192 		return -EINVAL;
193 
194 	return 0;
195 }
196 
197 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
198 		      struct tss_struct *tss)
199 {
200 	struct thread_struct *prev, *next;
201 
202 	prev = &prev_p->thread;
203 	next = &next_p->thread;
204 
205 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
206 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
207 		unsigned long debugctl = get_debugctlmsr();
208 
209 		debugctl &= ~DEBUGCTLMSR_BTF;
210 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
211 			debugctl |= DEBUGCTLMSR_BTF;
212 
213 		update_debugctlmsr(debugctl);
214 	}
215 
216 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
217 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
218 		/* prev and next are different */
219 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
220 			hard_disable_TSC();
221 		else
222 			hard_enable_TSC();
223 	}
224 
225 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
226 		/*
227 		 * Copy the relevant range of the IO bitmap.
228 		 * Normally this is 128 bytes or less:
229 		 */
230 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
231 		       max(prev->io_bitmap_max, next->io_bitmap_max));
232 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
233 		/*
234 		 * Clear any possible leftover bits:
235 		 */
236 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
237 	}
238 	propagate_user_return_notify(prev_p, next_p);
239 }
240 
241 /*
242  * Idle related variables and functions
243  */
244 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
245 EXPORT_SYMBOL(boot_option_idle_override);
246 
247 static void (*x86_idle)(void);
248 
249 #ifndef CONFIG_SMP
250 static inline void play_dead(void)
251 {
252 	BUG();
253 }
254 #endif
255 
256 #ifdef CONFIG_X86_64
257 void enter_idle(void)
258 {
259 	this_cpu_write(is_idle, 1);
260 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
261 }
262 
263 static void __exit_idle(void)
264 {
265 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
266 		return;
267 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
268 }
269 
270 /* Called from interrupts to signify idle end */
271 void exit_idle(void)
272 {
273 	/* idle loop has pid 0 */
274 	if (current->pid)
275 		return;
276 	__exit_idle();
277 }
278 #endif
279 
280 void arch_cpu_idle_enter(void)
281 {
282 	local_touch_nmi();
283 	enter_idle();
284 }
285 
286 void arch_cpu_idle_exit(void)
287 {
288 	__exit_idle();
289 }
290 
291 void arch_cpu_idle_dead(void)
292 {
293 	play_dead();
294 }
295 
296 /*
297  * Called from the generic idle code.
298  */
299 void arch_cpu_idle(void)
300 {
301 	if (cpuidle_idle_call())
302 		x86_idle();
303 	else
304 		local_irq_enable();
305 }
306 
307 /*
308  * We use this if we don't have any better idle routine..
309  */
310 void default_idle(void)
311 {
312 	trace_cpu_idle_rcuidle(1, smp_processor_id());
313 	safe_halt();
314 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
315 }
316 #ifdef CONFIG_APM_MODULE
317 EXPORT_SYMBOL(default_idle);
318 #endif
319 
320 #ifdef CONFIG_XEN
321 bool xen_set_default_idle(void)
322 {
323 	bool ret = !!x86_idle;
324 
325 	x86_idle = default_idle;
326 
327 	return ret;
328 }
329 #endif
330 void stop_this_cpu(void *dummy)
331 {
332 	local_irq_disable();
333 	/*
334 	 * Remove this CPU:
335 	 */
336 	set_cpu_online(smp_processor_id(), false);
337 	disable_local_APIC();
338 
339 	for (;;)
340 		halt();
341 }
342 
343 bool amd_e400_c1e_detected;
344 EXPORT_SYMBOL(amd_e400_c1e_detected);
345 
346 static cpumask_var_t amd_e400_c1e_mask;
347 
348 void amd_e400_remove_cpu(int cpu)
349 {
350 	if (amd_e400_c1e_mask != NULL)
351 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
352 }
353 
354 /*
355  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
356  * pending message MSR. If we detect C1E, then we handle it the same
357  * way as C3 power states (local apic timer and TSC stop)
358  */
359 static void amd_e400_idle(void)
360 {
361 	if (!amd_e400_c1e_detected) {
362 		u32 lo, hi;
363 
364 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
365 
366 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
367 			amd_e400_c1e_detected = true;
368 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
369 				mark_tsc_unstable("TSC halt in AMD C1E");
370 			pr_info("System has AMD C1E enabled\n");
371 		}
372 	}
373 
374 	if (amd_e400_c1e_detected) {
375 		int cpu = smp_processor_id();
376 
377 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
378 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
379 			/*
380 			 * Force broadcast so ACPI can not interfere.
381 			 */
382 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
383 					   &cpu);
384 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
385 		}
386 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
387 
388 		default_idle();
389 
390 		/*
391 		 * The switch back from broadcast mode needs to be
392 		 * called with interrupts disabled.
393 		 */
394 		local_irq_disable();
395 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
396 		local_irq_enable();
397 	} else
398 		default_idle();
399 }
400 
401 void select_idle_routine(const struct cpuinfo_x86 *c)
402 {
403 #ifdef CONFIG_SMP
404 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
405 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
406 #endif
407 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
408 		return;
409 
410 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
411 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
412 		pr_info("using AMD E400 aware idle routine\n");
413 		x86_idle = amd_e400_idle;
414 	} else
415 		x86_idle = default_idle;
416 }
417 
418 void __init init_amd_e400_c1e_mask(void)
419 {
420 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
421 	if (x86_idle == amd_e400_idle)
422 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
423 }
424 
425 static int __init idle_setup(char *str)
426 {
427 	if (!str)
428 		return -EINVAL;
429 
430 	if (!strcmp(str, "poll")) {
431 		pr_info("using polling idle threads\n");
432 		boot_option_idle_override = IDLE_POLL;
433 		cpu_idle_poll_ctrl(true);
434 	} else if (!strcmp(str, "halt")) {
435 		/*
436 		 * When the boot option of idle=halt is added, halt is
437 		 * forced to be used for CPU idle. In such case CPU C2/C3
438 		 * won't be used again.
439 		 * To continue to load the CPU idle driver, don't touch
440 		 * the boot_option_idle_override.
441 		 */
442 		x86_idle = default_idle;
443 		boot_option_idle_override = IDLE_HALT;
444 	} else if (!strcmp(str, "nomwait")) {
445 		/*
446 		 * If the boot option of "idle=nomwait" is added,
447 		 * it means that mwait will be disabled for CPU C2/C3
448 		 * states. In such case it won't touch the variable
449 		 * of boot_option_idle_override.
450 		 */
451 		boot_option_idle_override = IDLE_NOMWAIT;
452 	} else
453 		return -1;
454 
455 	return 0;
456 }
457 early_param("idle", idle_setup);
458 
459 unsigned long arch_align_stack(unsigned long sp)
460 {
461 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
462 		sp -= get_random_int() % 8192;
463 	return sp & ~0xf;
464 }
465 
466 unsigned long arch_randomize_brk(struct mm_struct *mm)
467 {
468 	unsigned long range_end = mm->brk + 0x02000000;
469 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
470 }
471 
472